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Abstract: With the rapid development of UAV technology, the research of optimal UAV formation
tracking has been extensively studied. However, the high maneuverability and dynamic network
topology of UAVs make formation tracking control much more difficult. In this paper, considering the
highly dynamic features of uncertain time-varying leader velocity and network-induced delays, the
optimal formation control algorithms for both near-equilibrium and general dynamic control cases
are developed. First, the discrete-time error dynamics of UAV leader–follower models are analyzed.
Next, a linear quadratic optimization problem is formulated with the objective of minimizing the
errors between the desired and actual states consisting of velocity and position information of the
follower. The optimal formation tracking problem of near-equilibrium cases is addressed by using a
backward recursion method, and then the results are further extended to the general dynamic case
where the leader moves at an uncertain time-varying velocity. Additionally, angle deviations are
investigated, and it is proved that the similar state dynamics to the general case can be derived and
the principle of control strategy design can be maintained. By using actual real-world data, numerical
experiments verify the effectiveness of the proposed optimal UAV formation-tracking algorithm in
both near-equilibrium and dynamic control cases in the presence of network-induced delays.

Keywords: formation tracking; high dynamic; leader–follower control; network-induced delays

1. Introduction

UAVs have been extensively studied and have attracted more and more attention
due to their high maneuverability and versatility [1–3]. For example, UAVs can be used
as an air communication platform to provide or improve communication services for
ground equipment and can also be used as air relays to address issues such as information
transmission, monitoring, and control. Currently, UAVs with communication capabilities
have been widely used in many scenarios, such as communication assistance, intelligent
transportation, disaster rescue, and low-altitude monitoring [4–8].

However, a single UAV is limited by both battery energy and action scale constraints,
thus causing challenges in mission implementation capabilities. Compared with a sin-
gle UAV, the coordination of multiple UAVs brings advantages such as high efficiency,
robustness, and flexibility. UAV swarms have a wide range of potential application, es-
pecially in highly reconfigurable and distributed intelligence autonomous systems [9–11].
Leader–follower formation control, as the most classic formation method to ensure suc-
cessful mission execution, has the simplest formation control structure and requires the
fewest communication connections between UAVs [12–14]. Although extensive studies
have been performed on leader–follower formation control, it still faces unique challenges
relating to the requirements of real-time application [15,16]. First, how to effectively ad-
dress the influence of network-induced delays on the multi-dimensional formation control

Entropy 2022, 24, 305. https://doi.org/10.3390/e24020305 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24020305
https://doi.org/10.3390/e24020305
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-2880-3329
https://orcid.org/0000-0001-8470-3982
https://orcid.org/0000-0002-2799-6464
https://doi.org/10.3390/e24020305
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24020305?type=check_update&version=2


Entropy 2022, 24, 305 2 of 20

of UAVs is a new challenge. Network-induced delays degrade the performance of UAV
systems and bring potential drawbacks to the systems’ stability [17,18]. Most existing
works focus on stability analysis considering network-induced delays instead of effective
control strategy design. For example, in some works, Lyapunov–Krasovskii functionals
and Young’s inequalities are normally used in UAV control design to achieve stability for
the whole formation. Making matters worse, the high mobility and dynamic nature of UAV
application scenarios make the formation control of UAVs much more complicated and
difficult. Considering the dynamic leader velocity, the measurement information may not
be consistent with the current state of the leader, thus increasing the difficulty of designing
a real-time control strategy.

Unfortunately, there is little research that focuses on the scenario which considers
both time-varying leader velocity and network-induced delays, which are the fundamental
dynamic natures introduced by the high mobility of UAVs [19]. In this paper, the optimal
UAV formation tracking control design is comprehensively investigated for the leader–
follower model in the discrete-time domain with dynamic leader velocity and network-
induced delays. First, a linear discrete-time model of UAVs’ error dynamics is formulated.
Subsequently, the optimal formation tracking control problem of near-equilibrium cases is
addressed with stable leader velocity. Finally, the results are further extended to the general
time-varying velocity case, and the effect of angle deviation is also analyzed. The main
contributions are summarized as follows.

• Based on the analysis of UAVs’ error dynamics, considering the high dynamic charac-
teristics including both uncertain time-varying leader velocity and network-induced
delays, the discrete-time UAV system model is presented. Then, the formation tracking
optimization problem is formulated as a linear quadratic cost function.

• To alleviate the influence of dynamic features, a two-step optimal formation tracking
control algorithm is proposed in near-equilibrium control cases. That is, the optimal
control strategy determined by the current states of the UAVs and previous control
signals can be obtained during the online step, while the corresponding control gain is
derived during the offline step by using backward recursion.

• Additionally, it is found that the proposed optimal control algorithm can be extended
to the general dynamic case when the leader has dynamic time-varying velocity.
Finally, the angle deviations are investigated, and it is proved that the similar state
dynamics as the general case can be derived, thus the principle of the proposed control
strategy for the general dynamic case can be maintained.

• Numerical experiment results based on real UAV flight data demonstrate that the
proposed optimal UAV formation-tracking algorithm is applicable to general dynamic
control cases in the presence of network-induced delays. In addition, compared with
existing algorithms, faster convergence speed and better system stability are achieved.

The rest of this paper is organized as follows. In Section 2, some related works
are reviewed. In Section 3, the system model and problem formulation are presented.
Afterward, the formation tracking control algorithm is proposed in Section 4. Section 5 is
the simulation results and discussion, and the conclusion is presented in Section 6.

2. Related Works

Network-induced delays significantly degrade the system performance and control
stability of UAV formation tracking [20]. At present, significant efforts have been made to
compensate for the influence of network-induced delays on UAV control. Lin et al. [21]
study the consensus problem of a continuous-time multi-agent system with delay and
jointly connected topology, and then a linear delay-based protocol is proposed and the
sufficient condition for average consensus is achieved. When the input delay is consid-
ered, Zhu et al. [22] propose an event-based leader–follower consensus algorithm, and
the necessary and sufficient conditions are presented. Considering both time delays and
switching topology, the necessary and sufficient conditions for finite-field consensus of
networks are derived by Li [23], subject to limited computation, memory, and communi-
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cation capabilities. Then, the authors further extend the results to the multi-agent system
in [24]. Currently, Chen et al. [25] use the Lyapunov–Krasovskii functionals and Young’s
inequalities in the design process for the leader–follower consensus problem to eliminate
the effects of network-induced delays.

In addition, due to the challenge of high mobility UAV applications, the dynamic
formation control problem with system uncertainty has been considerable interest [26–29].
Olfati-Saber et al. [30] propose a distributed algorithm for flocking control that allows
all groups of UAVs to ultimately achieve the same velocity, and the result is further ex-
panded in [31] to show that the velocity and position of the center of the UAV swarm can
exponentially converge on the virtual leader. In order to alleviate the velocity information
requirements of the leader, Ghommam et al. [32] propose an adaptive feedback control
algorithm restricted to parametric uncertainties of LOS-based leader–follower formations.
Necessary and sufficient conditions for UAV swarm systems to achieve time-varying for-
mations are developed in [33], but the time-delay is ignored. Currently, Yazdani et al. [34]
design a continuous adaptive controller to solve the flocking problem of a multi-agent sys-
tem with a dynamic virtual leader, which is also affected by both time-varying uncertainty
and external interference. Considering both constant and time-varying velocities of the
leader, a distributed coordinated tracking control scheme with network-induced delay and
external interference is proposed in [35].

The comparison with relevant existing works can be summarized as in Table 1, in
which “Yes” means that the related item is studied in the existing work, while “No” means
that it is not. Different from these existing works, both dynamic leading velocity and
network-induced delays are investigated in this paper. Additionally, an optimal control
strategy for UAV formation tracking control under these conditions is derived.

Table 1. Comparison with existing works.

Ref. Dynamic
Leader Velocity Delay Approach Result

[21] No Yes Neighbor-based linear protocol with
time-delay.

A sufficient condition is derived and time-delay
cannot be arbitrarily large.

[22] No Yes A piecewise constant and
neighbor-based feedback control rule.

A necessary condition is presented and
continuous communication between neighboring

agents is avoided.

[24] No Yes
Finite-field leader–follower consensus

protocol with time delays and switching
topology.

Two criteria for the finite-field leader–follower
consensus with time delays and switching

topology are presented.

[25] No Yes
An adaptive leader–follower consensus

control protocol with unknown
nonlinearities and state time-delays.

The consensus tracking error will converge to an
adjustable neighborhood of the origin.

[30] No No
Three flocking algorithms: two for free

flocking and one for constrained
flocking.

Migration of flocks can be performed using a
peer-to-peer network of agents, i.e., “flocks need

no leaders.”

[31] Yes No Flocking of multi-agent protocol with a
virtual leader. Modification to the Olfati-Saber algorithm in [30].

[33] No Yes
Consensus-based approaches are
applied to achieve time-varying

formation.

Necessary and sufficient conditions for UAV
swarm systems to achieve time-varying

formations are proposed.

[34] Yes No A continuous adaptive controller is
designed.

An adaptive estimator for each uninformed agent
can estimate the velocity of the leader.

[35] Yes Yes An adaptive leader–follower formation
control protocol is proposed.

The overall closed-loop system is proved to be
semi-globally, uniformly, and ultimately bounded

by Lyapunov stability theory.
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3. System Model and Problem Formulation

Figure 1 shows a typical 3D-based formation tracking control model. The leader UAV
is controlled by a control station with dynamic velocity, and follower UAVs keep the desired
formation while tracking with the leader. The state information of the leader is measured
through sensors and transmitted by wireless sensor agent networks. Then, the control
signal is generated depending on the measured information [1,3]. In this scenario, each
UAV takes the nearest UAV as the tracking target and follows it, so the whole formation
can be divided into several basic leader–follower units. Nevertheless, due to the high
mobility of UAVs, the leader always has dynamic velocity and acceleration. Thereby, two
fundamental challenges arise. One is how to guarantee that the follower keeps up with
the leader smoothly under uncertain time-varying leader velocity. The other is how to
reduce the effect of network-induced delays. The features of the dynamic leader velocity
and network-induced delays are depicted in Figure 2, which significantly affects the design
of the controller.
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The dynamics of a follower are given by

.
l(t) = p(t),
.
p(t) = u(t− ∆T(t)),

(1)

where l(t) =
[
lx(t), ly(t), lz(t)

]T and p(t) =
[
px(t), py(t), pz(t)

]T are the position and

velocity of the follower, respectively; u(t) =
[
ux(t), uy(t), uz(t)

]T represents the follower’s
acceleration, namely the formation tracking control strategy; ∆T(t) is the network-induced
delay, which mainly includes the leader-to-controller delay, controller-to-follower delay,
and signal processing delay.

The dynamics of desired states can be described by two integrators [31]

.
lr(t) = pr(t),
.
pr(t) = gr(lr(t), pr(t)),

(2)

where pr(t) =
[
prx(t), pry(t), prz(t)

]T and lr(t) =
[
lrx(t), lry(t), lrz(t)

]T are the desired
time-varying velocity and position information of leader, respectively, which are wholly
determined by the leader’s state; gr(lr(t), pr(t)) represents the leader’s acceleration.

The leader–follower model for UAV formation is shown in Figure 3. The objective for
the follower is to track the reference trajectory generated by the leader and keep a desired
time-varying formation. Define the velocity and position errors as

∆p(t) = p(t)− pr(t),

∆l(t) = l(t)− lr(t).
(3)
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Then, the error dynamics of follower formation tracking can be derived as

∆
.
l(t) = ∆p(t),

∆
.
p(t) = u(t− ∆T(t))− gr(lr(t), pr(t)).

(4)
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Define the state vector as

s(t) =
[
∆lx(t), ∆px(t), ∆ly(t), ∆py(t), ∆lz(t), ∆pz(t)

]T . (5)

Based on the error dynamics, the formation tracking model can be expressed as

.
s(t) = As(t) + B[u(t− ∆T(t))− gr(lr(t), pr(t))], (6)

where

A =


A 02×2 02×2

02×2 A 02×2

02×2 02×2 A

,

B =


B 02×1 02×1

02×1 B 02×1

02×1 02×1 B

,

(7)

0i×j denotes the i× j zero matrix, and the block matrices are given by

A =

[
0 1
0 0

]
, B =

[
0
1

]
. (8)

Figure 4 shows the timing diagram for the UAV formation tracking control. The
continuous-domain UAV states are first sampled, and then transmitted to the controller.
Based on the received state information, the generated control signal is finally transmitted
to the actuator to improve the formation tracking of the follower. In the control procession,
it can be seen that network-induced delays from the sensor to the controller and from the
controller to the actuator are caused, which are typically assumed to be stochastic.
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Then, the corresponding discrete-time dynamics in the j-th sampling interval
[jT, (j + 1)T) can be derived as (see derivation details in Appendix A)

sj+1 = Esj + D1
j uj + D2

j uj−1 + δj, (9)
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where
sj = s(jT), E = eAT ,

D1
j =

∫ T−∆Tj
0 eAtdtB, D2

j =
∫ T

T−∆Tj
eAtdtB,

δj = −
∫ (j+1)T

jT eA[(j+1)T−t]gr(lr(t), pr(t))dtB,

(10)

uj is the control signal generated based on system state sj, and ∆Tj is the network-induced
delay in j-th sampling interval, which is typically assumed to be stochastic.

Note that due to the inherent high mobility of the leader, the network-induced delay
∆Tj causes the time-varying feature of D1

j and D2
j . On the other hand, the dynamic leader’s

acceleration introduces the uncertain item δj. The objective of the formation tracking control
is to minimize the errors between desired and actual states of the follower and to maintain
smooth control of the follower. Therefore, using the typical quadratic cost function, the
optimization formation tracking problem in the dynamic leader–follower system can be
formulated as

min
{uj}

E
[

sT
NQsN +

N−1
∑

j=0

(
sT

j Qsj + uT
j Ruj

)]
s.t. sj+1 = Esj + D1

j uj + D2
j uj−1 + δj,

(11)

where N is the finite time horizon, Q and R are determined system parameters, E is the
expectation operator due to the stochastic nature of the leader’s velocity and network-
induced delays, sT

j Qsj represents the tracking errors, and uT
j Ruj denotes the effect of

follower acceleration on preventing harsh control reactions.

4. Formation Tracking Control Algorithm

In this section, in order to solve the formation tracking optimization problem in
(11), a near-equilibrium case in which the leader moves along a straight line at a near-
constant velocity is considered at first. The optimal control strategy is derived by a two-step
algorithm through backward iteration. Then, the results are extended to the general
dynamic case in which the leader moves with an uncertain time-varying velocity. Lastly,
the angle deviation is analyzed.

4.1. Near-Equilibrium Control Strategy Design

In most of the cases, the formation tracking system remains steady so that the leader
flies smoothly at a near-constant velocity and the follower attempts to maintain its stable
formation throughout tracking the reference trajectory. That is to say, the leader velocity
keeps a near-constant value of pr(t) = p∗ + ∆, where ∆→ 0 . In this near-equilibrium case,
the acceleration is gr(lr(t), pr(t)) ≈ 0 and the network-induced delay is ∆Tj ≈ ∆T. That is,
the uncertain item δj is approximately equal to zero.

Then, the optimization problem (11) can be simplified as

min
{uj}

sT
NQsN +

N−1
∑

j=0

(
sT

j Qsj + uT
j Ruj

)
s.t. sj+1 = Esj + D1uj + D2uj−1,

(12)

where D1 and D2 become the determined parameters.
Let

xj =

[
sj

uj−1

]
. (13)

Then, the discrete-time dynamics can be rewritten as

xj+1 = Fxj + Huj, (14)
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where

F =

[
E D2

03×6 03×3

]
, H =

[
D1

I3×3

]
, (15)

and Ii×i denotes the i× i identity matrix.
Subsequently, the optimization problem (12) is equivalent to

min
{uj}

xT
NQxN +

N−1
∑

j=0

(
xT

j Qxj + uT
j Ruj

)
s.t. xj+1 = Fxj + Huj,

(16)

where

Q =

[
Q 06×3

03×6 03×3

]
. (17)

Theorem 1. The optimal control strategy for the near-equilibrium formation tracking problem (12)
is given by

u∗j = −Ljxj, j = 0, 1, . . . , N − 1, (18)

where Lj is iteratively calculated by

Lj =
[
HTSj+1H + R

]−1HTSj+1F,

Sj = FTSj+1F + Q− LT
j HTSj+1F,

SN = Q.

(19)

The proof can be achieved similarly to the derivation process of optimal control
strategy in [6].

4.2. General Dynamic Control Strategy Design

In general, the leader flies with a time-varying velocity with a highly dynamic state.
Then, the uncertain time-varying term δj, typically assumed to be a stochastic variable
with zero mean value and variance matrix σδ, should be considered together with the
time-varying terms D1

j and D2
j in the optimal formation tracking control design.

Based on the definition xj =
[
sT

j , uT
j−1

]T
in (13), the dynamic formation tracking

control problem (11) can be rewritten as

min
{uj}

E
[

xT
NQxN +

N−1
∑

j=0

(
xT

j Qxj + uT
j Ruj

)]

s.t. xj+1 = F̃jxj + H̃juj +
[
δT

j , 03×1

]T
,

(20)

where F̃j, H̃j, and δj are time-varying items that

F̃j =

[
E D2

j
03×6 03×3

]
, H̃j =

[
D1

j
I3×3

]
. (21)

Define the residual cost function as

Vj = min
{ui}

E
[

xT
NQxN +

N−1

∑
i=j

(
xT

i Qxi + uT
i Rui

)]
. (22)
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Theorem 2. The optimal control design for the general dynamic formation tracking problem (20)
can be similarly derived as

ũ∗j = −L̃jxj, j = 0, 1, . . . , N − 1, (23)

where L̃j can be iteratively calculated by

L̃j = E
[

H̃T
j S̃j+1H̃j + R

]−1
E
[

H̃T
j S̃j+1 F̃j

]
,

S̃j = E
[

F̃T
j S̃j+1 F̃j

]
+ Q− L̃T

j E
[

H̃T
j S̃j+1 F̃j

]
,

S̃N = Q,

(24)

and the corresponding residual cost function is given by

Ṽj = E
[

xT
j S̃jxj

]
+

N

∑
i=j+1

tr
(

S̃1,1
i σδ

)
. (25)

where S̃1,1
i denotes the (1, 1)− th block of S̃i with the same size as δi , and tr(·) is the trace of the

matrix.

Proof of Theorem 2. When j = N − 1: ṼN−1 can be deduced by

ṼN−1 = min
ũN−1

E
[[

xN−1
uN−1

]T

<̃
[

xN−1
uN−1

]]
+E

[
δT

N−1S̃1,1
N δN−1

]

= Emin
ũN−1

[[
xN−1
uN−1

]T

<̃
[

xN−1
uN−1

]]
+ tr

(
S̃1,1

N σδ

)
,

(26)

where

<̃ =

[
b1,1 bT

1,2
b2,1 b2,2

]
, (27)

that
b1,1 = E

[
F̃T

N−1S̃N F̃N−1

]
+ Q,

b2,2 = E
[

H̃T
N−1S̃N H̃N−1

]
+ R,

b2,1 = E
[

H̃T
N−1S̃N F̃N−1

]
.

(28)

Accordingly, the optimal control strategy can be derived as

ũ∗N−1 = −L̃N−1xN−1, (29)

where
L̃N−1 = E

[
H̃T

N−1S̃N H̃N−1 + R
]−1

E
[

H̃T
N−1S̃N F̃N−1

]
, (30)

and the corresponding residual cost function has the quadratic form

ṼN−1 = E
[

xT
N−1S̃N−1xN−1

]
+ tr

(
S̃1,1

N σδ

)
. (31)

When j = N − 2, . . . , 1, 0: assuming Ṽi, i ≥ j + 1 also has the quadratic form

Ṽj = E
[

xT
j S̃jxj

]
+ ∑N

i=j+1 tr
(

S̃1,1
i σδ

)
. (32)
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Similar to the derivation from (16) to (24) in [6], the optimal formation tracking control
strategy for general dynamic cases can be given by

ũ∗j = −L̃jxj, (33)

where L̃j can be deduced iteratively on the basis of S̃j+1 as in (24), and

Ṽj = E
[

xT
j S̃jxj

]
+

N−1

∑
i=j+1

tr
(

S̃1,1
i σδ

)
. (34)

�

Thus, when the uncertain item δk is considered, an extra cost item ∑N
i=j+1 tr

(
S̃1,1

i σδ

)
is introduced in the residual cost function. Although time-varying items F̃j, H̃j and δj
introduced by the highly dynamic features of the leader exist, the same form of control
strategy can be obtained in two steps in a backward recursion manner, which is summarized
as Algorithm 1.

Algorithm 1: Formation Tracking Control Design.

1 Step 1: off-line
2 Initialize S̃N = Q.
3 for j = N − 1 : −1 : 0 do
4 Calculate L̃j by using

5 L̃j = E
[

H̃T
j S̃j+1H̃j + R

]−1
E
[

H̃T
j S̃j+1 F̃j

]
.

6 Calculate S̃j by using

7 S̃j = E
[

F̃T
j S̃j+1 F̃j

]
+ Q− L̃T

j E
[

H̃T
j S̃j+1 F̃j

]
.

8 end
9 Step 2: On-line
10 Initialize s0, ũ∗j = 0, j ≤ 0.
11 for j = 0 : 1 : N − 1 do

12 Update sj and xj =

[
zT

j ,
(

ũ∗j−1

)T
]T

.

13 Calculate ũ∗j by using ũ∗j = −L̃jxj.
14 end

4.3. Angle Deviation Analysis

UAV formation tracking control usually consists of an outer-loop control, including
position and velocity control, and an inner-loop control, including pitch/yaw/roll angle
control. Many works simply focus on the outer-loop control strategy design. However, the
angle deviation is of great importance to UAVs’ motion.

Below, taking an electric quad rotor aircraft as an example, the angle deviation is
investigated. In an electric quad rotor aircraft, each motor is attached to a rigid cross frame.
Vertical motion and forward/backward motion are controlled by the collective throttle
input, i.e., the sum of the thrusts of each motor, and controlling the differential speed of the
front and rear motors. The left/right motion of the vehicle is achieved by controlling the
differential speed of the right and left motors. The quad-rotor dynamics, evolving in 3D
and subject to one force and 3 moments, are modeled by the following equations [13,36].
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c = f1 + f2 + f3 + f4,

fi = kiw2
i , i = 1...4,

m
..
lx = −c sin θ,

m
..
ly = c cos θ sin φ,

m
..
lz = c cos θ cos φ−mg,

..
ψ = ζψ,
..
θ = ζθ ,
..
φ = ζφ,

(35)

where c is the total thrust produced by four rotors, fi is the force generated by rotor i, ki ≥ 0
is a constant, wi is the angular speed of motor i, m is the quadcopter’s mass, and g is the
gravitational constant. ψ, θ and φ represent yaw, pitch, and roll angles, respectively, and
ζψ, ζθ , and ζφ are the control inputs for yawing, pitching, and rolling moments, respectively.

Define the state vector as

s =
[
lx, px, ly, py, lz, pz, ψ,

.
ψ, θ,

.
θ, φ,

.
φ
]T

. (36)

The control vector is defined as

u = [c1, c2, c3, c4]
T =

[
c−mg, ζψ, ζθ , ζφ

]
. (37)

Then, the dynamics equation can be derived as

.
lx.
px.
ly.
py.
lz.
pz.
ψ
.
ψ
.
θ
.
θ
.
φ
.
φ



=



px
−c1 sin θ/m− g sin θ

py
c1 cos θ sin φ/m + g cos θ sin φ

pz
c1 cos θ cos φ/m + g cos θ cos φ− g

.
ψ
c2.
θ
c3.
φ
c4



. (38)

Based on [13,36], the above dynamics equation can be linearized by a Taylor series as

.
s(t) = As(t) + Bu(t), (39)

where A and B respectively represent the state matrix and input matrix that



Entropy 2022, 24, 305 12 of 20

A =



0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −g 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 g 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0



,

B =


0 0 0 0 0 1

m 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1

.

When the network-induced delay ∆T(t) and angle deviations ∆ψ, ∆θ and ∆φ to the
yaw, pitch, and roll angles are considered. Assuming the angle deviations are small, the
dynamics equation can be further derived based on (38) and (39) as

.
s(t) = As(t) + Bu(t− ∆T(t)) + ω(t), (40)

where the disturbance term is given by

ω(t) =



0
−∆θg cos θ

0
∆φg cos θ cos φ + ∆θg sin θ sin φ

0
∆φg cos θ sin φ + ∆θg sin θ cos φ

06×1


, (41)

and here 0i×1 denotes the zero matrix with i× 1 size.
Similarly, the corresponding discrete-time dynamics in the j-th sampling interval

[jT, (j + 1)T) can be derived as

sj+1 = Esj + D1
j uj + D2

j uj−1 + δ̃j, (42)

where δ̃j = −
∫ (j+1)T

jT eA[(j+1)T−t]ω(t)dtB and other parameters are given as the same as
in (10).

It is found that the discrete-time dynamics considering angle deviation can be inte-
grated as the same form of (9). Therefore, the proposed control strategy in (23) for the
general dynamic control case can still be used to address the problem of angle deviation.

5. Simulations and Discussion

In this section, numerical simulations in accordance with real UAV flight data [8,9,32]
are given to demonstrate the effectiveness of the proposed UAV formation tracking control
strategy in a leader–follower model. In the near-equilibrium case, the quasi-static velocity
and fixed desired distance between leader and follower are set. While in the general dy-
namic case, the desired velocity p∗ and distance l∗r are dynamic. The simulation parameters
of both the near-equilibrium case and the general dynamic case are summarized in the
Table 2.
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Table 2. Simulation parameters setting.

Parameter Scenario 1
Near-Equilibrium Case

Scenario 2
General Dynamic Case

Sampling period 0.4 s 0.4 s

Network-induced delays τ ∈ [0.1 s, 0.2 s] τ ∈ [0.1 s, 0.2 s]

Desired velocity Fixed
(px, py, pz) = (10, 8, 3) m/s

Dynamic,
average velocity: 15 m/s

Desired distance Depend on velocity Depend on velocity

Uncertainty None Disturbance distribution N(0, 1)

First, the position, velocity, and 3D trajectories of followers in the near-equilibrium
case are shown in Figures 5–7. Afterward, the results are extended to the general dynamic
case. In the near-equilibrium case, it can be seen that the velocity and position errors
approach zero and that the proposed optimal control algorithm can ensure system stability
under various network-induced delays. In addition, we observe that the network-induced
delay causes performance degradation of UAV formation tracking because it requires
more time for the follower to catch up with the leader when the network-induced delay
becomes larger.
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To be more specific, in the x dimension, the velocity of the follower gradually changes
from the initial value of 5 m/s to the desired value of 10 m/s, and the relevant distance
error between the leader and the follower reaches 0 step by step as the speed of the follower
increases. In the y dimension, the velocity of the follower first increases from 5 m/s to
the desired value of 8 m/s, while the distance error between the leader and the follower
increases to around 8 m because the velocity of the follower is lower than the desired
velocity. Then, the velocity of the follower continues to increase to around 13 m/s in order
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to reduce the distance between the leader and the follower. Finally, the velocity of the
follower converges with the desired velocity so that the distance error between the leader
and the follower is further reduced to the desired value of 0. Similarly, in the z dimension,
as the velocity of the follower first decreases and then increases to the desired velocity of
3 m/s, the distance error between the leader and the follower gradually decreases to the
desired value of 0. In Figure 6, the same results are shown in the 3D trajectory. The follower
can quickly catch up with the leader when there is a sudden velocity and distance error
between the leader and the follower, and the follower can maintain the formation’s stability
once it successfully follows the leader.

The position, velocity, and 3-D trajectories of the follower in the general dynamic case
are shown in Figures 8–10. It can be seen that the follower can catch up with the leader
even if the leader moves with an uncertain time-varying velocity, which indicates that the
proposed optimal control algorithm can achieve excellent formation tracking performances
in both near-equilibrium and general dynamic cases. However, the dynamic velocity causes
serious disturbance to control stability. In the x and y dimensions, at first, the state of the
follower remains stable until the velocity of the leader changes. The unstable item δj is
introduced to the formation system, and the network-induced delay is time-varying as
well. Fortunately, the follower still can catch up with the leader in the presence of both
the dynamic leader velocity and network-induced delays. Similarly, the performance
degradation is introduced by network-induced delay (i.e., the smaller the network-induced
delay, the faster the follower reacts).
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The performance comparisons between the proposed algorithm and the existing
algorithm 1 [34] that ignores network-induced delays and the existing algorithm 2 in [21]
that ignores the dynamic feature of the UAV leader are shown in Figures 11 and 12.
Compared with the existing algorithms, our proposed algorithm reacts more quickly when
the velocity of the leader is changing. This is due to our inclusion of the last control
strategy and the uncertain time-varying term in the current control strategy, thus effectively
compensating for the influence of dynamic leader velocity and network-induced delays.
The algorithm in [21] did not include the time-varying term in the system model and
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ignored the dynamic features of the system. The algorithm in [34] addressed this problem
using a novel approach, but the effect of network-induced delays is still not accounted for.
It is obvious that our proposed algorithm provides better stability and faster convergence.
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6. Conclusions

In this paper, considering the highly dynamic features, including the uncertain time-
varying acceleration of the leader and network-induced delays, the optimal control strategy
for UAV formation tracking systems is studied. In order to control the follower to achieve
the desired state, a linear quadratic optimization problem is proposed with the objective
of minimizing the errors between the actual and desired states of the followers. Then, a
two-step backward recursion algorithm is developed to address this challenge in a near-
equilibrium case, and the results are extended to a general dynamic case. Lastly, the angle
deviation is analyzed, and the proposed control strategy algorithm can also be applied to
solve such motion problems. Simulated experiments demonstrate the effectiveness of the
proposed algorithm. It can be concluded that even if the time-varying acceleration of the
leader is uncertain, the follower can still quickly reach the desired state. In addition, the
network-induced delay will result in slower reactions by the follower.
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Appendix A

Below, the derivation from (6) to (9) is shown. First, based on (6), multiplying both
sides of the equation by an exponential term as

e−At .
s(t) = e−At As(t) + e−AtB[u(t− ∆T(t))− gr(lr(t), pr(t))]. (A1)

Then, we have

de−Ats(t)
dt

= e−AtB[u(t− ∆T(t))− gr(lr(t), pr(t))]. (A2)

Integrating both sides of (A2) as

(j+1)T∫
jT

de−Ats(t)
dt

=

(j+1)T∫
jT

e−AtB[u(t− ∆T(t))− gr(lr(t), pr(t))]. (A3)

Then, we have

sj+1 = eATsj +

(j+1)T∫
jT

eA[(j+1)T−t]B[u(t− ∆T(t))− gr(lr(t), pr(t))]dt. (A4)



Entropy 2022, 24, 305 19 of 20

In a sampling interval, the control strategy is piecewise and includes two parts due
to network-induced delays. During

[
jT, jT + ∆Tj

)
and

(
jT + ∆Tj, (j + 1

)
T
]
, the control

strategy is uj−1 and uj, respectively. Then, the formula (A4) can be written as

sj+1 = eATsj +

jT+∆Tj∫
jT

eA[(j+1)T−t]Bdtuj−1 +

(j+1)T∫
jT+∆Tj

eA[(j+1)T−t]Bdtuj −
(j+1)T∫

jT

eA[(j+1)T−t]gr(lr(t), pr(t))dtB. (A5)

The discrete-time dynamics can be further obtained as

sj+1 = eATsj +

T−∆Tj∫
0

eAtdtBuj +

T∫
T−∆Tj

eAtdtBuj−1 −
(j+1)T∫

jT

eA[(j+1)T−t]gr(lr(t), pr(t))dtB, (A6)

which is equivalent to the discrete-time dynamics in (9).
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