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Abstract: The distance that compares the difference between two probability distributions plays
a fundamental role in statistics and machine learning. Optimal transport (OT) theory provides a
theoretical framework to study such distances. Recent advances in OT theory include a generalization
of classical OT with an extra entropic constraint or regularization, called entropic OT. Despite its
convenience in computation, entropic OT still lacks sufficient theoretical support. In this paper, we
show that the quadratic cost in entropic OT can be upper-bounded using entropy power inequality
(EPI)-type bounds. First, we prove an HWI-type inequality by making use of the infinitesimal
displacement convexity of the OT map. Second, we derive two Talagrand-type inequalities using the
saturation of EPI that corresponds to a numerical term in our expressions. These two new inequalities
are shown to generalize two previous results obtained by Bolley et al. and Bai et al. Using the
new Talagrand-type inequalities, we also show that the geometry observed by Sinkhorn distance is
smoothed in the sense of measure concentration. Finally, we corroborate our results with various
simulation studies.

Keywords: entropic optimal transport; Schrödinger problem; Talagrand inequality; entropy power
inequality; log-concave measures

1. Introduction

OT theory studies how to transport one measure to another in the path with minimal
cost. The Wasserstein distance is the cost given by the optimal path and closely connected
with information measures; see, e.g., [1–5].

During the last decade, OT has been studied and applied extensively, especially in the
machine learning community; see, e.g., [6–9]. Entropic OT, a technique to approximate the
solution of the original OT, was given for computational efficiency in [10]. A key concept
in the entropic OT is the Sinkhorn distance, which is a generalization of the Wasserstein
distance with an extra entropic constraint. Due to the extra entropic constraint in the domain
of the optimization problem, randomness is added to the original deterministic system, and
the total cost increases from the original Wasserstein distance to a larger value. Therefore, a
natural question is how to quantify the extra cost caused by the entropic constraint.

In this paper, we derive upper bounds for the quadratic cost of entropic OT, which
are shown to include a term of entropy power responsible for quantifying the amount of
uncertainty caused by the entropic constraint. This work is an extended version of [11].

1.1. Literature Review

The dynamical formulation of OT, also known as the Benamou–Brenier formula [12],
generalizes the original Monge–Kantorovich formulation into a time-dependent problem.
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It changes the original distance problem (i.e., find the distance between two prescribed
measures) into a geodesic problem (i.e., find the optimal path between two prescribed
measures). Using the displacement convexity of relative entropy along the geodesic,
functional inequalities such as HWI inequality and Talagrand inequality can be obtained
(see, e.g., ([13] Chapter 20)).

Talagrand inequality, first given in [1], upper bounds the Wasserstein distance by
relative entropy. Recent results in [2,4] obtain several refined Talagrand inequalities with
dimensional improvements on the multidimensional Euclidean space. These inequalities
bound Wasserstein distance with entropy power, which is sharper compared to the original
one with relative entropy.

An analogue of the dynamical OT problem is the SP [14]. The SP aims to find the
most likely evolution of a system of particles with respect to a reference process. The most
likely evolution is called a Schrödinger bridge. SP and OT intersect on many occasions; see,
e.g., [15–17]. The problem we study in this paper is in this intersection and mostly related
to [15]. In particular, Léonard in [15] showed that the entropic OT with quadratic cost is
equivalent to the SP with a Brownian motion as the reference process. He further derived
that the Schrödinger bridge also admits a Benamou–Brenier formula with an additional
diffusion term. Conforti in [18,19] claimed that the process can also be formulated as a
continuity equation and proved that the acceleration of particles is the gradient of the Fisher
information. The result therein leads to a generalized Talagrand inequality for relative
entropy. Later, Bai et al. in [20] upper-bounded the extra cost from the Brownian motion
by separating one Gaussian marginal into two independent random vectors. Using this
approach, they showed that the dimensional improvement can be generalized to entropic
OT and gave a Gaussian Talagrand inequality for the Sinkhorn distance. Additional results
in [20] include a strong data processing inequality derived from their new Talagrand
inequality and a bound on the capacity of the relay channel.

Entropic OT has other interesting properties. For example, Rigollet and Weed studied
the case with one side of empirical measure in [21]. Their result shows that entropic OT
performs maximum-likelihood estimation for Gaussian deconvolution of the empirical
measure. This result can be further applied in uncoupled isotonic regression (see [9]). The
dimensionality is also observed in the applications of entropic OT. For example, sample
complexity bounds in [22,23] appear to be dimensional-dependent. In the GAN model,
Reshetova et al. in [24] showed that the entropic regularization of OT promotes sparsity in
the generated distribution.

Another element in our paper is EPI (for details on EPI, see, e.g., [25–27]). This
inequality provides a clear expression to bound the differential entropy of two distributions’
convolution. We refer the interested reader to [28–32] for the connections between EPI and
functional inequalities, and [33] for the connections between EPI and SP.

1.2. Contributions

In this paper, we upper-bound the quadratic cost of entropic OT by deconvolution of
one side measure and EPIs. Using this approach, we avoid any discussion related to the
dynamics of SP and instead we capture the uncertainty caused by the Brownian motion
quantitatively. Our contributions can be articulated as follows:

(1) We derive an HWI-type inequality for Sinkhorn distance using a modification of
Bolley’s proof in [4] (see Theorem 2).

(2) We prove two new Talagrand-type inequalities (see Theorems 3 and 4). These inequal-
ities are obtained via a numerical term C related to the saturation, or the tightness, of
EPI. We claim that this term can be computed with arbitrary deconvolution of one
side marginal, while the optimal deconvolution is shown to be unknown beyond
the Gaussian case. Nevertheless, we simulate suboptimally this term for a variety of
distributions in Figure 1.

(3) We show that the geometry observed by Sinkhorn distance is smoothed in the sense
of measure concentration. In other words, Sinkhorn distance implies a dimensional
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measure concentration inequality following Marton’s method (see Corollary 2). This
inequality has a simple form of normal concentration that is related to the term C and
is weaker than the one implied by Wasserstein distance.

(4) Our theoretical results are validated via numerical simulations (see Section 4). These
simulations reveal several reasons for which our bounds can be either tight or loose.

Connections to Prior Art

The novelty of our work is that it comprises naturally ideas from Bolley et al. in [4]
and from Bai et al. in [20] to develop new entropic OT inequalities. The dimensional
improvement of Bolley et al. in [4] separates an independent term of entropy power
from the original Talagrand inequality. This allows us to utilize an approach to study
the entropic OT problem, which is the OT with randomness, based on the convolutional
property of entropy power. On the other hand, we generalize the constructive proof of
Bai et al. in [20], where they separate one Gaussian random vector into two independent
Gaussian random vectors. We further claim that, for any distribution, we can always find
similar independent pairs satisfying several assumptions, to upper-bound the Sinkhorn
distance. As a consequence of the above, our results generalize the Talagrand inequalities
of Bolley et al. in ([4] Theorem 2.1) from classical OT to entropic OT and the results of Bai
et al. in ([20] Theorem 2.2) from the Gaussian case to the strongly log-concave case. In
particular, we show that Theorem 3 recovers ([4] Theorem 2.1) (see Corollary 1 and the
discussion in Remark 6) and that Theorem 4 recovers ([20] Theorem 2.2) (see Remark 9).
It should be noted that in our analysis, we focus on the primal problem defined in [10], as
opposed to the studies of its Lagrangian dual in [18,19].

1.3. Notation

N is the set of positive integers {1, 2, 3, ...}. R is the set of real numbers. Rn is the
n-dimension Euclidean space. R+ denotes the set {x ∈ R : x ≥ 0}.

Let X ,Y be two Polish spaces, i.e., separable complete metric spaces. We write an
element x ∈ X in lower-case letters and a random vector X on X in capital letters. We
denote P(X ) as the set of all probability measures on X . Let µ be a Borel measure on X .
For a measurable map T : X → Y , T#µ denotes the pushing forward of µ to Y , i.e., for all
A ⊂ Y , T#µ[A] = µ[T−1(A)]. For p ≥ 1, Lp(X ) or Lp(dµ) denotes the Lebesgue space of
p-th order for the reference measure µ.
∇ is the gradient operator, ∇· is the divergence operator, ∆ is the Laplacian operator,

D2 is the Hessian operator, In is the n-dimension identity matrix, Id is the identity map, ‖ · ‖
is the Euclidean norm, Ck is the set of functions that is k-times continuously differentiable,
Ric is the Ricci curvature.

h(·), I(·; ·), D(·‖·), J(·), I(·|·) denote differential entropy, mutual information, relative
entropy, Fisher information and relative Fisher information, respectively. All the logarithms
are natural logarithms. ∃! is unique existence. ∗ is the convolution operator.

1.4. Organization of the Paper

The rest of the paper is organized as follows: in Section 2, we give the technical
preliminaries of the theories and tools that we use; in Section 3, we state our main theoretical
results; in Section 4, we give numerical simulations for our theorems, and in Section 5,
we give the conclusions and future directions. Long proofs and background material are
included in the Appendix.

2. Preliminaries

In this section, we give an overview of the theories and tools that we use.

2.1. Synopsis of Optimal Transport

We first give a brief introduction of OT theory. The OT problem was initialized by
Gaspard Monge. The original formulation can be described as follows.
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Definition 1 (Monge Problem [34]). Let PX and PY be two probability measures supported
on two Polish spaces X , Y . Given a lower semi-continuous (see Definition A1) cost function
c(x, y) : X ×Y → R+ ∪ {+∞}, the Monge problem wants to find a transport map T : X → Y
minimizing the total cost:

inf
T:T#PX=PY

∫
X

c(x, T(x)) dPX(x). (1)

Then, Kantorovich gave a probabilistic interpretation to the OT. This is stated next.

Definition 2 (Kantorovich Problem [35]). Let X and Y be two random vectors on two Polish
spaces X , Y . X and Y have probability measures PX ∈ P(X ), PY ∈ P(Y). We denote Π(PX , PY)
as the set of all joint probability measures on X ×Y with marginal measures PX , PY. Given a lower
semi-continuous cost function c(x, y) : X ×Y → R+ ∪ {+∞}, the Kantorovich problem can be
written as:

inf
P∈Π(PX ,PY)

∫
X×Y

c(x, y) dP. (2)

It can be further proven that (2) gives the same optimizer as (1) (see, e.g., [36]). One
can define the Wasserstein distance ([13] Definition 6.1) from (2). Let X = Y and let d be a
metric on X . Then, the Wasserstein distance of order p, p ≥ 1, is defined as follows:

Wp(PX , PY) := inf
P∈Π(PX ,PY)

[∫
X×Y

dp(x, y) dP
] 1

p
. (3)

We note that the Wasserstein distance is a metric between two measures.
Cuturi in [10] gave the concept of entropic OT. In this definition, he adds an informa-

tion theoretic constraint to (2), i.e.,

inf
P∈Π(PX ,PY ;R)

∫
X×Y

c(x, y) dP, (4)

where
Π(PX , PY; R) := {P ∈ Π(PX , PY) : I(X; Y) ≤ R},

with I(X; Y) := D(P‖PX × PY) denoting the mutual information [32] between X and Y,
and R ∈ R+. It is well known that the constraint set is convex and compact with respect to
the topology of weak convergence (for details, see, e.g., ([13] Lemma 4.4), ([37] Section 1.4)).
Using the lower semi-continuity of c(x, y) and ([13] Lemma 4.3), we know that the objective
function f : P →

∫
c dP is also lower semi-continuous. Using the compactness of the

constraint set and the lower semi-continuity of f , then, from Weierstrass’ extreme value
theorem, the minimum in (4) is attained. Moreover, the solution is always located on its
boundary, i.e., I(X; Y) = R, because the objective function of (4) is linear.

Entropic OT is an efficient way to approximate solutions of the Kantorovich problem.
The Lagrangian dual of (4), which was introduced by Cuturi in [10], can be solved iteratively.
The dual problem of (4) can be reformulated as follows:

max
ε≥0

inf
P∈Π(PX ,PY)

{∫
X×Y

c(x, y) dP + ε
(

I(X; Y)− R
)}

, (5)

where ε is a Lagrange multiplier. Using the Lagrange duality theorem ([38] Theorem 1,
pp. 224–225), it can be shown that (4) and (5) give the same optimizer P∗.

The uncertainty of entropic OT can be understood as follows. We can write I(X; Y) =
h(Y)− h(Y|X), where h(Y) is fixed. The conditional entropy encapsulates the randomness
of the conditional distribution. The randomness decreases when I(X; Y) increases. Thus,
unlike (1) and (2), there is no deterministic map anymore for (4) and (5), because a one-to-
one mapping leads to infinite mutual information. Note that ε in (5) also has an explicit
physical meaning. In particular, entropic OT with quadratic cost coincides with SP with a
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reference measure of Brownian motion (see [15]). Then, ε is a diffusion coefficient of the
Fokker–Planck equation associated with the Schrödinger bridge.

In our main results, we study (4) instead of (5) for two reasons. First, the mutual infor-
mation in (4) gives a global description of the amount of uncertainty, while the coefficient
ε in (5) and its associated Fokker–Planck equation are more related to local properties,
from the definitions of the Lagrangian dual and Fokker–Planck equation. Further on this
point, there is no explicit expression for the correspondence between R and ε in the duality.
Second, the expectation of cost function in (2) is comparable to the Wasserstein distance.
As we demonstrate in the following, it gives a smooth version of the Wasserstein distance.

Similar to the Wasserstein distance, the Sinkhorn distance of order p is defined as follows:

Wp(PX , PY; R) := inf
P∈Π(PX ,PY ;R)

[∫
X×Y

dp(x, y) dP
] 1

p
. (6)

Clearly, Π(PX, PY; R) is a subset of Π(PX, PY). Because of the minimization problem, it is
easy to see that Wp(PX, PY; R) > Wp(PX, PY). For this reason, we say that entropic OT
is a smoothed version of classical OT. We note that the Sinkhorn distance is not a metric
because it does not fulfill the axiom of identity of indiscernibles.

Since entropic OT is concerned with mutual information, it may be of interest to
introduce a conditional Sinkhorn distance. This is defined as follows:

Wp(PX|Z, PY|Z|PZ; R) := inf
P∈Π(PX|Z ,PY|Z |PZ);I(X;Y|Z)≤R

{EP[dp(X, Y)]}1/p, (7)

where the conditional mutual information I(X; Y|Z) :=
∫

I(PX|Z=z; PY|Z=z) dPZ(z) and
Π(PX|Z, PY|Z|PZ) := {PX,Y|Z · PZ : PX,Y|Z=z ∈ Π(PX|Z=z, PY|Z=z) for z a.e.}. Conditional
Sinkhorn distance is utilized in [20] and leads to a data processing inequality. Since the
constraint of conditional mutual information is a linear form of I(PX|Z=z; PY|Z=z), the
constraint set is still convex. The objective function is also a linear form of P. Therefore, the
functional and topological properties of the conditional Sinkhorn distance are similar to
the unconditional one.

Next, we state some known results of Talagrand inequality [1].

Definition 3 (Talagrand Inequality). Let PX be a reference probability measure with density
e−V(x), where V : X → R. We say that PX satisfies T(λ) > 0, i.e., Talagrand inequality with
parameter λ > 0, if, for any PY ∈ P(Y),

W2(PX , PY) ≤
√

2
λ

D(PY‖PX). (8)

Remark 1. (8) was originally introduced by Talagrand in [1] when PX is Gaussian. Blower in [39]
gave a refinement and proved that

D2V ≥ λIn ⇒ T(λ).

When going beyond the Euclidean space to a manifold, Otto and Villani in [40] showed
that the Bakry–Emery condition D2V + Ric also implies T(λ).

Recently, refined inequalities with dimensional improvements were obtained in mul-
tidimensional Euclidean space. These dimensional improvements were first observed in
the Gaussian case of logarithmic Sobolev inequality, Brascamp–Lieb (or Poincaré) inequal-
ity [41] and Talagrand inequality [2]. For a standard Gaussian measure PX , the dimensional
Talagrand inequality has the form:

W2
2 (PX , PY) ≤ E[‖Y‖2] + n− 2ne

1
2n (E[‖Y‖

2]−n−2D(PY‖PX)). (9)
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Bolley et al. in [4] generalized the results in [2,41] from Gaussian to strongly log-concave
or log-concave. Next, we state their result. Let dPX = e−V , where V : Rn → R is C2

continuous, D2V ≥ λIn. Bolley’s dimensional Talagrand inequality is given as follows:

λ

2
W2

2 (PX , PY) ≤ E[V(Y)]−E[V(X)] + n− ne
1
n (E[V(Y)]−E[V(X)]−D(PY‖PX)). (10)

The dimensional Talagrand inequalities (9) and (10) are tighter than (8). To see this result,
one may refer to our Remark 6 below.

Bai et al. in [20] gave a generalization of (9) to Sinkhorn distance. When PX is
standard Gaussian,

W2
2 (PX , PY; R) ≤ E[‖Y‖2] + n− 2n

√
1

2πe
(1− e−

2
n R)e

1
n h(Y). (11)

When R→ +∞, this inequality coincides with (9).

2.2. Measure Concentration

The measure concentration phenomenon describes how the probability of a random
variable X changes with the deviation from a given value such as its mean or median. Mar-
ton introduced an approach of concentration directly on the level of probability measures
using OT (see, e.g., ([13] Chapter 22)).

To give the notation of concentration of measure, we first introduce the probability
metric space. Let X be a Polish space. Let d be a metric on X . Let µ be a probability
measure defined on the Borel set of X . Then, we say that the triple (X , d, µ) is a probability
metric space.

For an arbitrary set A ⊂ X and any r ≥ 0, we define Ar as

Ar := {x ∈ X : d(x, A) > r},

where d(x, A) := infa∈A d(x, a). Then, we say that a probability measure µ has normal (or
Gaussian) concentration on (X , d) if there exists positive K and κ such that

µ(A) ≥ 1
2
⇒ µ(Ar) ≤ Ke−κr2

, ∀r > 0. (12)

There is another weaker statement of normal concentration, such that

µ(A) ≥ 1
2
⇒ µ(Ar) ≤ Ke−κ(r−r0)

2
, ∀r > r0. (13)

It is not difficult to see that (12) can be obtained from (13), possibly with degraded constants,
i.e., larger K and/or smaller κ.

The next theorem gives the connection between normal concentration and Tala-
grand inequality.

Theorem 1 (Theorem 3.4.7 [5]). Let (X , d, µ) be a probability metric space. Then, the following
two statements are equivalent:

• µ satisfies T(λ).
• µ has a dimension-free normal concentration with κ = 1

2λ .

The intuition behind Marton’s method is that OT theory can give a metric between
two probability measures by the metric structure of the supporting Polish space. The metric
can be further connected with probability divergence using Talagrand inequality.
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2.3. Entropy Power Inequality and Deconvolution

EPI [25] states that, for all independent continuous random vectors X and Y,

N(X + Y) ≥ N(X) + N(Y), (14)

where N(X) := 1
2πe e

2
n h(X) denotes the entropy power of X. The equality is achieved when

X and Y are Gaussian random vectors with proportional covariance matrices.
Deconvolution is a problem of estimating the distribution f (x) by the observations

Y1,...,Yk corrupted by additive noise Z1,...,Zk, written as

Yi = Xi + Zi,

where k, i ∈ N and 1 ≤ i ≤ k. Xi’s are i.i.d. in f (x), Zi’s are i.i.d in h(z). Xi’s and Zi’s are
mutually independent. Let g(y) be the probability density function of Y that is given by
the convolution g = f ∗ h. Then, their entropies can be bounded by EPI directly.

In our problem, we slightly abuse the concept by simply separating a random vector
Y into two independent random vectors X and Z. We use this approach to introduce
the uncertainty to entropic OT and consequently bound the Sinkhorn distance by EPI.
Deconvolution is generally a more challenging problem than convolution. For instance, the
log-concave family is convolution stable, i.e., convolution of two log-concave distributions
is still log-concave, but we cannot guarantee that the deconvolution of two log-concave
distributions is still log-concave. A trivial case is that wherein the deconvolution of a
log-concave distribution by itself is a Dirac function. Moreover, f may not in general be
positive or integrable for arbitrary given g and h, as shown in [42]. However, it should be
noted that there are many numerical methods to compute deconvolution; see, e.g., [42–44].

3. Main Theoretical Results

In this section, we derive our main theoretical results. First, we give a new HWI-
type inequality.

Theorem 2 (HWI-Type Inequality). Let X = Y = Rn. Let µ be a probability measure with
density e−V(x) with λ > 0, where V : Rn → R is C2 continuous, D2V ≥ λIn. Let PX , PY be two
probability measures on Rn, PX, PY � µ. For any independent Y1, Y2 satisfying Y1 + Y2 = Y,
E[Y2] = 0 and h(Y)− h(Y2) ≤ R, the following bound holds:

λ

2
W2

2 (PX , PY ; R) ≤ E[V(Y)]−E[V(X)] + n− n e
1
n (h(Y1)−h(X)) +W2(PX , PY1 )

√
I(PX |µ), (15)

where the relative Fisher information I(PX |µ) :=
∫ ‖∇ f ‖2

f dµ, f = dPX
dµ .

Proof. See Appendix A.

Remark 2. In Theorem 2, we construct Y1 and Y2, where Y1 and X have a deterministic relationship.
We note that the uncertainty in our construction, i.e., the independent Y2, is located at one marginal,
whereas the uncertainty of the true dynamics of the entropic OT is all along the path. The simplicity
of our construction allows for the specific bound. We further note that there always exist such
Y1, Y2 satisfying the assumptions given in Theorem 2. A trivial proof is that Y1 = E[Y] and
Y2 = Y−E[Y] fulfill the above assumptions.

The next result gives a new Talagrand-type inequality.
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Theorem 3 (Talagrand-Type Inequality). Let X = Y = Rn. Let dPX = e−V(x)dx, where
V : Rn → R is C2 continuous, D2V ≥ λIn with λ > 0, PY � PX. Then, the following
bound holds:

λ

2
W2

2 (PX , PY; R) ≤ E[V(Y)]−E[V(X)] + n− nC(PY, R)e
1
n (h(Y)−h(X)), (16)

where C(PY, R) ∈ [0, 1] is a numerical term for the given PY and R ≥ 0.

Proof. Let dPX = e−V in (15). In such a case, we have I(PX |µ) = 0 from the defini-
tion of relative Fisher information. Take C(PY, R) = e

1
n (h(Y1)−h(Y)); then, (16) is proven

from (15).

Next, we state some technical remarks on Theorem 3.

Remark 3 (On Theorem 3). In Theorem 3, we show that the Sinkhorn distance of two random
vectors can be upper-bounded by a difference of a functional on two marginals, i.e., E[V(Y)]−
E[V(X)], and a term related to entropy power, i.e., nC(PY, R)e

1
n (h(Y)−h(X)). Interestingly, only the

latter term is related to the constraint R. This means that the effect of information constraint is only
associated with the randomness of the two random vectors instead of their positions. Recalling the
physical meaning of entropic OT with quadratic cost, we can see that this expression is very natural,
because the information constraint R is directly related to the randomness of the Schrödinger bridge.

Remark 4 (On the numerical term C(·, ·)). The numerical term C = e
1
n (h(Y1)−h(Y)) can be

computed by arbitrary Y1 satisfying the assumptions that we gave in Theorem 2, i.e., Y1, Y2 are
independent, Y1 + Y2 = Y, E[Y2] = 0 and h(Y)− h(Y2) ≤ R. We observe that e

1
n h(Y1) has the

form of a square root of entropy power. Using EPI and the fact that N(·) ≥ 0, we have

N(Y) ≥ N(Y1) + N(Y2) ≥ N(Y1).

Therefore, C = e
1
n (h(Y1)−h(Y)) =

√
N(Y1)/N(Y) ∈ [0, 1]. When R = 0, then Y2 = Y − E[Y]

and the density of Y1 is δ(x−E[Y]). This means that e
1
n h(Y1) = 0, hence C = 0. When R = +∞,

then Y = Y1, e
1
n h(Y1) = e

1
n h(Y), and consequently C = 1. Therefore, C(·, 0) = 0, C(·,+∞) = 1

for all PY.
Moreover, we can show that there always exists such a sequence C non-decreasing with respect

to R. We know that C = e
h(Y1)

n − h(Y)
n subject to Y1 + Y2 = Y, E[Y2] = 0 and h(Y)− h(Y2) ≤ R.

Thus, for a larger value of R, there exists at least a h(Y2) non-increasing. This further leads to
a non-decreasing h(Y1). Therefore, there exists at least a C(·, R + ∆R) not smaller than C(·, R),
∀∆R > 0, i.e., C(·, R) is monotonic non-decreasing with respect to R.

We note that, for particular distributions, we may have an explicit expression of C(·, ·). For
instance, when PY is Gaussian, we can always take the linear combination Y = Y1 + Y2, where Y1
and Y2 are independent Gaussian and have proportional covariance matrices. In such a case, EPI is
saturated as follows:

e
2
n h(Y1) = e

2
n h(Y) − e

2
n h(Y2) = (1− e−

2
n R)e

2
n h(Y).

As a result, we have C(PY, R) = e
1
n (h(Y1)−h(Y)) =

√
1− R

2
n . For Cauchy distribution Cauchy(x0, γ),

its differential entropy is log(4πγ). The summation of independent Cauchy random variables
∑n

i Cauchy(xi, γi) ∼ Cauchy(∑n
i xi, ∑n

i γi). When Y is i.i.d. Cauchy, i.e., (Y)i ∼ Cauchy(x0, γ),
we take (Y1)i ∼ Cauchy(x0, 1

4π e
1
n h(Y) · (1− e−

R
n )) and (Y2)i ∼ Cauchy(0, 1

4π e
1
n h(Y) · e− R

n ). We
can see that this linear combination satisfies our assumption h(Y)− h(Y2) ≤ R and C(PY, R) =
e

1
n (h(Y1)−h(Y)) = 1− e−

R
n .
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Note that the linear combination Y = Y1 + Y2 is not unique, according to the assumption of
Theorem 2. Consequently, this implies the non-uniqueness of C(·, ·). In order to obtain the tightest
bound in (16), we need to solve the following optimization problem

C∗(PY, R) = sup e
1
n (h(Y1)−h(Y)), (17)

subject to Y1 + Y2 = Y and h(Y)− h(Y2) ≤ R. To look into this optimization problem, we recall
Courtade’s reverse EPI ([31] Corollary 1) as follows. If we have independent X and Y with finite
second moments and choose θ to satisfy θ/(1− θ) = N(Y)/N(X), then

N(X + Y) ≤ (N(X) + N(Y))(θp(X) + (1− θ)p(Y)), (18)

where p(X) := 1
n N(X)J(X) ≥ 1 is the Stam defect and J(X) := I(PX |µ), where dµ = dx is

the Fisher information. We note that p(X) is affine invariant, i.e., p(X) = p(tX), t > 0 because
t2N(X) = N(tX) and t2 J(tX) = J(X). We note that the equality p(X) = 1 holds only if X is
Gaussian. In our case, θ = N(Y1)/(N(Y1) + N(Y2)). When θ → 1, (18) becomes

N(Y) . (N(Y1) + N(Y2)) · p(Y2).

This means that the saturation of EPI is controlled by p(Y2) when the noise Y2 is small, i.e., when R

is large. In such a case, C∗(PY, R) ≈
√

1− R
2
n if we let Y2 be close to Gaussian, i.e., p(Y2) = 1.

On the other hand, when θ → 0, EPI can also be saturated if we let Y1 be close to Gaussian.
In Figure 1, we illustrate numerical simulations of C(·, ·) for the one-dimensional case. For

general distributions beyond Gaussian and i.i.d. Cauchy, one can approximate C(·, ·) using kernel
methods of deconvolution; see, e.g., [43,44]. Our strategy of deconvolution in Figure 1 is to let
Y2 = tY′, where Y′ is a copy of Y and t ∈ [0, 1]. Gaussian mixture is an exception for this strategy
because its spectrum would not be integrable. Instead, we let Y2 be Gaussian for a Gaussian mixture.
We note that this strategy is mostly not optimal and the optimal way to maximize the entropy power
in (17) remains an open question.

Figure 1. Plot of the numerical term C subject to the information constraint R evaluated with respect
to different distributions for the one-dimensional case.

Remark 5 (On the condition of identity of Theorem 3). To show the condition of identity of (16),
we need the inequalities in (A1) and in Lemma A1 to be equalities. The equality of (A1) holds when
PX is isotropic Gaussian, i.e., PX ∼ N (µ, σ2 In) for some µ ∈ Rn and σ > 0. The equality in
Lemma A1 holds when ∇ϕ is affine and D2 ϕ has identical eigenvalues, i.e., ∇ϕ = k · Id, k ∈ R,
see ([4] Lemma 2.6). From ([45] Theorem 1), we know that the linear combination Y = Y1 + Y2 in
Theorem 2 is the optimizer for entropic OT when X and Y are isotropic Gaussian. In such a case,

the equality of (16) holds and C(·, R) =
√

1− R
2
n .
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The following corollary is immediate from Theorem 3.

Corollary 1. Wasserstein distance is bounded by

λ

2
W2

2 (PX , PY) ≤ E[V(Y)]−E[V(X)] + n− ne
1
n (h(Y)−h(X)). (19)

Proof. This is immediate from Theorem 3 when R→ ∞. In this case, C(·,+∞) = 1.

Remark 6 (On Corollary 1). We note that (19) is equivalent to Bolley’s dimensional Talagrand
inequality (10) and it is tighter than the classical Talagrand inequality (8). To make this point clear,
note that, under our assumptions, h(X) = E[V(X)] and D(PY‖PX) = E[V(Y)]− h(Y) because
dPX = e−V(x)dx. Clearly, by substituting these expressions to the last term of (19), we obtain (10).
Since eµ ≥ 1 + µ, (10) is, in general, tighter than the classical Talagrand inequality (8), i.e., RHS of
(10) ≤ RHS of (8). The equality holds if and only if h(Y) = h(X).

We notice that C is the only difference between (10) and (16), from Remark 6. Therefore,
we can immediately obtain a result related to measure concentration following ([4] Corol-
lary 2.4). Next, we state the result on measure concentration obtained from (16).

Corollary 2. Let dµ = e−V , where V : Rn → R is C2 continuous, D2V ≥ λIn with λ > 0. Let
A ⊂ Rn, Ar := {x ∈ Rn : ∀y ∈ A, ‖x− y‖ > r} for r ≥ 0 and cA :=

√
2λ−1 log(1/µ(A)).

Then, for r ≥ cA, we obtain
µ(Ar) ≤ C−n · e−

λ
2 (r−cA)

2
. (20)

Proof. See Appendix B.

Next, we state some technical comments on Corollary 2.

Remark 7 (On Corollary 2). We note that in the derivation of Corollary 2, we follow the method
of Marton in [46], which utilizes the geometrical properties of Wasserstein distance. From our
discussion above, the information constraint leads to the uncertainty in entropic OT. In this result,
we further show that the uncertainty smooths the geometrical properties of Wasserstein distance,
i.e., Sinkhorn distance implies a looser measure concentration inequality. We begin with two
extreme cases. When C = 0, the two random vectors are independent and entropic OT has the most
uncertainty. It is natural that the quadratic difference of two independent random vectors does not
imply any concentration. When C = 1, the inequality is the same as the one in Theorem 1. Between
these two extremes, i.e., when 0 < C < 1, Sinkhorn distance leads to a weaker normal concentration,
compared to Theorem 1. Furthermore, we include in Appendix C the proof that demonstrates that
the Sinkhorn distance gives a weaker measure concentration inequality in high dimensions.

The next theorem is another Talagrand-type inequality. Compared to Theorem 3, the
following result is a bound obtained using a term related to the saturation of PX , instead of
the saturation of PY that was used in Theorem 3.

Theorem 4. Let X = Y = Rn. Without loss of generality, let X be a zero-mean random vector
with density e−V(x), where V : Rn → R is C2 continuous, D2V ≥ λIn with λ > 0, PY � PX.
Then, the following bound holds:

λ

2
W2

2 (PX , PY; R) ≤ E[V(Y)]−E[V(X)] + n− nCx(PX , R)e
1
n (h(Y)−h(X)) + ε′, (21)

where ε′ is a term related to the linearity of V.

Proof. See Appendix D.

We offer the following technical comments on Theorem 4.
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Remark 8 (On Theorem 4). Similar to C(PY, R), Cx(PX, R) ∈ [0, 1] can be computed by the
equation X = CxX′ + X2 with arbitrary independent X′, X2 under the assumptions that X′ is a
copy of X, E[X2] = 0, h(X)− h(X2) ≤ R, as shown in the proof. However, (21) is less natural
than (16) because of the extra term ε′. When ∇V is nearly linear, ε′ should be small. When ∇V is
far from linear, ε′ is unknown.

Theorem 4 can also give a measure concentration inequality, namely

µ(Ar) ≤ C−n
x · e−

λ
2 (r−cA)

2+ε′ , (22)

where Ar and cA are the same as those defined in Corollary 2. We omit the proof of (22) because it
follows using similar steps to the ones used to prove Corollary 2.

Remark 9. When∇V is linear, ε′ is zero and Cx(·, R) =
√

1− R
2
n , as simply taking t =

√
1− R

2
n

in the proof. In such a case, (21) recovers (11) by taking X as a standard Gaussian, i.e.,
V(x) = ‖x‖2/2 + k, where k is a normalization factor. Substitute V and times 2 on both sides of
(21), we have

W2
2 (X, Y; R) ≤E[‖Y‖2]−E[‖X‖2] + 2n− 2n

√
1− e−

2
n Re

1
n (h(Y)−h(X))

=E[‖Y‖2] + n− 2n

√
1

2πe
(1− e−

2
n R)e

1
n h(Y), (23)

which is exactly the same as (11).

The next theorem gives a Talagrand-type bound for the conditional Sinkhorn distance.

Theorem 5 (Talagrand-type bound for conditional Sinkhorn distance). Let X = Y = Rn.
Given a probability measure PZ and two conditional probability measures PX|Z and PY|Z, where the
probability density dPX|Z=z0

= dPX = e−V(x)dx, ∀z0 ∈ Z , let V : Rn → R be C2 continuous,
D2V ≥ λIn with λ > 0, PY|Z=z0

� PX . Then, the following bound holds:

λ

2
W2

2 (PX , PY|PZ; R) ≤ E[V(Y|Z)]−E[V(X)] + n− nC′(PY|Z, R)e
1
n (h(Y|Z)−h(X)), (24)

where C′(PY|Z, R) is a numerical term. A direct observation is that C′(PY|Z, R) can take
infz0∈Z C(PY|Z=z0

, R).

Proof. See Appendix E.

4. Numerical Simulations

In this section, we describe several numerical simulations to illustrate the validity of
our theoretical findings. To check the tightness of our bounds, we use as a reference bound
the numerical solution obtained via the Sinkhorn algorithm, which can be found in the
POT library [47]. As an iterative method, the Sinkhorn algorithm has computational error,
since the iteration stops when it converges to a certain rate. For example, in Figure 2a, we
plot the result for Theorem 3 with two Gaussian marginals, which is the scenario when the
identity of (16) holds. From the figure, we can see that the simulation is slightly greater
than the bound. Nevertheless, we note that the precision is reasonably small.

The simulations for Theorems 3 and 4 are given in Figures 2 and 3, respectively.
Since the optimal value of C in Theorem 3 and the error term ε′ in Theorem 4 beyond the
linear case are unknown, we mainly simulate the case with one side Gaussian, i.e., with

C =

√
1− R

2
n and ε′ = 0. In this way, we avoid the unknown factors and deduce several

observations related to the tightness of the bounds derived in these two theorems.
The first observation is about absolute continuity. We observe that the original Tala-

grand inequality (8) is not tight when PY is not absolutely continuous with respect to PX ,
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because D(PY‖PX) = +∞ in this case. In Figure 4, we illustrate one such case with almost
discontinuity between two strongly log-concave distributions, i.e., the Radon–Nikodym
derivative dPY/dPX = exp[(x/5)4] + k′, where k′ ∈ R is a normalizing factor, goes to
∞ when x → ∞. Consequently, the bound (16) from Theorem 3 is loose, as illustrated
in Figure 5. The bound can be much looser if we increase the discontinuity, i.e., we let
dPY/dPX = exp[(x/5)8] + k′, as shown in Figure 6. By simply changing the sides of distri-
butions PX and PY, we preserve the absolute continuity and the bound becomes tight, as
we can see in Figures 5b and 6b.

The second observation is related to the numerical term C. By comparing

Figures 2b and 3a, we observe that C =

√
1− R

2
n gives a better description than C = 1− R

1
n ,

i.e., the former one gives a tighter bound. This is reasonable according to our previous
discussion, i.e., the independent linear combination of Cauchy random variables is not the

optimal deconvolution. Actually, even if PY is not Gaussian in (16), C =

√
1− R

2
n seems to

be true for all the simulated distributions.
Furthermore, we observe that the tightness of the bounds in Theorems 3 and 4 is

related to the linearity of the transport map, which can be seen as a similarity between the
two marginals. For example, Cauchy and Laplace distributions are similar to the Gaussian
distribution. Thus, they show a tight bound in Figure 3a,d. On the other hand, Gaussian
mixture and exponential distribution are relatively far from the Gaussian distribution.
Hence, Figure 3c,f give looser bounds.

In Figure 7, we plot the dimensionality of Sinkhorn distance between isotropic Gaus-
sians. Different curves correspond to a pair of Gaussian distributions in different di-
mensions and these pairs have the same Wasserstein distance. It can be seen that the
information constraint causes more smoothing in higher dimensions, which is consistent
with Corollary 2.
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Figure 2. Numerical simulations and bounds via (16) for different R. (a) dPX ∼ N (0, 1
25 ) and

dPY ∼ N (0, 1
100 ). (b) dPX ∼ N (0, 1

25 ) and dPY ∼ Cauchy(0, 10). (c) dPX = e−V , V = (x/5)2/2 +

|x/10|+ e−|x/10| + k, k ∈ R and dPY ∼ N (0, 1
25 ).
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Figure 3. Numerical simulations and bounds via (21) for different R. (a) dPX ∼ N (0, 1
25 ) and

dPY ∼ Cauchy(0, 10). (b) dPX ∼ N (0, 1
25 ) and dPY ∼ χ2(6). (c) dPX ∼ N (0, 1

25 ) and dPY ∼ Exp(0.2).
(d) dPX ∼ N (0, 1

25 ) and dPY ∼ Laplace(0, 5). (e) dPX ∼ N (0, 1
25 ) and dPY is Gamma distribution

with α = 2 and β = 0.2. (f) dPX ∼ N (0, 1
25 ) and dPY = 1

2N (−20, 1
25 ) +

1
2N (20, 1

25 ).
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Figure 4. Probability densities of dPX = e−V , V = (x/5)2/2+(x/5)4 + k, k ∈ R and dPY ∼ N (0,
1

25
).



Entropy 2022, 24, 306 14 of 21

0.0 0.1 0.2 0.3 0.4 0.5 0.6
R

25

50

75

100

125

150

175

200

2

Simulation
Bound

0.0 0.1 0.2 0.3 0.4 0.5 0.6
R

10

15

20

25

30

2

Simulation
Bound

(a) (b)

Figure 5. Numerical simulations and bounds for different R, with dµ = e−V , V = (x/5)2/2 +

(x/5)4 + k, k ∈ R and dµ ∼ N (0, 1
25 ). (a) Bound via (16) with dPX = dµ, dPY = dν. (b) Bound via

(21) with dPX = dν, dPY = dµ.
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Figure 6. Numerical simulations and bounds for different R, with dµ = e−V , V = (x/5)2/2 +

(x/5)8 + k, k ∈ R and dµ ∼ N (0, 1
25 ). (a) Bound via (16) with dPX = dµ, dPY = dν. (b) Bound via

(21) with dPX = dν, dPY = dµ.
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Figure 7. Sinkhorn distances between isotropic Gaussians in different dimensions.
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5. Conclusions and Future Directions

In this paper, we considered a generalization of OT with an entropic constraint. We
showed that the constraint leads to uncertainty and the uncertainty can be captured by
EPI. We first derived an HWI-type inequality for the Sinkhorn distance. Then, we derived
two Talagrand-type inequalities. Because of the strong geometric implication of Talagrand
inequality, these two Talagrand-type inequalities can also give a weaker measure concen-
tration inequality, respectively. From this result, we claimed that the geometry implied by
the Sinkhorn distance can be smoothed out by the entropic constraint. We also showed that
our results can be generalized into a conditional version of entropic OT inequality.

However, there are two factors unknown in the inequalities we derived, i.e., the
optimal value of the term C in Theorem 3 and the error term ε′ in Theorem 4 when one goes
beyond the linear case. Although we showed that we can compute a suboptimal C using the
arbitrary linear combination of two random vectors, the optimal value C∗ is an intriguing
open question to answer. We believe that the improvement of the term C may be related to
the Fisher information. Without the assumption of strong log-concavity, it requires an extra
term of relative Fisher information to upper-bound the Wasserstein distance in Theorem 2.
The reversing of EPI in [31] is also concerned with Fisher information. If we consider the
changing of Fisher information along the Schrödinger bridge, a better estimate of term C
may be feasible.
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Appendix A. Proof of Theorem 2

For a C2 continuous function V : Rn → R, D2V ≥ λIn, by Taylor formula
([4] Lemma 2.5), there exists a t ∈ [0, 1] satisfying

V(y)−V(x) =∇V(x) · (y− x) + (y− x) · D2V(tx + (1− t)y)(y− x)/2

≥∇V(x) · (y− x) +
λ

2
‖y− x‖2. (A1)

Hence, we can bound the second-order cost by

λ

2

∫
X×Y

‖y− x‖2 dP ≤
∫
X×Y

V(y)−V(x)−∇V(x) · (y− x) dP. (A2)
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Because entropic OT is a minimization problem, we can take any case in Π(PX, PY; R)
to bound W2(PX, PY; R). We take a linear combination Y = Y1 + Y2, where Y1 and Y2
are independent, h(Y)− h(Y2) ≤ R and E[Y2] = 0. Assume that there is a Brenier map
between Y1 and X, i.e., Y1 = ∇ϕ(X), which always exists, according to Theorem A1
(see Appendix F). Then, we can see that this special case is in Π(PX , PY, R), namely,

I(X; Y) = h(Y)− h(Y|X)

= h(Y)− h(Y1 + Y2|X)

= h(Y)− h(Y2)

≤ R.

Let dµ = e−V , where V : Rn → R is C2 continuous, D2V ≥ λIn. In order to bound the
Sinkhorn distance, we simply need to bound

∫
X×Y ∇V(x) · (y− x) dP, according to (A2).

This term can be bounded as follows:∫
X×Y

∇V(x) · (y− x) dP =
∫∫
∇V(x) · (∇ϕ(x) + y2 − x) dPY2 dPX

=
∫
∇V(x) · (∇ϕ(x)− x) dPX

=
∫
∇V(x) · (∇ϕ(x)− x)

dPX
dµ

dµ

≥
∫

∆ϕ(x) f dµ− n +
∫
(∇ϕ(x)− x) · ∇ f dµ (A3)

≥ne
1
n (h(Y1)−h(X)) − n−W2(PX , PY1) ·

√
I(PX |µ),

where we take the Radon–Nikodym derivative f = dPX
dµ in (A3) and apply Lemma A1 in

Appendix F. This completes the derivation.

Appendix B. Proof of Corollary 2

Let µA = 1A
µ(A)

µ and µAr =
1Ar

µ(Ar)
µ be the conditional probability measure µ restricted

to A and Ar. Using the triangle inequality ofW2, we have

r ≤ W2(µA, µAr ; R) ≤ W2(µA, µ) +W2(µ, µAr ; R). (A4)

From (8), we know that

W2(µA, µ) ≤
√

2λ−1D(µA‖µ) =
√

2λ−1 log(1/µ(A)) := cA.

Let µ and µA be the probability measures of two random vectors X and Y, respectively. By
substituting cA into (A4) and using (16), we have

(r− cA)
2 ≤W2

2 (µ, µAr ; R)

≤ 2
λ

(
E[V(Y)]−E[V(X)] + n− nCe

1
n (h(Y)−h(X))

)
=

2
λ

(
E[V(Y)]−E[V(X)] + n− nCe

1
n (E[V(Y)]−E[V(X)]−D(µAr ‖µ))

)
.
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Substituting µAr =
1Ar

µ(Ar)
µ into the definition of relative entropy, we have

D(µAr‖µ) =
∫
Rn

log
1Ar

µ(Ar)
· 1Ar

µ(Ar)
dµ

=− log µ(Ar)

µ(Ar)

∫
Ar

dµ

=− log µ(Ar).

Then, we obtain, for r ≥ cA,

µ(Ar) ≤ C−n · eE[V(X)]−E[V(Y)]
[

1 +
1
n

(
E[V(Y)]−E[V(X)]− λ

2
(r− cA)

2
)]n

. (A5)

(A5) already indicates a concentration of measure. Using the inequality (1 + u/n)n ≤ eu, it
can be further shown that (A5) also implies normal concentration, as follows:

µ(Ar) ≤ C−n · e−
λ
2 (r−cA)

2
.

Appendix C. Proof of the Dimensionality of (20)

To prove that (20) is weaker when the dimension increases, we only need to show the
decreasing of Cn with respect to n. When we increase the dimension, for given random
vectors Y1 +Y2 = Y, we assume that this convolution relation still holds and their entropies
increase proportionally to n, i.e., the shapes of their distributions do not change.

Since now n is a variable of C, we let n ∈ R and let C be a function with respect to R
n , in

order to compute the partial derivative. We first show that C is a non-decreasing function

with respect to R
n . We know that C = e

h(Y1)
n − h(Y)

n subject to Y1 +Y2 = Y and h(Y)
n −

h(Y2)
n ≤ R

n .

Thus, for a larger value of R
n , there at least exists a h(Y2)

n that is non-increasing. It further

leads to a non-decreasing h(Y1)
n . Therefore, there at least exists a C(·, R + ∆R) that is not

smaller than C(·, R), ∀∆R > 0, i.e., C is non-decreasing with respect to R
n .

Then, we take the logarithm of Cn and compute the partial derivative with respect
to n:

∂

∂n
n · log C(

R
n
) = log C(

R
n
) +

n
C

∂

∂n
C(

R
n
)

= log C(
R
n
) +

nC′

C
· (− R

n2 ). (A6)

We know that C ∈ [0, 1] and non-decreasing. Thus, (A6) is less than 0 when C ∈ (0, 1). This
completes the proof, where we show that Cn is decreasing with respect to n.

Appendix D. Proof of Theorem 4

Let X′ be a copy of X. X can be written as a linear combination X = tX′ + X2, where
X2 is zero-mean and independent of X′, h(X)− h(X2) ≤ R, t ∈ [0, 1]. Assume that there
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exists a Brenier map Y = ∇ϕ(X′). Similar to the proof of Theorem 3, this case is also in
Π(PX , PY, R). Then, we have∫

X×Y
∇V(x) · (y− x) dP

=
∫∫
∇V(tx′ + x2) · ∇ϕ(x′) dPX′ dPX2 − n (A7)

=
∫∫

(∇V(tx′ + x2)− t · ∇V(x′)) · ∇ϕ(x′) dPX′ dPX2 + t
∫
∇V(x′) · ∇ϕ(x′) dPX′ − n

=
∫∫

(∇V(tx′ + x2)− t · ∇V(x′)) · ∇ϕ(x′) dPX′ dPX2 + t
∫

∆ϕ dPX′ − n (A8)

≥t · ne
1
n (h(Y)−h(X)) − ε′ − n, (A9)

where we use Lemma A2 in (A7) and (A8). In (A9), we let ε′ = −
∫∫

(∇V(tx′ + x2) −
t · ∇V(x′)) · ∇ϕ(x′) dPX′ dPX2 and apply (A15). After changing the order of integral, we
can see that

∫
∇V(tx′ + x2) dPX2 is a smoothed version of ∇V(tx′). When ∇V is a linear

function perturbed by zero-mean noise, i.e., ∇V(tx) = t · ∇V(x) + W, the integral of x2 is
cancelled out and ε′ = 0. By taking Cx(PX , R) = t, we complete the proof.

Appendix E. Proof of Theorem 5

According to Theorem 3, ∀z0 ∈ Z , there exists such PX,Y|Z=z0
∈ Π(PX|Z=z0

, PY|Z=z0
; R)

satisfying I(X; Y|Z = z0) ≤ R and following

λ

2
E[‖X−Y‖2|Z = z0]

≤E[V(Y|Z = z0)]−E[V(X)] + n− nC(PY|Z = z0, R)e
1
n (h(Y|Z=z0)−h(X))

≤E[V(Y|Z = z0)]−E[V(X)] + n− nC′(PY|Z, R)e
1
n (h(Y|Z=z0)−h(X)). (A10)

The conditional mutual information of the specific distribution PX,Y|Z can be bounded in
this case as follows:

I(X; Y|Z) = EPZ [I(X; Y|Z = z0)] ≤ EPZ [R] = R.

Therefore, this PX,Y|Z=z0
yields the following estimate:

λ

2
W2

2 (PX|Z, PY|Z|PZ; R)

≤λ

2
EPZ{E[‖X−Y‖2|Z = z0]} (A11)

≤E[V(Y|Z)]−E[V(X)] + n− nC′(PY|Z, R)EPZ [e
1
n (h(Y|Z=z0)−h(X))] (A12)

≤E[V(Y|Z)]−E[V(X)] + n− nC′(PY|Z, R)e
1
n (EPZ [h(Y|Z=z0)]−h(X)) (A13)

=E[V(Y|Z)]−E[V(X)] + n− nC′(PY|Z, R)e
1
n (h(Y|Z)−h(X)),

where (A11) follows from definition (7), (A12) follows from (A10), and (A13) follows from
Jensen’s inequality. This completes the proof.

Appendix F. Background Material

Theorem A1 (Brenier’s, Theorem 2.12 [48]). Let PX ∈ P(X ), PY ∈ P(Y) with X ⊂ Rn,
Y ⊂ Rn and assume that dPX , dPY both have finite second moments. If PX does not give mass to
small sets, then, for the Kantorovich problem with cost c(x, y) = 1

2‖x− y‖2, ∃!ϕ : X → R gives
the optimal coupling

P∗ = (Id×∇ϕ)#PX ,

where ϕ is convex. ∇ϕ is called the Brenier map.
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Lemma A1 (Theorem 9.17 [48]). Let dµ = e−V . Let f = dPX
dµ being a Radon–Nikodym derivative

between two measures PX and µ. Let ∇ϕ be a Brenier map. We have∫
∇V(x) · (∇ϕ(x)− x) f (x)dµ(x) ≥

∫
[(∆ϕ− n) f + (∇ϕ− x) · ∇ f ] dµ

=
∫

∆ϕ f dµ− n +
∫
(∇ϕ− x) · ∇ f dµ, (A14)

where ∇ϕ(x)− x is called displacement. For the first term of (A14), because ϕ is convex, from
([4] Lemma 2.6), we have ∫

∆ϕ dPX ≥ ne
1
n (h(∇ϕ(X))−h(X)). (A15)

Moreover, the last term of (A14) can be bounded using Cauchy–Schwarz inequality as follows:

∫
(∇ϕ− x) · ∇ f dµ ≥−

[ ∫
‖∇ϕ− x‖2 f dµ

]1/2[ ∫ ‖∇ f ‖2

f
dµ

]1/2

=−W2(PX ,∇ϕ#PX) ·
√

I(PX |µ).

Lemma A2 (Fact 7 [3]). For any∇ϕ ∈ L1(X )∩ L2(X ) on a Polish space (X , µ) and dµ = e−V ,
we have ∫

∆ϕ dµ =
∫
∇ϕ · ∇V dµ.

Definition A1 (Lower Semi-Continuity, Appendix B, p. 602 [49]). Given a metric space X ,
f : X → R∪ {∞} is lower semi-continuous if there exists a convergent sequence {xn}, xn → x,
that f (x) ≤ lim inf

n→∞
f (xn), where lim inf

n→∞
xn := lim

n→∞
( inf

m≥n
xm).

Definition A2 (Log-Concavity, Definition 2.1 [50]). A density function f with respect to the
Lebesgue measure on (Rn,Bn) is log-concave if f = e−V , where V is a convex function.

Definition A3 (Strong Log-Concavity, Definition 2.8 [50]). A density function f is called
strongly log-concave if it has the form

f (x) = g(x)ϕ(x),

with some log-concave g and some ϕ ∼ N(µ, Σ).
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