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Abstract: As wireless rechargeable sensor networks (WRSNs) are gradually being widely accepted
and recognized, the security issues of WRSNs have also become the focus of research discussion. In
the existing WRSNs research, few people introduced the idea of pulse charging. Taking into account
the utilization rate of nodes’ energy, this paper proposes a novel pulse infectious disease model
(SIALS-P), which is composed of susceptible, infected, anti-malware and low-energy susceptible
states under pulse charging, to deal with the security issues of WRSNs. In each periodic pulse point,
some parts of low energy states (LS nodes, LI nodes) will be converted into the normal energy states
(S nodes, I nodes) to control the number of susceptible nodes and infected nodes. This paper first
analyzes the local stability of the SIALS-P model by Floquet theory. Then, a suitable comparison
system is given by comparing theorem to analyze the stability of malware-free T-period solution
and the persistence of malware transmission. Additionally, the optimal control of the proposed
model is analyzed. Finally, the comparative simulation analysis regarding the proposed model, the
non-charging model and the continuous charging model is given, and the effects of parameters on
the basic reproduction number of the three models are shown. Meanwhile, the sensitivity of each
parameter and the optimal control theory is further verified.

Keywords: wireless rechargeable sensor network; pulse charging; cyber security; stability analysis;
persistence analysis; optimal control

1. Introduction

In recent years, wireless sensor networks (WSNs) have become a hotspot causing
extensive attention from researchers [1–5]. Sensor nodes with data storage and data trans-
ferring functions make up a sensor network. Nodes can monitor the physical environment
near them by deploying in an area without manual monitoring. WSNs have a wide range
of applications such as secondary agricultural production, ecological monitoring, traffic
safety monitoring, healthcare services and military fields [6]. However, because of the
vulnerable nature of nodes and the limited battery capacity, security [7] and short life
cycle [8] problems remain to be solved.

Researchers have come up with lots of solutions to optimize energy utilization prob-
lems. It is noted that the deployment of rechargeable nodes can solve the energy problem
more fundamentally. Wireless rechargeable sensor networks (WRSNs) consist of recharge-
able sensor nodes. In recent years, lots of research on WRSNs mainly focuses on the
charging planning problem and the energy allocation problem [9–11]. However, the net-
work security of WRSNs is rarely studied. Malware can replicate itself. Once implanted
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into the network system, malware will cause information leakage, network interruption
and even network breakdown [12].

Since the infection mechanism of disease in the population is almost the same as the
transmission mechanism of malware in WSNs, the epidemiological dynamic is generally
used in the study of security issues in WSNs. The applications of epidemiological dynamics
are mainly the model’s stability analysis. Recent related studies are shown in Table 1.

Table 1. Recent related studies on stability analysis of epidemic models in wireless sensor net-
works (WSNs).

Authors Model Goal

J.D. Hernández Guillén et al. [13]
Susceptible–Carrier–Infectious–Recovered–

Susceptible
(SCIRS)

Exploring local and global stability of
malware-free and epidemic points by

analyzing carrier state.

D.W. Huang et al. [14] Susceptible–Infected–Patched–Susceptible (SIPS)
Through the mechanism of patch
injection, analyze local and global

stability of epidemic point.

G.Y. Liu et al. [15–22] Low–Energy–Node (SILS, SILS-P, SISL, SIRS-L,
SIALS, ΛSILRD, SILRD, SI1I2L) models

Through the introduction of low-energy
nodes, analyze local and global stability

of malware-free and epidemic points

S.G. Shen et al. [23]
Vulnerable–Compromised–Quarantined–

Patched–Scrapped
(VCQPS)

By analyzing the heterogeneity and
mobility of sensor nodes in the model,

the local and global stability of
malware-free points is explored.

R.P. Ojha et al. [24]
Susceptible–Exposed–Infectious–Quarantine–

Recovered–Vaccinated
(SEIQRV)

By introducing analytical quarantine and
inoculation technology, analyze local and

global stability of worm-free points.

S. Hosseini et al. [25]
Susceptible–Exposed–Infected–Recovered–

Susceptible with Quarantine and Vaccination
(SEIRS-QV)

Through the diversification of nodes
configuration, analyze local and global

stability of malware-free points.

However, there are few studies on the application of epidemic dynamics in WRSNs,
and there is almost no research on the pulse charging characteristic of WRSNs. Due to the
similarity between the propagation characteristic of epidemic disease in the population
and the propagation characteristic of malware attack in WRSNs, the application of pulse
effect also gives us a novel method to suppress the spreading of malware. Recent related
studies are shown in Table 2.

Table 2. Research on application of pulse effect in epidemic models.

Authors Model Application Area Goal

A. d’Onofrio et al. [26]
Susceptible–Exposed–Infected–

Recovered
(SEIR)

Anthroponosis

Pulse inoculation and pulse birth were
introduced to analyze the malware-free

periodic solution and stability of the
malware-free periodic solution. Finally,

to prove that PVS (pulse vaccination
strategy) is more effective than other

vaccination strategies.

D. Zhang et al. [27] Susceptible–Infected–Removed
(SIR) Anthroponosis

Through the impulsive comparison
theorem and analysis technique, prove

the existence and stability of the
malware-free periodic solution.
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Table 2. Cont.

Authors Model Application Area Goal

Airen Zhou et al. [28] Susceptible–Infected–Removed
(SIR) Anthroponosis

According to impulsive vaccination
occurring at different moments, prove

the existence and stability of
malware-free periodic solution by

using a stroboscopic map.

D. Yu et al. [29]
Susceptible–Infected–Vaccinated–

Susceptible
(SIVS)

Anthroponosis

Using the impulsive comparison
theorem and stroboscopic map, prove

the existence and stability of
malware-free periodic solution and

permanence of the disease.

S.Z. Wang et al. [30]

Susceptible–Infected—-
Quarantined–Removed–

Susceptible
(SIQRS)

Anthroponosis

Considering the periodic inoculation of
the susceptible population, the stability
of the malware-free periodic solution

and the persistence of the disease were
analyzed using the impulsive

comparison theorem.

Z. Zhong et al. [31]
Susceptible–Infected–Removed–

Susceptible
(SIRS)

Zoonosis

According to birth pulse and impulsive
vaccination occurring at different
moments, prove the existence and
stability of malware-free periodic

solution by using the Poincaré map.
Through means of the bifurcation

theory, discuss the existence of
nontrivial periodic solution bifurcated.

X.M. Wang et al. [32] Susceptible–Infected–Removed
(SIR)

Mobile wireless sensor
networks (MWSNs)

Based on the pulse differential equation,
immune operation is achieved on the

susceptible nodes in pulse mode.
Additionally, prove the existence and

stability of malware-free periodic
solutions and obtain the maximum

immunization period of time.

Due to the rechargeable characteristic, the time of the charging behavior relative to
the whole process of the spreading of malware [33] is short, and the charging behavior
can be thought of as a pulse activity to some extent. The problem of malware spreading
under pulse charging is different from that under continuous charging mode [34]. In this
paper, inspired by previous works [35] and taking into account the pulse-charging process,
a time-delay free model of WRSNs based on pulse charging, SIALS-P (sensitive—infection—
anti-malware—low energy sensitive) is proposed. The model reveals the hardware attack
process of malware and the pulse charging process in WRSNs. In this paper, we introduce
the local and global stability of the malware-free T-period solution of SIALS-P by using
stability analysis theory to prove the persistence of malware transmission and propose an
optimal impulsive control strategy.

The main contents of this paper are as follows: the modeling of SIALS-P and the proof
of the existence of a malware-free equilibrium state and malware-free T-period solution
will be introduced in Section 2. Section 3 prove the local stability and global stability of the
system. Section 4 demonstrates the persistence of disease. Section 5 proposes and proves
the optimal impulsive control strategy. Section 6 shows the simulation results. Section 7 is
the conclusion of this paper.
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2. Modeling Analysis
2.1. Epidemic Modeling on WRSNs

WRSNs is composed of randomly distributed rechargeable nodes. The SIALS (sus-
ceptible, infected, anti-malware, low-energy, susceptible) model is first introduced here.
It is assumed that the number of nodes increases at a rate Λ, where Λ is greater than
0. The nodes in the network belong to one of six possible compartments. This model
describes the relationships among susceptible nodes (S), infected nodes (I), anti-malware
nodes (A), low-energy and susceptible nodes (LS), low-energy and infected nodes (LI) and
dysfunctional nodes (D). S nodes are vulnerable to malware, and I nodes are the nodes
infected by malware nodes. A nodes clear the malware by activating anti-malware; both
LS and LI nodes are at low energy levels and remain dormant. D nodes are totally out
of function.

According to the knowledge of epidemic dynamics, the epidemiological coefficients
of the models are not less than zero [36].

Thus, the dynamical system can be obtained:

dS(t)
dt = Λ− (α1 I(t) + β1 + µ)S(t),

dI(t)
dt = α1S(t)I(t)− (α2 + β3 + µ + α)I(t),

dA(t)
dt = −(β2 + µ)A(t) + α2 I(t),

dLI(t)
dt = −µLI(t) + β3 I(t),

dLS(t)
dt = −µLS(t) + β1S(t) + β2 A(t),

dD(t)
dt = µN(t) + aI(t),

(1)

where Λ is the birth rate of susceptible nodes, α1 is the transmission rate of infected nodes,
β1 is the wastage rate of susceptible nodes becoming low-energy susceptible nodes, µ is the
mortality rate of nodes, α2 is the clearance rate of anti-malicious nodes to infected nodes, β3
is the wastage rate of infected nodes becoming low-energy infected nodes, α is the mortality
rate of infected nodes, β2 is the attrition rate of anti-malicious nodes becoming low-power
and susceptible nodes.

We have N(t) = S(t) + I(t) + A(t) + LS(t) + LI(t), so the supplementary equation is:

dN(t)
dt

= Λ− µN(t)− aI(t), (2)

As t→ ∞ , the feasible region is governed by LS(t) = N(t) − S(t) − A(t) − I(t) −
LI(t):

Ω =

{
(S, A, I, LI) ∈ R4

∣∣∣∣0 ≤ N ≤ Λ− aI
µ

}
. (3)

2.2. A Pulse Charging Model

By introducing the pulse charging into the above SIALS model, SIALS-P can be
obtained when t = nT (n = 1, 2, 3...):

S(t+) = S(t) + γLS(t),
I(t+) = I(t) + γLI(t),
A(t+) = A(t),
LI(t+) = (1− γ)LI(t),
LS(t+) = (1− γ)LS(t),
N(t+) = N(t),

(4)

where T is the pulse charging period, and γ is the charging rate. nT+ is used to represent
the next instant of nT; that is, pulse charging is to charge the low-energy nodes (LS,LI) at a
series of time points. When t 6= nT(n = 1, 2, 3...):
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

dS(t)
dt = Λ− (α1 I(t) + β1 + µ)S(t),

dI(t)
dt = α1S(t)I(t)− (α2 + β3 + µ + α)I(t),

dA(t)
dt = −(β2 + µ)A(t) + α2 I(t),

dLI(t)
dt = −µLI(t) + β3 I(t),

dLS(t)
dt = −µLS(t) + β1S(t) + β2 A(t),

dN(t)
dt = Λ− µN(t)− aI(t),

(5)

The malware-free T-period solution is the periodic solution of T that satisfies the
above system of equations when I = 0, LI = 0 and A = 0, where

S(t) + LS(t) = N(t) = N(∞) =
Λ
µ

, (6)

Thus, combined with Equations (4)–(6), we can obtain:

dS(t)
dt = Λ− (β1 + µ)S(t),

dLS(t)
dt = −µLS(t) + β1S(t),

}
t 6= nT(n = 1, 2, 3 . . .),

S(t+) = (1− γ)S(t) + Λγ
µ ,

LS(t+) = (1− γ)LS(t),

}
t = nT(n = 1, 2, 3 . . .).

(7)

In the time interval [nT, (n + 1)T], the integral of Equation (7) in the period of two
concurrent pulses can be obtained:

LS(t) =
β1Λ

(β1 + µ)µ
+

(
LS
(
nT+

)
− β1Λ

(β1 + µ)µ

)
e−(β1+µ)(t−nT), (8)

where LS(nT) is the initial value at the nth pulse time. Using the stroboscopic map [37],
in other words, the pulse charging cycle is taken as the stroboscope sampling interval. In
the nth pulse charging cycle, the value of the state variable at the initial moment of the
pulse charging cycle is used to represent the value at the end of the pulse charging cycle.
Therefore, we have LSn+1 = f (LSn) when LSn+1 = LS((n + 1)T+). Thus, the relationship
between different cycles can be obtained:

LSn+1 = (1− γ)

[
β1Λ

(β1 + µ)µ
+

(
LSn −

β1Λ
(β1 + µ)µ

)
e−(β1+µ)T

]
, (9)

When the equilibrium state is reached, there is LSn+1 = LSn between the two cycles,
and the equilibrium state can be obtained:

LS∗ =

β1Λ
(β1+µ)µ (1− γ)

(
e(β1+µ)T − 1

)
e(β1+µ)T − 1 + γ

, (10)

When t→ ∞ , from Equation (6) we have:

S∗ =
Λ
µ
− LS∗, (11)

The malware-free T-period solution can be obtained: L̃S(t) = β1Λ
(β1+µ)µ

+
(

LS∗ − β1Λ
(β1+µ)µ

)
e−(β1+µ)(t−nT),

S̃(t) = ∧
µ − L̃S(t).

(12)

where t ∈ [nT, (n + 1)T].
(

S̃(t), L̃S(t)
)

is the malware-free T-period solution of Equation (7).
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3. Stability Analysis

The basic reproduction number R0 is an important parameter in the early stage of
malicious virus infection. It represents the expectation of the number of susceptible nodes
that can be infected by an infected node in its average infection cycle after an infected node
is introduced into the susceptible node. In general, R0 = 1 can be used as a threshold to
determine whether malware is dead or not.

Theorem 1. The equilibrium states S∗ and LS∗ of Equations (10) and (11) are locally asymptotically
stable and globally asymptotically stable if R0 < 1.

Proof of Theorem 1. Taking the equilibrium states S∗ and LS∗ as the initial value of
Equation (9), we have: ∣∣∣∣d f (LSn)

dLS

∣∣∣∣
LS=LS∗

< 1 (13)

Therefore, the local stability of the equilibrium state LS∗ of Equation (10) is locally
asymptotically stable according to the stability criterion of differential systems [38]. Because
S∗ = Λ

µ − LS∗, the local stability of the equilibrium state S∗ is locally asymptotically stable.
The local stability of S∗ and LS∗ means the global stability of S∗ and LS∗. This implies

that the pulse immunization operations produce the sequences of Sn and LSn that converge
to the equilibrium states S∗ and LS∗. �

For the stability of a malware-free T-period solution of Equation (7), we conclude the
following theorems:

Theorem 2. The malware-free T-period solution (S̃(t), 0, 0, 0, L̃S(t)) of the system, is locally
asymptotically stable if R0 < 1.

Proof of Theorem 2. Let Q(t) be an n × n matrix. Φ(t) is the basic solution matrix of
the linear differential system x′(t) = Q(t)x(t). In addition, let r(ΦQ(t)) be the spectral
radius of ΦQ(t). Using Floquet theory [39], the local stability of the malware-free T-
period solution (̃S(t), 0, 0, 0, L̃S(t)) can be proven. Let the disturbance of the malware-free
T-period solution of the system be:

x(t) = (S(t), I(t), A(t), LI(t), LS(t)), (14)

Through the linear approximation of Equations (4)–(6), we can obtain the following
impulsive differential equation:{

x′(t) = Q(t)x(t), t 6= nT, n ∈ N,
x(t+) = Px(t), t = nT, n ∈ N,

(15)

where

Q(t) =
[

U B
0 F−V

]
, P =

[
P1 0
0 P2

]
,

U =

 −(β1 + µ) 0 0
0 −(β2 + µ) 0
β1 β2 −µ

, B =

 −α1S∗(t) 0
α2 0
0 0

,

F =

[
α1S∗(t) 0

0 0

]
, V =

[
α2 + β3 + µ + a 0

−β3 µ

]
,

P1 =

 1 0 γ
0 1 0
0 0 1− γ

, P2 =

[
1 γ
0 1− γ

]
,

(16)
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Because ΦQ(t) =
[
Φij

]
is the basic solution matrix of the linear differential system

x′(t) = Q(t)x(t), then
.

Φ (t) = Φ (t)Q(t), where Φ (0) = E0 (E0 is the unit moment
matrix). The differential equation is solved, and we have:

Φ(t) =
(

eUT ΦB(t)
0 ΦF−V(t)

)
, (17)

when t = nT, it is easy to figure out:

PΦ(t) =
(

P1eUT P1ΦB(t)
0 P2ΦF−V(t)

)
, (18)

P1eUT =

 e−(β1+µ)T + γβ1Te−µT γβ2Te−µT γe−µT

0 e−(β2+µ)T 0
(1− γ)β1Te−µT (1− γ)β2Te−µT (1− γ)e−µT

. (19)

P2ΦF−V(t) =

[
e
∫ T

0 (α1S∗(t)−(α2+β3+µ+a))dt + γeβ3T γe−µT

(1− γ)eβ3T (1− γ)e−µT

]
. (20)

Obviously, the Floquet multipliers of Equation (18) are as follows:{
ω1 = r(P1eUT),

ω2 = r(P2ΦF−V(t)),
(21)

According to Floquet theory and pulse differential equation theory [37], the malware-
free T-period solution is locally asymptotically stable if ωi < 1, where i = 1, 2. It is difficult
for us to see the values of ω1 and ω2 directly. Therefore, in the case that ω1 is less than 1,
there exists a threshold, which can be defined as:

R0 , r(P2ΦF−V(t)) (22)

According to Floquet theory, when R0 < 1, the malware-free T-period solution
(S̃(t), 0, 0, 0, L̃S(t)) of the system is locally asymptotically stable. Locally asymptotic
stability is only for the domain where the periodic solutions are small, and the asymptotic
stability of solutions with arbitrary initial values in region Ω will be proven next. �

Theorem 3. When t→ ∞ , S(t)→ S̃(t) and LS(t) → L̃S(t) , the malware-free T-period solu-
tion of the system is globally asymptotically stable.

Proof of Theorem 3. From Equation (2), we have: Λ− (µ + a)N(t) ≤ dN(t)
dt ≤ Λ− µN(t).

It follows that
Λ

µ + a
≤ lim

t→∞
in f N(t) ≤ lim

t→∞
sup N(t) ≤ Λ

µ
, (23)

From Equation (23), we have:

S(t) + LS(t) ≤ lim
t→∞

supN(t) ≤ Λ
µ

, (24)

From Equations (7) and (24), we can obtain:

dS(t)
dt ≤ Λ− (β1 + µ)S(t),

dLS(t)
dt = −µLS(t) + β1S(t) ≤ −(µ + β1)LS(t) + β1Λ

µ ,

}
t 6= nT, n ∈ N,

S(t+) = (1− γ)S(t) + Λγ
µ ,

LS(t+) = (1− γ)LS(t),

}
t = nT, n ∈ N.

(25)
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Consider the following comparison system:

x′1(t) = Λ− (β1 + µ)x1(t),
x′2(t) = −(µ + β1)x2(t) +

β1Λ
µ ,

}
t 6= nT, n ∈ N,

x1(t+) = (1− γ)x1(t) +
Λγ
µ ,

x2(t+) = (1− γ)x2(t),

}
t = nT, n ∈ N.

(26)

Through the comparison theorem of impulsive differential equations [40], it can be
obtained that S(t) ≤ x(t) and LS(t) ≤ x(t). When t→ ∞ , we can obtain x1(t)→ S(t)
and x2(t)→ LS(t) . Then, there are ε > 0 and t1 > 0. For any time t > t1, we have:

S(t) ≤ x1(t) < S̃(t) + ε, LS(t) ≤ x2(t) < L̃S(t) + ε, (27)

dI(t)
dt ≤

[
−α2 − µ− a− β3 + α1

(
S̃(t) + ε

)]
I(t),

dLI(t)
dt ≤ −µLI(t) + β3 I(t),

}
t 6= nT, n ∈ N,

I(t+) = I(t) + γLI(t),
LI(t+) = (1− γ)LI(t),

}
t = nT, n ∈ N.

(28)

Suppose u(t) =
(

u1(t)
u2(t)

)
, we have:

(F−V)u(t) =

(
−α2 − µ− a− β3 + α1

(
S̃(t) + ε

)
0

β3 −µ

)(
u1(t)
u2(t)

)
=

( [
−α2 − µ− a− β3 + α1

(
S̃(t) + ε

)]
u1(t)

−µu2(t) + β3u1(t)

)
,

(29)

Consider the following comparison system:

u′(t) = (F−V)u(t), t 6= nT, n ∈ N,

u1(t+) = u1(t) + γu2(t),
u2(t+) = (1− γ)u2(t),

}
t = nT, n ∈ N.

(30)

The solution of the system can be expressed as:

u(u1, u1) = ΦF−V(t− nT)u
(
nT+

)
, (31)

when t = nT, u((n + 1)T+) = P2ΦF−V(t− nT)u(nT+). When t→ ∞ , u1 → 0 and u2 → 0 .
At this time, lim

t→∞
I(t) = 0 and lim

t→∞
LI(t) = 0. Then, there are ε2 > 0 and t2 > t1. For any

t > t2, we have 0 < I(t) < ε2, 0 < A(t) < ε2 and 0 < LI(t) < ε2.
Thus, from Equations (7) and (24), we have:

Λ− (α1ε2 + µ + β1)S(t) ≤ dS(t)
dt ≤ Λ− (µ + β1)S(t),

−Λ + (µ + β1)S(t) ≤ dLS(t)
dt ≤ −(µ + β1)LS(t) + β1Λ

µ + β2ε2,

}
t 6= nT, n ∈ N,

S(t+) = S(t) + γLS(t),
LS(t+) = (1− γ)LS(t),

}
t = nT, n ∈ N.

(32)

Then, consider the following comparison system:

y′1t = Λ− (α1ε2 + µ + β1)y1(t),
y′2t = −Λ + (µ + β1)S(t),

}
t 6= nT, n ∈ N,

y1(t+) = S(t) + γLS(t),
y2(t+) = (1− γ)y2t,

}
t = nT, n ∈ N.

(33)
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Similar to the processing methods for Equations (4) and (5), a set of positive solutions
ỹ = (ỹ1, ỹ2) that are globally asymptotically stable for the comparison system can be
obtained, and lim

ε2→0
ỹ =

(
S̃(t), L̃S(t)

)
. Through the comparison theorem of impulsive

differential equations, we can obtain:{
y1t < S(t) < x1t,

y2t < LS(t) < x2t,
(34)

when t→ ∞ , we have: {
y1 → ỹ1, x1 → S̃(t),

y2 → ỹ2, x2 → L̃S(t),
(35)

Then, there is t3 > t2. For ε3 > 0, which is small enough, we can obtain when t > t3 :

ỹ1 − ε3 < S(t) < S̃(t) + ε3, ỹ2 − ε3 < LS(t) < L̃S(t) + ε3. (36)

Therefore, when t→ ∞ , S(t)→ S̃(t) and LS(t)→ L̃S(t) . Therefore, the malware-
free T-period solution of the system is globally attractive. That is, after a certain amount of
time, the solution is absorbed into a bounded set through motion. �

4. Persistence of Malware Transmission

In this section, the persistence of malware transmission will be discussed. If certain
conditions are met, the malware will not die out; that is, the spread of malware in WRSNs
will continue, which is the persistence of malware transmission. The infected nodes (I
noses) are the determinants of the persistence of malware transmission. In order to obtain
this result, the following is given:

Lemma 1. When R0 > 1, there is a positive number δ to make the solution of the SIALS-P to
satisfy the following inequality: {

lim
t→∞

sup I(t) > δ,

lim
t→∞

sup LI(t) > δ.
(37)

Proof of Lemma 1. Using the proof by contradiction, if the above conclusions are not estab-
lished, there is t1 > 0, and for any t > t1, we have I (t) < δ. From Equations (4) and (5),
we can obtain:

dS(t)
dt ≥ Λ− (α1δ + β1 + µ)S(t),

dLS(t)
dt ≥ −Λ + (µ + β1)S(t) + β2 A(t),

}
t 6= nT, n ∈ N,

S(t+) = S(t) + γLS(t),
LS(t+) = (1− γ)LS(t),

}
t = nT, n ∈ N.

(38)

Consider the following comparison system:

z′1t = Λ− (α1δ + β1 + µ)z1(t),
z′2t = −Λ + (µ + β1)z1(t) + β2 A(t),

}
t 6= nT, n ∈ N,

z′1(t
+) = z1(t) + γz2(t),

z′2(t
+) = (1− γ)z2(t),

}
t = nT, n ∈ N.

(39)

From the comparison theorem. We can obtain:

St ≥ z1(t),
LS(t) ≥ z2(t).

(40)
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The positive periodic solution Z̃ = (Z̃1, Z̃2) of Equation (39) which is globally stable,
can be obtained and lim

δ→0
Z̃ =

(
S̃, L̃S

)
. Therefore, there is a positive number δ1 and for any

ε1 > 0 and δ < δ1, we have Z̃1 ≥ S̃− ε1 and z∗2 ≥ LS∗ − ε1. From the comparison theorem
of impulsive differential equations, we have a time variable t2 > t1 and a positive number
ε2 > 0. For any time t > t2, the inequality system is as follows:

St ≥ z1(t) ≥ Z̃1 − ε2 ≥ S̃− ε1 − ε2,
LSt ≥ z2(t) ≥ Z̃2 − ε2 ≥ L̃S− ε1 − ε2.

(41)

The inequality system of Equation (41) is substituted into Equations (4) and (5). We
can obtain:

dI(t)
dt ≥ [−α2 − µ− a− β3 + α1(S∗ − ε1 − ε2)]I(t),

dLI(t)
dt ≥ −µLI(t) + β3 I(t),

}
t 6= nT, n ∈ N,

I(t+) = I(t) + γLI(t),
LI(t+) = (1− γ)LI(t),

}
t = nT, n ∈ N.

(42)

If ε1 and ε2 are small enough to approach 0, the system can be simplified as:

dI(t)
dt ≥ [−α2 − µ− a− β3 + α1S∗]I(t),

dLI(t)
dt ≥ −µLI(t) + β3 I(t),

}
t 6= nT, n ∈ N,

I(t+) = I(t) + γLI(t),
LI(t+) = (1− γ)LI(t),

}
t = nT, n ∈ N.

(43)

Through the comparison theorem, let u(t) =

(
u1(t)
u2(t)

)
and construct the follow-

ing system:
u′(t) = (F−V)u(t), t 6= nT, n ∈ N,

u1(t+) = u1(t) + γu2(t),
u2(t+) = (1− γ)u2(t),

}
t = nT, n ∈ N.

(44)

The above system satisfies u(t, nT, u(nT+)) = φF−v(t− nT)u(nT+), u((n + 1)T+) =
P2φF−v(t− nT)u(nT+). When R0 > 1, as t→ ∞ and u1 → ∞ and u2 → ∞ , we can obtain
the conclusion as follows:

lim
t→∞

I(t) = ∞,

lim
t→∞

LI(t) = ∞.
(45)

The above conclusion contradicts the condition It < δ and LI(t) < δ which was
established previously. Hence, Lemma 1 is proved. �

Through Lemma 1, we can obtain the following theorem:

Theorem 4. When R0 > 1, the malware transmission is uniformly persistent, that is, there is a
positive number η that makes the solution of the system satisfy the following inequality:

lim
t→∞

in f I(t) > η,

lim
t→∞

in f LI(t) > η.
(46)

Proof of Theorem 4. According to Lemma 1, there are two possible situations when the
malware transmission is uniformly persistent:

(I). When the time variable T is large enough, I(t) > η and LI(t) > η;
(II). When the time variable T is large enough, I(t) and LI(t) oscillate nearby η.
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If case (I) is true, it is clear that malware transmission is uniformly persistent. Therefore,
we focus on case (II). From Lemma 1, we can obtain:

lim
t→∞

sup I(t) > δ,

lim
t→∞

sup LI(t) > δ.
(47)

Therefore, in the case of oscillation, we have:

I(t1) ≥ δ,
LI(t1) ≥ δ,

}
t1 ∈ (n1T, (n + 1)T],

I(t2) ≥ δ,
LI(t2) ≥ δ,

}
t2 ∈ (n2T, (n + 1)T].

(48)

where n2 > n1 and when t ∈ [t1, t2], it can be obtained as follows:

dLI(t)
dt = −µLI(t) + β3 I(t) ≥ −µLI(t), t 6= nT, n ∈ N,

LI(t+) = (1− γ)LI(t), t = nT, n ∈ N.
(49)

We can obtain:

LI(t) ≥ LI(t1)e−µ(t−t1) ≥ δe−µ(t−t1) ≥ δe−µ(n2−n1+1)T , (50)

Additionally, when t = nT, we can obtain:

LI(t) ≥ δ(1− γ)n2−n1 e−µ(n2−n1+1)T , (51)

Then, for I(t), we have:

dI(t)
dt = [−α2 − µ− a− β3 + α1S(t)]I(t) ≥ (−α2 − µ− a− β3)I(t),

I(t+) = I(t) + γLI(t).
(52)

By applying the solution method similar to Equation (52), we have:

I(t) ≥ δe(−α2−µ−a−β3)(n2−n1+1)T + γn2−n1 δ(1− γ)n2−n1 e−µ(n2−n1+1)T , (53)

Let η1 = min
{

δe(−α2−µ−a−β3)(n2−n1+1)T + γn2−n1 δ(1− γ)n2−n1 e−µ(n2−n1+1)T , δ(1− γ)n2−n1 e−µ(n2−n1+1)T
}

.

Due to n2 − n1 ≥ 0 and the fact that it is bounded, η1 cannot be infinitesimal. Hence,
we can obtain I(t) ≥ η1 and LI(t) ≥ η1.

For t > t2, there is a positive number η2. Therefore, we can obtain the sequence{
ηj
}

, j = 1, 2, . . . k . . . , where

η1 = min
{

δe(−α2−µ−a−β3)(n2−n1+1)T + γn2−n1 δ(1− γ)n2−n1 e−µ(n2−n1+1)T ,

(1− γ)n2−n1 e−µ(n2−n1+1)T
}

,
(54)

When t ∈ (tk, tk+1), the inequality can be derived as follows where tk ∈ nkT, (nk + 1)T
and tk+1 ∈ nk+1T, (nk+1 + 1)T:

I(t) ≥ ηk > 0,
LI(t) ≥ ηk > 0.

(55)

Let η∗ = min ηj. For any t > t1, there is I(t) ≥ η∗ > 0 and LI(t) ≥ η∗ > 0. Therefore,
Theorem 4 is proven. �
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5. Optimal Control

In the optimal control theory of epidemic dynamics, the primary goal is to minimize
the number of infections while minimizing the cost of vaccination [41].

The probability that the infected node becomes the anti-malware node after receiving
information from the anti-malware node is α2. In the process of constructing the minimum
objective function, α2 is selected as the control variable that changes over time between
the pulse points and is represented by α2(t), and 0 ≤ α2(t) ≤ 1. Control variable α2(t) is
constantly changing over time. Unlike α2(t), v(nT) is the control variable of the pulse point
and a targeted therapy strategy to reduce infected nodes, and 0 ≤ v(nT) ≤ 1.

In this section, the ultimate goal of optimal control is to minimize the number of
infected nodes and minimize the cost of activating anti-malware and detecting and killing
malware. Thus, in the SIALS-P model, we can construct the minimized objective function as:

J(gi(t), vi(nT)) =
∫ δT

0
(A1 I(t) + A2LI(t) +

A3

2
α2

2(t))dt +
η

∑
i=1

(
B
2

v2(nT)
)

, (56)

where δT represents the duration of optimal control and δ ∈ N. A1 and A2 are the moni-
toring costs of I nodes and LI nodes, respectively. A3 and B are the costs of implementing
control strategies.

Introduce control variables α2 and v(nT) into Equations (4) and (5). The objective
function subject is:

dS(t)
dt = Λ− (α1 I(t) + β1 + µ)S(t),

dI(t)
dt = α1S(t)I(t)− (α2(t) + β3 + µ + α)I(t)

dA(t)
dt = −(β2 + µ)A(t) + α2(t)I(t),

dLI(t)
dt = −µLI(t) + β3 I(t),

dLS(t)
dt = −µLS(t) + β1S(t) + β2 A(t),


t 6= nT, n ∈ N

S(t+) = S(t) + γLS(t) + v(nT)I(t),
I(t+) = I(t) + γLI(t)− v(nT)I(t),
A(t+) = A(t),
LI(t+) = (1− γ)LI(t),
LS(t+) = (1− γ)LS(t),

t = nT, n ∈ N

(57)

In order to achieve the optimal control objective, the Hamiltonian H without control
as the function is constructed as:

H = A1 I(t) + A2LI(t) + A3
2 α2

2(t) + λ1(t)
.

Si(t) + λ2(t)
.

Ii (t)

+λ3(t)
.

A (t)+ λ4(t)
.

LI (t)+ λ5(t)
.

LS (t)
(58)

We construct the impulse Hamiltonian function HP defined as:

HP = B
2 v2(nT) + γλ1(nT+)LS(t) + vλ1(nT+)I(t) + γλ2(nT+)LI(t)

−vλ2(nT+)I(t)− γλ4(nT+)LI(t)− γλ5(nT+)LS(t)
(59)

We use the Pontryagin maximum principle to obtain the necessary conditions for
optimal control.

Theorem 5. Introduce optimal controls α∗2(t) and v∗(nT) , and solutions S∗(t), I∗(t), A∗(t),
LI∗(t) and LS∗(t) into Equation (57). There exist adjoint variables λk(t), k = 1, 2, 3, 4.
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t 6= nT provides an optimal control α∗2(t). The adjoint variables λk(t) satisfy the following adjoint
differential system.

dλ1(t)
dt = − ∂H

∂S = −(−λ1(t)(α1 I(t) + β1 + µ) + α1λ2(t)I(t) + β1λ5(t)),
dλ2(t)

dt = − ∂H
∂I = −(A1 + (α1S(t)− (α2(t) + β3 + µ + α))λ2(t) + α2(t)λ3 + β3λ4),

dλ3(t)
dt = − ∂H

∂A = −(−(β2 + µ )λ3 + β2λ5),
dλ4(t)

dt = − ∂H
∂LI = −(A2 − µλ4),

dλ5(t)
dt = − ∂H

∂LS = −(−µλ5),
(60)

Transversality conditions are λk(δT) = 0, and the optimal control α∗2(t) can be solved
as ∂H

∂α2(t)
= 0. Thus, we have the optimal control of the continuous part as follows:

α∗2(t) =
(λ2(t)− λ3(t))I∗(t)

A3
, (61)

t = nT provides the impulse optimal control v∗(nT). There exist adjoint variables
λk(nT), k = 1, 2, 3, 4 and we have:

λ1(nT) = λ1(nT+),
λ2(nT) = λ2(nT+)− vλ2(nT+) + vλ1(nT+),
λ3(nT) = λ3(nT+),
λ4(nT) = λ4(nT+)− γλ4(nT+) + γλ2(nT+),
λ5(nT) = λ5(nT+)− γλ5(nT+) + γλ1(nT+),

(62)

The optimality condition at v(nT) = v∗(nT) implies that ∂HP

∂v(nT) = 0. Therefore, the
optimal control in any impulse point is obtained.

v∗(nT) =
(λ2(nT+)− λ1(nT+))I∗(t)

B
, (63)

S∗(t), I∗(t), A∗(t), LI∗(t) and LS∗(t) are the solutions for Equation (57) to perform
optimal control. Let x(t) = (S(t), I (t), A (t), LI(t), LS(t)), which is left-continuous on
[0, T] and xi(nT) = xi(nT−). We can solve the optimal level the pulse intensity v when
the sequences of impulse point nT are fixed. Let x(t) = x∗(t), the optimal controls are as
follows:

α∗2(t) =


1, (λ2(t)−λ3(t))I∗(t)

A3
≥ 1

(λ2(t)−λ3(t))I∗(t)
A3

, 0 < (λ2(t)−λ3(t))I∗(t)
A3

< 1

0, (λ2(t)−λ3(t))I∗(t)
A3

≤ 0

(64)

and

v∗(nT) =


1, (λ2(nT+)−λ1(nT+))I∗(t)

B ≥ 1
(λ2(nT+)−λ1(nT+))I∗(t)

B , 0 <
(λ2(nT+)−λ1(nT+))I∗(t)

B < 1

0, (λ2(nT+)−λ1(nT+))I∗(t)
B ≤ 0.

(65)

The optimal control functions can also be simplified as:

α∗2(t) = min
(

max
(

0,
(λ2(t)− λ3(t))I∗(t)

A3

)
, 1
)

, (66)

and

v∗(nT) = min
(

max
(

0,
(λ2(nT+)− λ1(nT+))I∗(t)

B

)
, 1
)

. (67)
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6. Simulation

The purpose of this section is to further verify the correctness and practicability of
our theory by numerical simulation. We compared the relationship between the pulse
charging model, the continuous charging model and the non-charging model. Thus, the
advantage of pulse charging over the other two models is received. In Section 6.1, we use
the Runge–Kutta [42] method to analyze the stability of pulse charging in MATLAB and
compare it with the other two models. The effects of various control parameters on the
basic reproduction number of three charging models are analyzed in Section 6.1.

6.1. Stable Analysis When R0 < 1

This subsection verifies the stability of the basic reproduction number of the three
charging models Ri < 1 (i = 0, 1, 2), where, R0 is the basic reproduction number of the
pulse charging model, R1 is the basic reproduction number of the continuous charging
model and R2 is the basic reproduction number of the non-charging model. Parameters are set
as Λ = 0.2, µ = 0.004, β1 = 0.005, β2 = 0.005, β3 = 0.008, α1 = 0.0001, α2 = 0.001, γ = 0.05,
a = 0.005, T = 10. It is assumed that N(t) = S(t) + I(t) + A(t) + LS(t) + LI(t) ≤ 50,
S0 = 48, I0 = 2, A0 = 0, LS0 = 0 and LI0 = 0.

Because R0 , r(P2ΦF−V(t)), we can obtain R0 = 0.4828 < 1. Therefore, there will be a
malware-free T-period solution (S̃,0,0,0,L̃S). In Figure 1, all nodes will approach stability.
When T is approaching infinity, the I and LI nodes are almost zero, while the S and LS
nodes will be stable at non-zero values. The basic reproduction number of the other two
models are calculated by:

R1 = α1Λ(γ+µ)2

[(β1+µ)(γ+µ)−γβ1][(α2+β3+µ+a)(γ+µ)−γβ3]
,

R2 = α1Λ
(α2+β3+µ+a)(β1+µ)

.
(68)

It is easily obtained that R1 = 0.4320 < 1, R2 = 0.1481 < 1. Thus, the two models
both have a global stable malware-free equilibrium point (S(t), 0, 0, 0, LS(t)). As can be
seen in Figures 2 and 3, for the continuous charging model and the non-charging model,
when t = 1200, the number of S are 45.72 and 22.22, respectively. Compared with the pulse
charging model in Figure 1, S = 31.84 when t = 1200. It can clearly be seen that the number
of S under the pulse charging model is lower than that under the continuous charging
model but is higher than that of the non-charged model. However, the relationship among
the number of LS is opposite to that among the number of S. Therefore, the pulse charge
can better improve the utilization rate of energy and the work efficiency of WRSNs.

6.2. Influence of Parameters on the Basic Reproduction Number

Parameters are set as µ = 0.004, β1 = 0.005, β3 = 0.008, α1 = 0.0001, α2 = 0.001,
γ = 0.05, a = 0.005, T = 10, Λ ∈ [0, 0.4], β2 ∈ [0, 0.05].

As shown in Figure 4, the basic reproduction number will increase with the increase
in Λ. It is obvious that β2 under the pulse charging model has greater influence than
that under the other two models on the basic reproduction number. It can be seen that
some values of the basic reproduction number under the pulse charging model are located
between those under the other two models.
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Figure 1. The nodes’ numbers under the pulse charging model with R0 < 1.

Figure 2. The nodes’ numbers under the continuous charging model with R1 < 1.

Figure 3. The nodes’ numbers under the non-charging model with R2 < 1.
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Figure 4. Λ and β2 relationships with the basic reproduction number.

A set of parameters is set as Λ = 0.2, µ = 0.004, β1 = 0.005, β3 = 0.008, α2 = 0.001,
γ = 0.05, a = 0.005, T = 10, β2 ∈ [0, 0.05], α1 ∈ [0, 1]. As shown in Figure 5, it is obvious
that the increase in α1 increases the basic reproduction number more significantly than
that of Λ, and β2 the influence on the basic reproduction number is almost the same as
the change in Figure 4. Thereby determining that β2 only has a significant impact on the
pulsed charging model.

Figure 5. α1 and β2 relationships with the basic reproduction number.

A set of parameters is set as Λ = 0.2, µ = 0.004, β1 = 0.005, β2 = 0.005, β3 = 0.008,
α1 = 0.0001, α2 = 0.001, T = 10, γ ∈ [0, 0.05], a ∈ [0, 0.1]. As shown in Figure 6, the
basic reproduction number will decrease with the increase in a, and the basic reproduction
number will increase with the increase in γ. It is obvious that a has greater influence than γ
on the basic reproduction number.

6.3. Sensitivity Analysis

In this section, we carefully study the sensitivity of the SIALILS model threshold by
evaluating PRCC (partial correlation coefficient). Evenly distributed sampling is carried
out for each input parameter of the model, where the maximum value of each parameter
is 120% of the sampling baseline value, and the minimum value is 80% of the baseline
value. As we know, when the absolute value of PRCC is less than 0.2, the correlation
between input parameters and output variables is not significant [43], the absolute value is
moderately correlated between 0.2 and 0.4 and highly correlated when the absolute value
is greater than 0.4. The distribution interval of each parameter and its corresponding PRCC
are shown in Table 3.
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Figure 6. a and γ relationships with the basic reproduction number.

Table 3. PRCCs values.

Parameters Range PRCC

λ U (0.32, 0.48) 0.9515
µ U (0.24, 0.36) −0.9583
β1 U (0.032, 0.048) −0.5192
β2 U (0.032, 0.048) −0.5406
β3 U (0.0004, 0.0005) 0.0136
α1 U (0.0032, 0.0048) 0.9524
α2 U (0.008, 0.012) −0.1737
γ U (0.12, 0.18) −0.5593
a U (0.004, 0.006) 0.0263

From Figure 7, it is obvious that the birth rate λ and metastasis rate of α1 are related
to the threshold R0. However, death rate µ, metastasis rate β1, β2 and γ are correlated
with threshold R0 is significantly negatively correlated, and the remaining parameters are
not correlated. This means that if we want to lower the threshold R0, we can lower the
birth rate λ and metastasis rate α1, or increase the death rate µ, transfer rate β1, β2 and γ.
Conversely, we can increase the threshold R0 by increasing the birth rate λ and metastasis
rate α1, or decreasing mortality rate µ, metastasis rate β1, β2 and γ. From Figure 8, it can
be easily learned that within the range of parameters specified by us, the threshold R0 is
only between 0.1 and 0.35, and most of them are between 0.15 and 0.25. It can be seen that
within this range, the threshold R0 have limited changes.
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Figure 7. PRCCs of R0.

Figure 8. The distribution of the values of R0.

6.4. Optimal Control Strategy

In this section, considering the treatment cost of infected nodes, control factors are
designed. Four control strategies (MAX control, MIN control, average control, optimal
control) are applied to the pulse charging model, and the optimal control problem is
numerically simulated. The superiority and effectiveness of the optimal control strategy are
verified by comparing the number of nodes in each state and the control cost. Parameters of
the four control policies are set as shown in Table 4. The parameters and weight parameters
settings of the proposed model are shown in Table 5, where A1, A2, A3 and B are the
weight parameters.
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Table 4. Parameters setting of four control strategies.

Case Control Strategy α2 v J

1 Optimal control α∗2(t) v∗(nT) ∫ δT
0 (A1 I(t) + A2LI(t) +

A3
2 α2

2(t))dt +
η

∑
i=1

(
B
2 V2(nT)

)2 MIN control 0 0

3 MAX control 1 1

4 AVERAGE = control α∗2(t) =
∑T

0 α∗2(t)
T = 0.5720 v∗(nT) = ∑δ

1 v∗(nT)
δ = 0.0587

Table 5. Parameters setting.

Notation Value Notation Value

λ 0.4 a 0.005
µ 0.04 T 4
β1 0.05 A1 0.6
β2 0.05 A2 0.01
β3 0.005 A3 0.05
α1 0.03 B 0.05
γ 0.2

We set the initial node number as S0 = 40, I0 = 10, A0 = 0, LS0 = 0 and LI0 = 0.
The control time is set as 20 days. In Figure 9, the change of the number of nodes of each
control strategy over time is shown. Under the MAX control, v(nT) = 1, the number of I
nodes will change greatly at the pulse time to reduce the number of I nodes and increase
the number of S nodes so that the model can operate efficiently. In MIN control, v(nT) = 0,
the number of I nodes will greatly increase at the pulse time, and the number of LI nodes
will also increase accordingly. Under this control, the number of A nodes is always 0,
resulting in the failure of anti-malware A to run normally; the number of S and LS nodes
will decrease rapidly. Obviously, MIN control strategy finds it difficult to suppress the
spread of malware, leading to the normal operation of anti-malware A, and the number of
S and LS nodes will decrease rapidly. Obviously, the MIN control strategy finds it difficult
to suppress the spread of malware. On the whole, the number of the S node decreases
most obviously under the minimum control strategy, while the number of the I node is
completely opposite. The rising rate of the number of the I node under the MIN control
strategy is far higher than that of the other three control strategies. It can determine that
the MIN control strategy control effect is poorer and the spread of the virus is difficult to
control. In the case of the four control strategies, regardless of cost, the Max control strategy
effect is the best because it can maintain the high-energy operation of the S nodes and
rapidly reduce the number of I nodes to make the system run efficiently. The control effect
of the optimal control strategy follows closely.

Then, the number of nodes in the model under the four control strategies is further
analyzed. According to Figure 10, it can be seen that the number of I nodes rapidly
decreases to 0 in optimal control, max control and average control, and the number of LI
nodes hardly changes. However, under min control, the number of I nodes occupy the
majority, and the number of LI nodes and increases accordingly. It is surprising that the
number of nodes under optimal control is almost the same as that under max control, which
further verifies the superiority of the optimal control strategy.

Finally, the cost of the four control strategies is numerically simulated. It is obvious
from Figure 11 that min control has the highest cost, while the optimal control has the lowest
cost. The cost of the four control strategies is compared as follows: Costmin > Costmax >
CostAVERAGE > CostOPTIMAL. The effectiveness of the optimal control is verified.
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Figure 9. The number of nodes changes with time under the four control strategies.

Figure 10. The number of nodes of the four control strategies.
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Figure 11. Cost comparison of the four control strategies.

7. Conclusions

In this paper, a novel model of the epidemic based on pulse charging (SIALS-P) for
WRSNs is proposed. In each periodic pulse point, the low energy states (LS nodes, LI
nodes) are converted into the normal energy states (S nodes, I nodes). The stability of the
model is analyzed, and the local and global stability of the malware-free T-period solution
is also proven. Additionally, the comparison theorem is used to prove the persistence of
malware transmission. In order to reduce the model control cost, we propose an optimal
control strategy for the proposed model based on the Pontryagin maximum principle.
Finally, in the numerical simulation part, we use the Runge–Kutta method to further verify
the correctness of the theory and compare the model with the non-charging and continuous
charging models. The simulation results show that the number of nodes in pulse charging
mode is between those in the other two modes. This suggests that the pulse charging
model is more energy-saving when compared with the continuous charging model and
has higher working efficiency compared with the non-charging model. The influence of
each parameter on the basic reproduction number is given by simulation. PRCC is used
to analyze the sensitivity of threshold parameter R0 and the feasibility and superiority of
optimal control are further verified.

Of course, the study in this paper also has limitations. For example, the simulation
results of its periodic or chaotic solutions are unknown. In addition, if a node has an
incubation period after infection, it can lead to more complex system behavior (for example,
repeated outbreaks, etc.).
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