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Abstract: A cascaded lattice Boltzmann (CLB) model is constructed for simulating heat transfer in
metal-foam-based solid-liquid phase change materials (PCMs). The present model captures the phase
interface implicitly via the enthalpy methodology, and to avoid iterations in simulations, the CLB
equation of the PCM employs the enthalpy as the basic evolution variable through modifying the
cascaded collision process. Numerical results demonstrate the effectiveness and practicability of the
CLB model for investigating heat transfer in solid-liquid PCMs with metal foams. The effects of the
inertial coefficient, permeability and porosity on the melting process are investigated. The results
indicate that the empirical correlations of inertial coefficient and permeability based on packed beds
overestimate the melting rate at high porosities. Moreover, the porosity has significant impact on
phase-change processes. The melting rate increases as the porosity of the metal foam decreases since
heat conduction through high thermal conductive metal foam dominates the total heat transfer.

Keywords: cascaded collision model; lattice Boltzmann model; melting; enthalpy methodology;
metal foams

1. Introduction

Latent heat storage (LHS) using solid-liquid PCMs attracts wide attention from the
academic research community and industry field due to its importance for solving energy
and environment issues [1–4]. Although solid-liquid PCMs have some outstanding advan-
tages (i.e., high energy storage density), they usually suffer from low thermal conductivities
(in the range of 0.1~0.6 W/(m·K) [5]), which strongly affects the LHS system’s thermal
efficiency. To enhance PCMs’ thermal conductivities, embedding high thermal conductive
metal foams within PCMs to form composite PCMs has long been practiced [6,7]. In the
past several decades, various conventional numerical methods (e.g., FVM [8,9]) have been
developed to investigate thermal behaviors of heat transfer in solid-liquid PCMs with metal
foams. The lattice Boltzmann (LB) method [10], as a particle-based numerical tool evolved
from lattice-gas automata [11], has also attracted great attention in studying heat transfer
in solid-liquid PCMs [12].

The LB method is a mesoscopic modeling method sitting in the intermediate zone
between macroscopic continuum-based methods and microscopic molecular dynamics
method. This scale-bridging nature is a fundamental feature of the LB method, and
consequently, it has several distinctive advantages, such as local nature of operations,
ideal for parallel computing, avoiding solving Poisson equation for incompressible flows,
and easy implementation of complex boundary conditions with elementary mechanical
rules [13,14]. Due to its inherent advantage, the LB method is particularly effective in
studying transient phase-change processes with complex interfacial dynamics and moving
phase interface. Moreover, for transient phase-change processes, the efficiency of the LB
method is higher than that of the conventional numerical methods if time steps are equal.
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In 1998, Fabritiis et al. [15] developed the first LB scheme for investigating solid-liquid
phase change. Since then, many LB models have been constructed for transient solid-
liquid phase-change problems, and these models can be divided into three major groups:
phase-field approach [16,17], enthalpy-based approach [18–20], and interface-tracking
approach [21,22]. Among the three types of phase-change LB models, the enthalpy-based
approach has attracted great attention owing to its effectiveness and easy implementation
in modeling solid-liquid phase-change processes. In the enthalpy-based approach, the
diffusive phase interface as well as the liquid and solid phases are distinguished via liquid
fraction, which makes this approach simple and effective. In the past decade, the enthalpy-
based approach has also been successfully adopted to investigate solid-liquid phase change
in porous media by many researchers [23–28]. These enthalpy-based LB models are mainly
constructed based on Bhatnagar–Gross–Krook (BGK) [23–25] and multiple-relaxation-time
(MRT) [26–28] models. As reported in Ref. [27], the effect of unphysical numerical diffusion
on numerical simulations can be serious in the BGK model, while the MRT model can
effectively eliminate such effect since it has sufficient tunable relaxation parameters.

In addition to BGK and MRT collision models, the cascaded collision model [29–32]
also attracts significant attention in the LB community. The cascaded collision model was
first developed by Geier et al. [29] in the year of 2006. In the framework of this model,
the collision step is executed based on central moments, and different central moments
are relaxed to their equilibria with different relaxation rates. In the CLB method, a high
degree of Galilean invariance can be preserved since the influence between different orders
of moments has been eliminated [29,30]. For heat transfer in solid-liquid PCMs with metal
foams, the interfacial behaviors in phase-change region are very important, and interfacial
heat transfer (thermal non-equilibrium effect) plays a significant role because metal foam’s
thermal conductivity is usually three orders of magnitude higher than PCM’s thermal
conductivity. An in-depth understanding of the complex interfacial dynamics and thermal
behaviors requires efficient and powerful numerical tool. Since the cascaded collision
model has tunable relaxation parameters as well as a high degree of Galilean invariance, it
is expected that the complex interfacial dynamics and thermal behaviors of heat transfer in
metal-foam-based solid-liquid PCMs can be well captured by using the cascaded collision
model. Hence, this work aims to propose a CLB model for simulating heat transfer in solid-
liquid PCMs with metal foams, in which the enthalpy methodology is adopted to capture
the phase interface implicitly. Moreover, the effects of the inertial coefficient, permeability
and porosity on melting process will be investigated.

2. Macroscopic Governing Equations

For heat transfer in metal-foam-based solid-liquid PCMs, the macroscopic governing
equations are given by [9,12,23]:

∇·u = 0 (1)

∂u
∂t

+ (u·∇)
(

u
φ

)
= − 1

ρ f
∇(φp) + ve∇2u + F (2)

∂

∂t

(
φρ f cp f Tf

)
+∇·

(
ρlcplTf u

)
= ∇·

[(
ke f + kd

)
∇Tf

]
+ hm f am f

(
Tm − Tf

)
− ∂

∂t
(φρl La fl) (3)

∂

∂t
[
(1− φ)ρmcpmTm

]
= ∇·(kem∇Tm) + hm f am f

(
Tf − Tm

)
(4)

Equations (1) and (2) are the so-called generalized non-Darcy equations. The last
term of Equation (3) is the phase-change term ( fl = 0 denotes the solid region, 0 < fl < 1
denotes the phase-change region, and fl = 1 denotes the liquid region).

The total body force F is determined by:

F = −
φv f l

K
u−

φFφ√
K
|u|u + φG (5)
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According to the Boussinesq approximation, the body force G is given by G = −gβ(T − T0).
For flow through packed bed consisting of spherical particles, Fφ and K are given by:

Fφ =
1.75√
150φ3

, K =
φ3d2

p

150(1− φ)2 (6)

dp in Equation (6) denotes the mean particle diameter.
For metal foams such as aluminum foam, Fφ and K can be well predicted by the

following empirical correlations [33]:

Fφ = A1(1− φ)b1

(d f

dp

)c1

, K = A2(1− φ)b2 d2
p

(d f

dp

)c2

(7)

where A1 = 0.00212, b1 = −0.132, c1 = −1.63, A2 = 0.00073, b2 = −0.224, and c2 = −1.11.
dp in Equation (7) denotes the mean diameter of the pores.

An appropriate equation for the structure of the metal foam is given by [33]:

d f

dp
= 1.18

√
1− φ

3π

1
1− e−(1−φ)/0.04

(8)

The effective thermal conductivities ke f and kem can be determined by analytical
models [33,34]. Since the metal foam’s thermal conductivity is rather high, the thermal
dispersion can be neglected and kd is usually set to in Equation (3) [8].

am f can be predicted by the following relation [35]:

am f =
3πd f(

0.59dp
)2

[
1− e−(1−φ)/0.04

]
(9)

hm f depends on the foam structure, Reynolds number, and Prandtl number. For
forced convective flow in metal foams, several empirical correlations for hm f have been
proposed [8,34]. For natural convection flow through metal foams, the following empirical
correlation is widely used [35]:

hm f =
k f

d f

0.36 +
0.518Ra1/4

d[
1 + (0.559/Pr)9/16

]4/9

 (10)

where Rad = gβ∆Td3
f /(α f lv f l), in which α f l = k f l/

(
ρlcpl

)
.

3. Enthalpy-Based CLB Model for Solid-Liquid Phase Change in Metal Foams

For the flow field described by Equations (1) and (2), the isothermal CLB equation
in Ref. [32] is adopted. In what follows, the enthalpy-based CLB equation for PCM’s
temperature field and the thermal MRT-LB equation for metal foam’s temperature field
are presented in detail. The D2Q5 lattice is adopted, in which the discrete velocities
{ei|i = 0, . . . , 4} are given by:

ei =

{
(0, 0), i = 0

(cos[(i− 1)π/2], sin[(i− 1)π/2])c, i = 1 ∼ 4
(11)
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3.1. Enthalpy-Based CLB Equation
3.1.1. Thermal CLB Equation for Fluid Phase without Phase-Change Term

Without the phase-change term, Equation (3) can be rewritten as:

∂

∂t

(
cp f Tf

)
+∇·

( cp f Tf u
φ

)
= ∇·

(
ke f

φρ f
∇Tf

)
+

hm f am f

(
Tm − Tf

)
φρ f

(12)

We first introduce the thermal CLB equation for solving Equation (3) without phase-
change term based on the simplified CLB method [30]. The raw moments

{
kT

mn
}

and

central moments
{

k̃T
mn

}
of the discrete temperature distribution function g f i of the fluid

phase are defined as follows [30]:

kT
mn =

〈
g f i

∣∣∣em
ixen

iy

〉
, k̃T

mn =
〈

g f i

∣∣∣(eix − ux)
m
(

eiy − uy

)n〉
(13)

The simplified raw-moment
∣∣∣n f i

〉
and central-moment

∣∣∣ñ f i

〉
are given by [30]

∣∣∣n f i

〉
=
[
kT

00, kT
10, kT

01, kT
20, kT

02

]T

,
∣∣∣ñ f i

〉
=
[
k̃T

00, k̃T
10, k̃T

01, k̃T
20, k̃T

02

]T

(14)

Through the transformation matrix MT and shift matrix NT ,
{

n f i

}
and

{
ñ f i

}
can be

determined by [30] ∣∣∣ñ f i

〉
= NT

∣∣∣n f i

〉
,
∣∣∣n f i

〉
= MT

∣∣∣g f i

〉
(15)

The thermal CLB equation for solving Equation (12) can be divided into two parts:
collision and streaming processes. Through shifting procedure (

∣∣∣ñ f i

〉
= NT

∣∣∣n f i

〉
), collision

process is implemented in central-moment space as∣∣∣ñ∗f i

〉
=
∣∣∣ñ f i

〉
−Θ

(∣∣∣ñ f i

〉
−
∣∣∣ñeq

f i

〉)
+
∣∣∣S̃ f i

〉
(16)

where
{

ñeq
f i

}
are equilibrium central moments,

{
ñ∗f i

}
denotes the post-collision central

moments, Θ= diag(ζT , ζα, ζα, ζe, ζe) is the relaxation matrix,
∣∣∣S̃ f i

〉
is the source term.

The streaming process is still implemented in velocity space as

g f i(x + eiδt, t + δt) = g∗f i(x, t) (17)

where g∗f i is determined by
∣∣∣g∗f i

〉
= M−1

T N−1
T

∣∣∣ñ∗f i

〉
(
∣∣∣g∗f i

〉
= M−1

T

∣∣∣n∗f i

〉
and

∣∣∣n∗f i

〉
= N−1

T

∣∣∣ñ∗f i

〉
).

MT and NT are given by (c = 1):

MT =


1 1 1 1 1
0 1 0 −1 0
0 0 1 0 −1
0 1 0 1 0
0 0 1 0 1

 (18)

NT =


1 0 0 0 0

−ux/φ 1 0 0 0
−uy/φ 0 1 0 0

u2
x −2φux 0 1 0

u2
y 0 −2φuy 0 1

 (19)
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Explicitly, the equilibrium central moments
{

ñeq
f i

}
and raw moments

{
neq

f i

}
are

given by: ∣∣∣ñeq
f i

〉
=
[
cp f Tf , 0, 0, c2

s f cp f Tf , c2
s f cp f Tf

]T
(20)

∣∣∣neq
f i

〉
=

[
cp f Tf ,

cp f Tf ux

φ
,

cp f Tf uy

φ
, c2

s f cp f Tf + u2
xcp f Tf , c2

s f cp f Tf + u2
ycp f Tf

]T

(21)

The equilibrium temperature distribution function geq
f i can be determined by∣∣∣geq

f i

〉
= M−1

T

∣∣∣neq
f i

〉
.

Explicitly, the source term
∣∣∣S̃ f i

〉
is given by:

∣∣∣S̃ f i

〉
=

[
Sr f +

1
2

δt∂tSr f , 0, 0, 0, 0
]T

(22)

where Sr f = hm f am f

(
Tm − Tf

)
/
(

φρ f

)
.

The temperature Tf is defined as:

cp f Tf =
4

∑
i=0

g f i (23)

The effective thermal diffusivity αe f is:

αe f =
ke f

φρ f cp f
= c2

s f

(
ζ−1

α −
1
2

)
δt (24)

3.1.2. Enthalpy-Based CLB Equation for PCM with Phase Change

The enthalpy-based CLB equation for solving Equation (3) is developed based on the
thermal CLB equation in Section 3.1.1. By combining the phase-change term ∂t(φρl La fl)

with the transient term ∂t

(
φρ f cp f Tf

)
in Equation (3), we can obtain:

∂H f

∂t
+∇·

( cplTf u
φ

)
= ∇·

( ke f

φρl
∇Tf

)
+

hm f am f

(
Tm − Tf

)
φρl

(25)

where H f = σcplTf + La fl is the enthalpy, and σ =
ρ f cp f
ρl cpl

=
flρlcpl+(1− fl)ρscps

ρl cpl
is the heat

capacity ratio. In the liquid phase ( fl = 1), H f = cplTf + La and σl = 1; in the solid phase

( fl = 0), H f = σscplTf and σs =
ρscps
ρlcpl

. The source term Sr f = hm f am f

(
Tm − Tf

)
/(φρl).

Formally, the collision and streaming processes of the CLB equation for solving Equa-
tion (25) are still given by Equations (16) and (17), respectively. However, to match the
enthalpy-based energy Equation (25), the equilibrium central moments

{
ñeq

f i

}
and raw

moments
{

neq
f i

}
should be chosen as follows:

∣∣∣ñeq
f i

〉
=
[

H f , 0, 0, c2
s f cplTf , c2

s f cplTf

]T
(26)

∣∣∣neq
f i

〉
=

[
H f ,

cplTf ux

φ
,

cplTf uy

φ
, c2

s f cplTf + u2
xcplTf , c2

s f cplTf + u2
ycplTf

]T

(27)

In the system, ñ f 0 is the only conserved quantity (ñ f 0 = n f 0 = H f ). As the enthalpy
H f is the basic evolution variable (g f i is now defined as the enthalpy distribution function),
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the shifting procedure
∣∣∣ñ f i

〉
= NT

∣∣∣n f i

〉
in the original thermal CLB equation should be

modified. Explicitly, the modified shifting procedure is given by:

ñ f 0 = n f 0

ñ f 1 = − uxcpl Tf
φ + n f 1

ñ f 2 = − uycpl Tf
φ + n f 2

ñ f 3 = u2
xcplTf − 2φuxn f 1 + n f 3

ñ f 4 = u2
ycplTf − 2φuyn f 2 + n f 4

(28)

Formally, the collision process is still given by Equation (16), but it should be noted
that it has been reconstructed since the shifting procedure is modified as Equation (28). The
post-collision enthalpy distribution function g∗f i is determined via

∣∣∣g∗f i

〉
= M−1

T

∣∣∣n∗f i

〉
, in

which
∣∣∣n∗f i

〉
is given by:

n∗f 0 = ñ∗f 0

n∗f 1 =
uxcpl Tf

φ + ñ∗f 1

n∗f 2 =
uycpl Tf

φ + ñ∗f 2

n∗f 3 = u2
xcplTf + 2φuxñ∗f 1 + ñ∗f 3

n∗f 4 = u2
ycplTf + 2φuyñ∗f 2 + ñ∗f 4

(29)

Explicitly, geq
f i in the velocity space is:

geq
f 0 = H f −v1cplTf −

(
u2

x + u2
y

)
cplTf

geq
f 1 = v1

4 cplTf +
1
2 uxcplTf +

1
2 u2

xcplTf

geq
f 2 = v1

4 cplTf +
1
2 uycplTf +

1
2 u2

ycplTf

geq
f 3 = v1

4 cplTf − 1
2 uxcplTf +

1
2 u2

xcplTf

geq
f 4 = v1

4 cplTf − 1
2 uycplTf +

1
2 u2

ycplTf

(30)

where v1 ∈ (0, 1) and cs f = c
√

v1/2 =
√

v1/2.
The enthalpy H f is defined by:

H f =
4

∑
i=0

g f i (31)

Simultaneously, the temperature Tf can be calculated by:

Tf =


H f /

(
σscpl

)
, H f ≤ H f s

Tf s +
H f−H f s
H f l−H f s

(
Tf l − Tf s

)
, H f s < H f < H f l

Tf l +
(

H f − H f l

)
/
(

σlcpl

)
, H f ≥ H f l

(32)

where Tf s and Tf l (Tf s ≤ Tf l) are solidus and liquidus temperatures, respectively; H f s and
H f l are enthalpies corresponding to Tf s and Tf l , respectively.
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The liquid fraction fl is:

fl =


0, H f ≤ H f s
H f−H f s
H f l−H f s

, H f s < H f < H f l

1, H f ≥ H f l

(33)

αe f is defined as αe f = ke f /
(

φρlcpl

)
= c2

s f

(
ζ−1

α − 0.5
)

δt.

3.2. Thermal MRT-LB Equation

Equation (4) can be rewritten as:

∂
(
cpmTm

)
∂t

= ∇·
(

kem

(1− φ)ρm
∇Tm

)
+

hm f am f

(
Tf − Tm

)
(1− φ)ρm

(34)

The MRT-LB equation for Equation (34) is:

gmi(x + eiδt, t + δt)− gmi(x, t) = −
(

M−1
T QMT

)
ij

(
gmj − geq

mj

)∣∣∣(x, t) + δtSmi (35)

where gmi(x, t) is the temperature distribution function of the metal foam, geq
mi(x, t) is the

equilibrium of gmi(x, t), and Q = diag(ηT , ηα, ηα, ηe, ηe) is the relaxation matrix.
The collision process of the evolution Equation (35) is implemented in raw-moment

space as:

|n∗mi〉 = |nmi〉 −Q
(
|nmi〉 −

∣∣∣neq
mi

〉)
+
∣∣∣S̃mi

〉
(36)

where
∣∣nmi

〉
= MT

∣∣gmi
〉
,
∣∣∣neq

mi

〉
= MT

∣∣∣geq
mi

〉
, and

∣∣∣S̃mi

〉
= MT

∣∣Smi
〉
.

The streaming process is executed in velocity space as

gmi(x + eiδt, t + δt) = g∗mi(x, t) (37)

where
∣∣g∗mi

〉
= M−1

T

∣∣n∗mi
〉
.

The equilibrium moment
∣∣∣neq

mi

〉
is:

∣∣∣neq
mi

〉
=

[
cpmTm, 0, 0,

vcpmTm

2
,

vcpmTm

2

]T
(38)

The equilibrium temperature distribution function geq
mi(x, t) in the velocity space is

given by:

geq
mi =

{
(1−v2)cpmTm, i = 0

1
4 v2cpmTm, i = 1 ∼ 4

(39)

where v2 ∈ (0, 1) is a tunable parameter of the D2Q5 lattice model.
Explicitly, the source term

∣∣∣S̃mi

〉
is given by:

∣∣∣S̃mi

〉
=

[
Srm +

1
2

δt∂tSrm, 0, 0, 0, 0
]T

(40)

where Srm = hm f am f

(
Tf − Tm

)
/[(1− φ)ρm].

The temperature Tm is defined by:

cpmTm =
4

∑
i=0

gmi (41)
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The effective thermal diffusivity αem = kem/[(1− φ)ρm] = c2
sm
(
η−1

α − 0.5
)
δt, in which

csm = c
√

v2/2 =
√

v2/2 is the sound speed.

4. Numerical Simulations

In this section, the present enthalpy-based CLB model is employed to investigate
solid-liquid phase change (melting) with natural convection in metal foams. The schematic
of the problem under investigation is shown in Figure 1. Initially, the PCM (solid state) and
metal foam are kept at equilibrium temperature Ti (Ti ≤ Tmelt). At t = 0, the temperature
of the left wall is raised to Th (Th > Tmelt), and consequently, the PCM starts to melt. The
characteristic parameters are defined as follows:

Da = K
L2 , Ra = gβ∆TL3

v f l α f l
, Pr =

v f l
α f l

, J = ve
v f l

, σ̂ =
ρmcpm
ρlcpl

, λ = km
k f l

Γ = αm
α f l

, Hv =
hm f am f d2

p
k f

, Fo =
tα f l
L2 , St =

cpl∆T
La

(42)

where ∆T = Th − Tc (Th > Tc) is the characteristic temperature and αm = km/
(
ρmcpm

)
.
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Figure 1. Schematic of melting with natural convection in metal foams.

In simulations, some required parameters are: δx = δy = δt = 1 (c = 1), cpl = cps = 1,
σ̂ = 1, Pr = 50, Hv = 5.9, dp/L = 0.0135, λ = Γ = 103, k f = 0.0005, J = 1, and
v1 = v2 = 1/2. The effective thermal conductivities ke f and kem are simply determined
by ke f = φk f (k f = k f l = k f s) and kem = (1− φ)km, respectively. To eliminate the
unphysical numerical diffusion, the relaxation parameters ζ3 and ζ4 (ζ3 = ζ4 = ζe) related
to the second-order moments are determined by ζe = 2− ζα [20,27]. The isothermal CLB
equation [32] in conjunction with the volumetric LB scheme [36] is employed to solve the
flow filed, and to realize the velocity and thermal boundary conditions, the non-equilibrium
extrapolation scheme [37] is adopted. Each C++ serial program runs on a desktop computer
(Inter(R) Core(TM) i5-8400 CPU@2.80GHz; RAM: 8.0 GB).

In Figure 2, the melting front at different values of Fo for Ra = 106 and 108 with
Da = 10−4, φ = 0.8 and St = 1 are presented. For comparison purpose, the other
parameters are chosen as Fφ = 0.068, θh = 1, θi = θc = θ0 = 0, and θmelt = 0.3
(θ = (T − Tc)/∆T) [9]. For Ra = 106, Nx × Ny = 100× 100 is employed, and for Ra = 108,
Nx × Ny = 300× 300 is employed. From the figure it can be found that the CLB results
match well with the results obtained by FVM [9]. As show in Figure 2a, at Ra = 106,
the shape of the melting front is almost planar since the heat transfer inside the cavity is
controlled by conduction due to the large value of metal foam-to-PCM thermal conductivity



Entropy 2022, 24, 307 9 of 17

ratio. As Ra increases (Ra = 108), the effect of natural convection becomes stronger, then
the melting front moves faster near the top wall (see Figure 2b).
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Figure 2. The melting front ( fl = 0.5) at different values of Fo for Ra = 106 and 108 with Da = 10−4,
φ = 0.8 and St = 1. (lines: present; symbols: FVM results [9]).

In Figure 3, the temperature profiles (at Y = 0.5) at different values of Fo for Ra = 106

and 108 with Da = 10−4, φ = 0.8 and St = 1 are shown. As can be seen from the figure,
at the very beginning (Fo = 0.00005), the thermal non-equilibrium effect is apparent
(the temperature difference is very high). As Fo increases, the temperature difference
progressively decreases due to the interfacial heat transfer. At Fo = 0.001, the temperature
difference tends to 0 except in the mushy zone, indicating that the thermal non-equilibrium
effect at this stage is weak. As clearly illustrated in Figure 3, the temperature difference has
a maximum value near the phase-change region (mushy zone). The FVM results [9] are
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also shown in Figure 3 for comparisons. It can be found that the CLB results are in good
agreement with those results in Ref. [9].
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Figure 3. Temperature profiles at the mid-height of the cavity (Y = 0.5) at different values of Fo for
Ra = 106 and 108 with Da = 10−4, φ = 0.8 and St = 1. (lines: present; symbols: FVM results [9]).

The flow field with the phase field at different values of Fo for Ra = 108 with
Da = 10−4, φ = 0.8 and St = 1 are presented in Figure 4. As shown in the figure, an
elliptical shape vortex appears in the liquid region at Fo = 0.0004. As Fo increases, natural
convection effect becomes stronger, resulting in more hot liquid to move upwards, and
consequently, the PCM melts faster in the upper region of the cavity. Although the Rayleigh
number is high, the natural convection effect is weak since it has been severely suppressed
by the effect caused by the metal foam’s ligament, and, during the melting process, the heat
conduction through the high thermal conductive metal foam dominates the heat transfer.
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Figure 4. Streamlines with the phase field at different values of Fo for Ra = 108 with Da = 10−4,
φ = 0.8 and St = 1.

Since the cascaded collision model has tunable relaxation parameters as well as a high
degree of Galilean invariance, it is expected that the unphysical numerical diffusion can be
effectively eliminated in numerical simulations by using the CLB model. To confirm this
statement, the liquid fraction distributions calculated by the CLB and BGK-LB models at
Fo = 0.002 for Ra = 108 with Da = 10−4, φ = 0.8 and St = 1 are presented in Figure 5. The
BGK-LB result means that the PCM’s temperature field is solved by the enthalpy-based
BGK-LB equation (when NT is an identity matrix and ζi = 1/τfl

, the enthalpy-based CLB

equation degrades into the enthalpy-based BGK-LB equation with αe f = c2
s f

(
τfl
− 0.5

)
δt).

As can be seen in Figure 5a, the liquid fraction distribution calculated by the BGK-LB model
exhibits significant numerical oscillations because the BGK-LB model has no free relaxation
parameters to eliminate the effect of numerical diffusion on numerical simulations. On the
contrary, the effect of numerical diffusion is almost invisible in Figure 5b because the CLB
model has free relaxation parameters to eliminate such an effect. By setting ζe = 2− ζα, the
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effect of the numerical diffusion on numerical simulations can be effectively eliminated by
the present CLB model.
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Figure 5. Local enlargement view of the liquid fraction distributions calculated by the BGK-LB and
CLB models at Fo = 0.002 for Ra = 108 with Da = 10−4, φ = 0.8 and St = 1.

Fφ and K are functions of the structure of the porous media. Equation (6) is proposed
for packed beds of spherical particles based on Ergun’s experimental study, while Equation
(7) is proposed for high porosity metal foams such as aluminum foam [33,34]. In what
follows, the empirical correlations for Fφ and K given by Equations (6) and (7) are evaluated.
In numerical simulations, the related parameters are set as θh = 1, θi = θc = θmelt = θ0 = 0.
Numerical simulations are conducted based on Nx × Ny = 100× 100. The total liquid
fractions fl,total for different porosities with Ra = 108 and St = 1 are presented in Figure 6.
For a low value of porosity (φ = 0.8), the total liquid fraction fl,total predicted with Equation
(6) is almost the same as that predicted with Equation (7). As the porosity increases, the two
empirical correlations yield different results (see Figure 6b–d). When Fφ and K are given by
Equation (6), the melting rate of the PCM is faster than that predicted with Equation (7).
This can be expected because the permeability given by Equation (6) is much larger than
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that given by Equation (7) at high porosities, leading to a stronger convection effect which
promotes the heat transfer during melting process. Hence, for high porosity metal foams,
appropriate empirical correlations should be employed. Since Equation (6) is proposed for
packed beds, it overestimates the melting rate of the PCM. The empirical correlations given
by Equation (7) are expected to provide a good estimate of the practical situations.
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Figure 6. The total liquid fractions for different porosities with Ra = 108 and St = 1.

In Figure 7, the total liquid fractions of Ra = 106 and 108 for different porosities with
Fφ and K given by Equation (7) are shown. As can be seen in the figure, when φ increases,
the PCM’s melting rate decreases. An increase in the metal foam’s porosity leads to stronger
convection effect of the liquid; however, it also reduces the effect of conduction through the
metal foam’s ligament. This observation denotes that the total heat transfer from hot (left)
wall is dominated by heat conduction through the high thermal conductive metal foam.
The comparison between the total liquid fractions of Ra = 106 and 108 indicates that the
effect of Ra on melting is weak because the convection has been severely suppressed by the
metal foam’s ligament. Although smaller porosity increases the PCM’s melting rate, it also
denotes smaller volume of PCM for LHS. A further optimization investigation on porosity
of the metal foam to balance the PCM’s melting rate and LHS capacity is quite necessary.
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5. Conclusions

An enthalpy-based CLB model is constructed for investigating heat transfer in solid-
liquid PCMs with metal foams. The effects of the inertial coefficient, permeability and
porosity on phase-change processes are examined. The findings of this research are:

(1) The melting front and temperature profiles at different Fourier numbers predicted by
the CLB model match well with the available data in previous studies, demonstrating
the effectiveness and practicability of the CLB model for investigating heat transfer in
solid-liquid PCMs with metal foams.

(2) The empirical correlations of Fφ and K given by Equation (6) based on packed beds
overestimate the PCM’s melting rate when the metal foam’s porosity is high, while
the empirical correlations for metal foams such as aluminum foam given by Equation
(7) are expected to provide a good estimate of the practical situations.

(3) The PCM’s melting rate increases as the metal foam’s porosity decreases since the total
heat transfer from the hot wall is dominated by heat conduction through high thermal
conductive metal foam. Moreover, the effect of the Rayleigh number on phase-change
process is weak since it has been severely suppressed by the metal foam’s ligament.

(4) Although smaller porosity increases the PCM’s melting rate, it also reduces the volume
of PCM for LHS, leading to a lower LHS capability. A further optimization investi-
gation on metal foam’s porosity to balance PCM’s melting rate and LHS capacity is
quite necessary.
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Nomenclature
σ̂ heat capacity ratio (metal foam-to-PCM)
c lattice speed, c = δx/δt = 1
cs f sound speed, cs f = c

√
v1/2 =

√
v1/2

csm sound speed, csm = c
√

v2/2 =
√

v2/2
T temperature
g gravitational acceleration
dp mean particle diameter or mean diameter of the pores
p pressure
d f fiber diameter of metal foam
Da Darcy number
ei discrete lattice velocity
F total body force
L characteristic length
fl,total total liquid fraction
Fo Fourier number
G buoyancy force
kem effective thermal conductivity (metal foam)
Hv volumetric heat transfer coefficient
J viscosity ratio
MT transformation matrix
NT shift matrix
Ra Rayleigh number
St Stefan number
T0 reference temperature
Th hot wall’ temperature
λ thermal conductivity ratio (metal foam-to-PCM)
Tc cold wall’s temperature
Ti initial temperature
Tmelt melting temperature
k f thermal conductivity (PCM)
u velocity
X,Y coordinates, X = x/L, Y = y/L
cp specific heat
kd thermal dispersion conductivity
am f specific surface area
ke f effective thermal conductivity (PCM)
hm f interfacial heat transfer coefficient
fl liquid fraction
La latent heat
Fφ inertial coefficient
K permeability
Pr Prandtl number
α f l Thermal diffusivity (liquid PCM)
αe f effective thermal diffusivity (fluid)
αem effective thermal diffusivity (metal foam)
β thermal expansion coefficient
ρ density
φ porosity of metal foam
ve effective kinematic viscosity
v f l kinematic viscosity (liquid PCM)
v1, v2 model parameters
km thermal conductivity (metal foam)
δx lattice spacing
δt time step
Γ thermal diffusivity ratio (metal foam-to-PCM)
Subscripts



Entropy 2022, 24, 307 16 of 17

f fluid (PCM)
m metal foam
l liquid PCM
s solid PCM
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