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Abstract: In the domain of network science, the future link between nodes is a significant problem in
social network analysis. Recently, temporal network link prediction has attracted many researchers
due to its valuable real-world applications. However, the methods based on network structure
similarity are generally limited to static networks, and the methods based on deep neural networks
often have high computational costs. This paper fully mines the network structure information and
time-domain attenuation information, and proposes a novel temporal link prediction method. Firstly,
the network collective influence (CI) method is used to calculate the weights of nodes and edges.
Then, the graph is divided into several community subgraphs by removing the weak link. Moreover,
the biased random walk method is proposed, and the embedded representation vector is obtained
by the modified Skip-gram model. Finally, this paper proposes a novel temporal link prediction
method named TLP-CCC, which integrates collective influence, the community walk features, and
the centrality features. Experimental results on nine real dynamic network data sets show that the
proposed method performs better for area under curve (AUC) evaluation compared with the classical
link prediction methods.

Keywords: temporal link prediction; collective influence; community detection; random walk;
representation learning; multi feature fusion

1. Introduction

Link prediction method has been applied to community detection, anomaly detection,
influence analysis, and recommendation systems for complex networks. With network
topology, attributes, and network time series evolution information, link prediction aims
to solve one of the most basic scientific problems, reconstructing and predicting missing
information [1,2]. Specifically, link prediction research includes edge missing, edge anomaly,
and possible future connections in the network [3,4]. In addition to its application value,
the related technology of link prediction has important theoretical research value. It can
provide a reasonable explanation for the network evolution mechanism, mine the law of
network dynamic changes, and provide reliable theoretical support for understanding the
mechanism of network internal changes [5]. Complex networks in the real world are often
dynamic and temporal networks, nodes and edges in the network change continuously with
time. The method of temporal link prediction can better mine the historical information of
network changes, and it can be more effective to achieve the prediction performance.

In recent years, link prediction has many research results in large-scale networks,
multidimensional heterogeneous networks, and dynamic temporal networks. Generally,
the prediction methods can be divided into three categories: network structure-based
methods, likelihood analysis-based methods, and machine learning-based methods [6].
Different categories of prediction methods are based on different network scenarios. The
network structure-based methods include structure similarity methods such as Common
Neighbors [7], Adamic-Adar [8], Local path [9], Katz [10], etc. They only utilize network
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connection information and have the widest application scenarios. The method based
on likelihood analysis uses the known topology and attribute information to calculate
the probability of nonexistent edges. For example, Zhao et al. [11] proposed a Bayesian
probability model, which combines the node attributes in various directed and undirected
relational networks. Liu Shuxin et al. [12] proposed a similarity model based on the
matching degree of bidirectional transmission of resources. Javari et al. [13] establishes
link label models for local and global attributes of sparse networks to achieve prediction-
related functions. Pan et al. [14] combines clustering mechanisms to propose a conditional
probability model of the closed paths. Although these methods can make good use of
topological structure information, the computational complexity of the algorithms is high
and is not applicable for large-scale networks; machine learning methods have been studied
in recent years. The idea is to input the structure and attribute information of the network
into various neural networks for training, output the embedded vector representation of
nodes, and realize the functions of classification and prediction. Li et al. [15] uses the deep
learning method optimized by a limited Boltzmann machine to achieve dynamic network
link prediction. With the long short-term memory network embedding time information
and graph neural network embedding structure information, Chen et al. [16] shows that the
combined vectors greatly improve the accuracy of prediction. Machine learning methods
usually perform better than similarity-based methods and have lower time complexity
than likelihood probability-based models. However, in real applications, the machine
learning methods often need more harsh conditions, and the training process of the optimal
parameters needs to consume more resources.

Currently, with the popularity of social media, more and more researchers use clas-
sical sociological theory to study link prediction problems in social networks [17,18].
Liu Shuxin et al. [19] regards the motif as the smallest community and defines the three-
tuple community consistency index to describe the impact of the three-tuple community at-
tributes on link prediction. Valverde-Rebaza et al. [20] proposed a prediction method based
on the combination of user interest behavior and community information. Liu et al. [21]
proposed a link prediction method based on weak links, degree, and betweenness of com-
mon neighbors. Although simple use of social information improves prediction accuracy,
these methods do not distinguish the different effects of different community sizes on
prediction results, and can further explore the impact of different community structures
on similarity.

Existing community theory and structural similarity methods often solve link pre-
diction problems on static networks, but few on dynamic networks. Aiming at the link
prediction problem of dynamic networks, this paper proposes a temporal link predic-
tion approach based on community multi-feature fusion and embedded representation,
which combines the methods of influence optimization, community detection, and net-
work embedded representation based on the network topology information. The main
contributions include:

• Motivated by the concept of collective influence in percolation optimization theory,
the collective influence is considered as the effective attribute of nodes, and construct
the weight matrix of edges based on node attribute.

• With CI-based weight matrix and weak link optimization, we use the Louvain algo-
rithm to partition the dynamic network into communities, and design the mechanism
of node random walk within the community.

• Different from Deepwalk and node2vec, we design a novel strategy of next hop with
priority to the existence of connected edges, and the improved Skip-gram model is
used to obtain the node representation vector.

• Concatenate the collective influence, network centrality impact and the representation
learning vectors of nodes. By using the joint new vectors to calculate the score matrix
of the edges, and the temporal link prediction method TLP-CCC is proposed.
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• The experimental results on nine real dynamic network data sets show that the pro-
posed method outperforms the traditional classical temporal link prediction methods
under AUC evaluation metric.

2. Preliminary
2.1. Temporal Network

The temporal network includes continuous and discrete temporal network models,
and most of them are discrete temporal. As shown in Figure 1, due to the temporal nature
of network evolution, a fixed discrete-time window is set to discretize the continuous
activities in different time windows. For example, user V1 interacts with user V3 in window
t1. The discrete-temporal model does not consider the situation that the communication
continues into the next window; it is considered that the interaction only exists inside the
t1 window. In a window unit, repeated multiple contacts are only considered one time, and
the node’s own connection is not considered. At the same time, the sampling measurement
of the network is set between each time window, so that the network topology in a window
period before sampling forms a snapshot diagram.

V1

V2

V3

V4

V5

V6

time

t2 tTt...t1t0

Figure 1. Schematic diagram of temporal link prediction. Edges(e13, e25, e36) exist in a range of
[t0, t1], edges(e24, e35, e46) exist in a range of [t1, t2], edges(e25, e34, e56) exist in a range of [t2, t3],
edges(e14, e35, e24) exist in a range of [tT−1, tT ]. The edges are discretized into a snapshot list [1, . . . , T].

Given a temporal network G that has N nodes and E edges, each edge in set E can be
expressed as e(i, j), indicating that node i and node j have a connection relationship in the
time window t. If the continuous time is discretized according to the fixed time interval w,
the window range generated by the edge connection can be expressed as [t− w, t).

2.2. Problem Definition

Given a dynamic network G, it is divided into T network snapshot sequences G =
{G1, G2, . . . , GT) by fixed time intervals, where Gt = G(Vt, Et) represents the network
snapshot at time t, Vt is the node set and Et is the edge set at time t. Because this paper
focuses on the link prediction problem, we only consider the change of edge connection
with time, and fix the node set at different times as V. The adjacency matrix of network
snapshot at each time t can be expressed as At = [at

ij]N×N , and N = |V| is the total
number of nodes. In undirected and unweighted network, at

ij = 1 when edge e(i, j) ∈ Et is
connected, otherwise at

ij = 0. When a set of network snapshots and their adjacency matrix
sequences {At−T , At−T+1, . . . , At} are given, the dynamic temporal link prediction method
aims to study a function f (·) to predict the network adjacency matrix At+1 at the time t.
It generally includes three steps:

1. Propose a new similarity index and its corresponding calculation function to calculate
the similarity score of each snapshot;

2. Propose a new temporal evolution model and its corresponding learning function to
predict the expected value in the future;

3. Compare and evaluate the expected prediction probability with the real topology.
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St = ft(At) (1)
_
A = f2(St−T , St−T+1, . . . , St) (2)

AUC = evaluate(
_
At+1, At+1) (3)

As shown in Figure 2, network G is the set of all nodes and edges of the dynamic
network, Gt = G(Vt, Et) represents the network snapshot at time t, V is the node set and
E is the edge set at time t. Each node can contain multiple attribute information, and
each edge can contain multiple weight information. Nodes and edges can dynamically
increase and disappear in the temporal network. The problem of temporal link prediction
is to predict the topology connection of the network at time t using the model trained by
topology and attribute information of multiple snapshots before time t.

?

Link Predition

t=1

t=2

t=T

t=T+1

G1

G2

Gt 
Gt+1 

?

?
Temporal

Figure 2. Network slicing instance deployment Diagram of temporal link prediction, which can
predict the topology situation at T + 1 from information of snapshot [1, . . . , T].

2.3. Metrics

Area under curve (AUC) [22] is a widely used metric for performance evaluation. The
AUC measure gives values between 0 and 1, and values above 0.5 show that the proposed
algorithm is better than the random prediction for binary classes. In terms of link prediction,
AUC means that the probability of a randomly chosen actual edge score is higher than a
randomly chosen nonexistent edge score. AUC score is calculated as given in Equation (4):

AUC =
n′ + 0.5n′′

n
(4)

where n is the times of independent comparisons, n′ indicates how many times actual edge
score is higher than nonexistent edge score, and n′′ shows how many times scores of actual
and nonexistent edges are equal.

3. TLP-CCC Algorithm

As shown in Figure 3, the proposed algorithm can be divided into three steps. Firstly,
quantify node weight and edge weight by using collective influence. Secondly, after
processes of time attenuation accumulation and biased transition probability, detect com-
munities by Louvain algorithm according to the principle of modularity optimization,
let the nodes perform supervised random walk in the context of the community, and the
Skip-gram model is used to obtain the representation vector. Finally, the collective influence,
degree centrality, closeness centrality, and betweenness centrality, are combined with the
trained node representation vectors, and uses cosine similarity to calculate the similarity
index SCCC, and the temporal link prediction method TLP-CCC is based on SCCC index.
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Figure 3. Diagram of the multi-features fusion and embedded representation for temporal link
prediction. Step 1: Motivated by the concept of collective influence in percolation optimization
theory, the collective influence is considered as the effective attribute of nodes, and construct the
weight matrix of edges based on node attribute. Step 2: With CI-based weight matrix and weak
link optimization, design the mechanism of node random walk within the community, then a novel
strategy of next hop with priority to the existence of connected edges within the community, and the
improved Skip-gram model is used to obtain the node representation vector. Step 3: Concatenate the
collective influence, network centrality impact and the representation learning vectors of nodes. By
using the joint new vectors to calculate the score matrix of the edges, and the temporal link prediction
method TLP-CCC is proposed.

3.1. Similarity Index Based on Collective Influence

The percolation optimal model is generally used to solve the critical problem of
connectivity in complex networks. The optimization of the percolation model is to find the
minimum node set that can destroy the maximum connected component of the network, or
find a group of nodes that play an important role in the global connection of the network.
To solve this problem, Morone et al. [23] proposed a Collective Influence algorithm to
quantify the influence of nodes. The collective influence of a node is characterized by nodes
on the spherical boundary and has nothing to do with other nodes on the inner path of
the ball. The collective influence can more effectively quantify the topology information
of nodes in the local range. As shown in Figure 4, the collective influence of nodes in the
range of radius 3 can be characterized by boundary nodes j1 to j8 and node i. The collective
influence of node i can be defined as:



Entropy 2022, 24, 296 6 of 18

i

1j

2j

6j

7j

8j

3j

4j

5j

Ball(i,l)

∂Ball=∑j

l=3

Figure 4. Diagram of the collective influence of node. The influence is determined by the joint
importance of itself and nodes on the ball boundary.

The collective influence of node i can be defined [23] as:

CI`(i) = (ki − 1) ∑
j∈∂Ball(i,l)

(k j − 1) (5)

where ki represents the degree of node i, ` is the radius of the ball, i.e., the path length
from ball boundary node to center node, Ball(i, l) is the node set in the ball with node i
as the center and l as the radius, ∂Ball = ∑ j represents the boundary of the ball. The CI
algorithm can make more effective use of local topology information. In this paper, the
radius ` is set to 3.

The dynamic network can be divided into multiple snapshot sets according to a fixed
time interval, the train set and the test set can be split as shown in Figure 5. When predicting
the network topology at a certain time, p time sliding windows are required as the training
set. In order to make full use of the time evolution information, the exponential function is
used to fit the temporal evolution of the network to obtain the collective influence weight
of each node in the training set.

CIv(i) =
T

∑
t=T−p

αt−T · CI`(i, t) (6)

where α represents the time attenuation parameter, and α > 1. The greater the value, the
smaller the impact of the snapshot relatively far from the prediction time, and CI`(i, t)
represents the collective influence intensity of node i at time t.

Train Test

Train Test

t+1tt-1t-2t-p+1 ...

Raw Snapshots

tt-1t-2t-3t-p ...

Figure 5. Schematic diagram of dynamic network data set division. First, construct every time unit
from the sliding window. Second, split the data set into the training set and the testing set. Finally,
move the train window and the test window step by step, to achieve the mean prediction evaluation.
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After obtaining the collective influence of all nodes, the similarity index SCI based on
the common neighbor index and the collective influence on node pair (i, j) is defined as
Equation (7). Because CI is generally a value greater than 1, the numerator is the product of
two nodes’ CI, which is used to quantitatively describe the influence of large nodes in social
networks. The denominator is the sum of two CI, which indicates the average influence
of the node on the surrounding edges. If there is only one edge between two nodes, the
collective influence of the node pair is defined as 1.

SCI(i, j) =

{
CN(i, j) · CIv(i)×CIv(j)

CIv(i)+CIv(j) if ki > 1 and k j > 1

1 if ki = 1 and k j = 1
(7)

3.2. Similarity Index Based on Subgraph Walk

The method in this section first divides subgraphs according to community classifica-
tion, and then performs a random walk within the range of subgraphs.

Firstly, we construct weighted subgraphs using the edge collective influence obtained
in the previous section. At the same time, considering that the weak correlation often affects
the expression of the association degree between nodes, to filter particularly large and
unreasonable communities when dividing large-scale networks, the minimum 5% value in
the CI weight matrix with edges is replaced with 0, as shown in Equation (8).

CIe(i, j) =

{
SCI(i, j) if SCI(i, j) > rank(5%)

0 otherwise
(8)

In order to ensure that the edge weight actually exists in the network, the CI weight
matrix is correspondingly multiplied by the adjacency matrix to obtain the weight matrix of
the collective influence of all edges. At this time, the adjacency matrix Adj is the cumulative
weight matrix within the time step p of the training set.

Mij = SCI(i, j) · Adj(i, j)

Adj(i, j) =
t+p
∑
t

αt−T · At(i, j)
(9)

To divide the network into several subgraphs using the Louvain community detection
algorithm [24], we input into the module the network topology information and edge
weight matrix of the training set. Then, it calculates iteratively according to the mechanism
of maximizing modularity. The calculation method of modularity is as follows:

Q =
1

2m ∑
i,j;i 6=j

(Mij −
kik j

2m
) (10)

where Mij represents the actual weight of the edge from node i to j, ki = ∑j Mij represents
the weight sum of all edges connected to node i, m = 1

2 ∑i,j Mij represents the weight sum
of all edges, k j/2m represents the probability of the connection between the node j and any
node in the whole graph, kik j/2m represents the expected weight of the edges between
node i and j, and the difference between Mij and kik j/2m represents the final gain.

The pseudo-code process of calculating the collective influence weight matrix and
community division is shown in Algorithm 1.

Secondly, design a supervised random walk strategy, the context scope of node walking
is limited to the bounds of the community subgraph. At the same time, the edge with a large
weight is preferentially selected in the random walk according to the collective influence
of all edges obtained from Equation (7) when selecting the next hop. The Equation (11)
represents the probability of walking from node i to the neighbor node j. Different from
Deepwalk and node2vec, next hop strategy gives priority to the connected edges. For the
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random walk path from node i to node j, it is preferred to walk to the neighbor node when
the neighbor had a link with the node j, and other cases as same as node2vec method.

Algorithm 1 Create Community Graph with CI(gt, τ, α).

Input: Network snapshot gt =
{

Gt−τ+1, ..., Gt−1, Gt} ; Time step τ; Time attenuation
parameter α;

1: for j = 1 to τ do
2: for nodei in Gj do
3: Establish the collective influence weight of all nodei according to Equation (5)
4: end for
5: Accumulate the vertex weight according to Equation (6)
6: end for
7: Construct the weight matrix according to Equation (7)
8: Remove the edge weight matrix of weak connection according to Equation (8)
9: Construct cumulative weight matrix according to (9)

10: Community subgraph Detect G∗ = Louvain(G, M)
Output: Community subgraph list G∗; Node Collective influence weight matrix CIv;

Edge Collective influence weight matrix CIe;

P(i|j) =
{ CI(i,j)

∑z CI(i,z) if i, j ∈ Ck, k = 1, 2, . . .

0 else
(11)

where z represents all adjacent nodes of node i in its community, Ck represents the k-th
community. Two nodes in the network belong to the same community, and the greater the
degree of association between them, the greater the probability of biased random walk
between them.

After obtaining the random walk sequence of each node, the node sequence can be
input into the classical Skip-gram model to learn the representation vector of the node.
Skip-gram is a natural language processing (NLP) model, which is used to maximize the
co-occurrence probability between words in the window. It can predict the context node
when the current node is known, that is, input the walking information of one node and
output the representation vector of multiple nodes. In this section, the Skip-gram model is
used to set the following objective functions combined with the divided subgraphs of each
community to increase the co-occurrence probability:

ς = max
θ

∑
i∈V

log P(Γ(i)|i; θ, C ) (12)

where i, Γ(i), C, θ represents the input node information, neighbor set of input node,
community information, model parameters, respectively. θ is composed of two matrices u
and v, and u is the context matrix and v is the node characteristic matrix. The optimal u and
v are finally obtained through iterative training. P(Γ(i)|i; θ, C ) can be also expressed as:

P(Γ(i)|i; θ, C ) = ∏
j∈Γ(i)

p(j|i; θ , C) (13)

where p(j|i; θ , C) represents the probability that neighbor node j exists in the walking
sequence. Finally, the output result is optimized by so f tmax function, so that:

p(j|i; θ , C) =
euj ˙evi

∑
z∈V

euz ˙evi
(14)

where uj is the j-th row of u representing the context vector of neighbor node j, and vi is
the i-th row of v to be regarded as the representation vector of seed node i. z represents
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other community nodes except the current context node. The conditional probability result
of Equation (14) can be obtained by so f tmax on the inner product of the two vectors.

In order to improve the computational efficiency, the negative sampling method is
used to optimize the model. The probability that a node is selected as a negative sample
can be obtained from the degree distribution of the node, which can be expressed as follow
according to Reference [25]:

P(i) =
f (i)

3
4

∑K
j=1 (j)

3
4

(15)

where K is the number of negative samples, f (i) is the collective influence weight of node i.
Therefore, based on the improved Skip-gram model and negative sampling method, the
objective function of the algorithm can be updated as:

O(X) = log δ(uj · vi)−
neg

∑
k=1

δ(uk · vi) (16)

where δ(x) = 1/(1 + exp(−x)) is the sigmoid function, uj represents the neighbor node
vector information sampled in the community, uk represents the negative sample informa-
tion in the community.

The more similar the two node vectors are, the greater the result of point multiplication
as well as the probability value obtained after normalization. The normalized probability
value of point multiplication can be used to represent the similarity degree of edges. The
similarity index SCom based on community-biased embedding representation is defined
as Equation (17), in which Xcom_emb represents the embedded representation vector of all
nodes after community division, biased walk, and Skip-gram learning.

SCom =

{
Xcom_emb · (Xcom_emb)T if i 6= j
0 otherwise

(17)

The pseudo-code of computing the embedded representation learning process based
on the community-biased random walk is shown in Algorithm 2.

Algorithm 2 Sub Graph RW Skipgram(gt, τ, w, n, d, l).

Input: Time step τ; Dimensions d; Walk length l; Num walks n; Window size w; Network
snapshot gt =

{
Gt−τ+1, ..., Gt−1, Gt} ;

1: Initialize vector matrix X
2: G∗, CIv, CIe = CreateCommunityGraphWithCI(g, T, α)
3: for com to G∗ do
4: for i = 1 to n do
5: for vi ∈ com do
6: Calculate the probability transfer matrix P according to Equation (13)
7: walks = BiasedRandomwalk(com, vi, d, l, P)
8: X = Skipgram(X, w, walks)
9: end for

10: end for
11: end for
12:
13: Calculate SCom according to Equation (17)
Output: Node Vector representation matrix X ∈ RV×d; Similarity index based on commu-

nity biased embedding representation SCom;

3.3. Similarity Index Based on Multi Feature Fusion

The node centrality index reflects the node importance in networks. Reference [26]
makes effective use of the network structure information and proposes the similarity index
fusing community and centrality index. Reference [27] proposes a subgraph similarity fea-
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ture sequence integrating multiple local similarity indexes and weights. Inspired by these
works, the node collective influence weight obtained by Equation (6) and the node sub-
graph centrality feature are fused with the Xccc_emb representation vector in Equation (17)
to obtain the new node representation vector, and then the similarity index SCCC_emb of
multi-feature vector fusion is calculated by cosine similarity.

The degree centrality feature is calculated only within the community to which the
node belongs. As shown in Equation (18). α represents the exponential attenuation parame-
ter. ki represents the degree of node i. n represents the number of all nodes in the network.
C represents the community to which node i belongs.

DC(i) =
T

∑
t=T−p

αt−T · ki
n− 1

| ki = Γ(i) and i, Γ(i) ∈ C (18)

The node betweenness centrality is calculated as Equation (19). α represents the
exponential attenuation parameter. σst represents the number of shortest paths of s → t.
σst(i) represents the number of shortest paths of s → t passing through node i, and C
represents the community to which nodes s, i, j belong.

BC(i) =
T

∑
t=T−p

αt−T · ∑
s 6=t 6=i∈V

σst(i)
σst

| s, i, t ∈ C (19)

The node closeness is calculated as Equation (20). α represents the exponential attenu-
ation parameter, n represents the number of all nodes in the network, d(i, j) is the average
distance between node i and j, and C represents the community to which nodes i, j belong.

CC(i) =
T

∑
t=T−p

αt−T · n− 1
n−1
∑

j−1
d(i, j)

| i, j ∈ C (20)

Afterward, the new node representation vector obtained by multi feature fusion is
shown in Equation (21), and the features are directly connected with each other to form the
new vector.

Xccc_emb = [DC : BC : CC : CI, Xcom_emb] (21)

Cosine similarity measures the similarity of two vectors by calculating the cosine value
of the angle between two vectors. For d-dimensional vectors A and B:

SCCC = cosine(Xccc_emb,Xccc_emb)

cosine(A, B) = ∑n
1 (Ai×Bi)√

∑n
1 A2

i ×
√

∑n
1 B2

i

(22)

The range of cosine similarity is between [−1, 1]. The larger the value which represents
the high similarity, the smaller the angle between the two vectors. The smaller the value
which represents the low similarity, the greater the angle between the two vectors.

The pseudo-code of the temporal link prediction method based on multi-feature fusion
embedded representation is shown in Algorithm 3.

In Algorithm 3, the model estimation in step 5 requires time depending on the Louvain
method, which is a fast algorithm, and most of the computational time is exploited by step
6, which is determined by the efficiency of step 7 and step 8 of Algorithm 2. For the random
walk, the time complexity is O(ln|V|+ 2|E|), where n is walk num, l is walk length. For
the skip-gram, the time complexity is O(|V| · |V|), and it can be optimized to O(2dw|V|),
where d is dimensions and w is the window size. Therefore, the time complexity of the
proposed method is O((ln|V|+ 2|E|) · (dw|V|)), that is O(lndw|V|2) finally.



Entropy 2022, 24, 296 11 of 18

Algorithm 3 Multi f eature predict(G, size).

Input: Network snapshot G =
{

G1, G2, ..., Gt−1, Gt} ; Train window size size; Window size
w; Num walks n; Dimensions d; Walk length l;

1: Initialize score matrix list Score_auc
2: Initialize vector matrix X_CCC
3: for τ in [size, G.len− 1] do
4: Construct the train snapshots list gt = G(τ)
5: G∗, CIv, CIe = CreateCommunityGraphWithCI(gt, τ, α)
6: X, ... = SubGraphRWSkipgram(G∗, w, n, d, l)
7: Calculate DC, BC, CC according to Equation (18) ∼ Equation (20)
8: X_CCC = Concat(DC, BC, CC, CIv, X) according to Equation (21)
9: Calculate SCCC according to Equation (22)

10: auc = evaluate(Gτ+1, SCCC)
11: Score_auc.append(auc)
12: end for
13: mean_auc = mean(Score_auc)
Output: Average AUC result mean_auc;

4. Experiment
4.1. Datasets

In this paper, nine communication network data sets are used to evaluate the perfor-
mance of the algorithm. Email [28] is generated from the email data of a large European
research institution. Enron [29] is composed of email data sent between Enron employees.
Facebook [30] contains the exchange records of Facebook users leaving messages on another
user’s wall. DNC [31] is an email exchange network collected by the Democratic National
Committee in the event of email leakage. Man [31] is the mail record of employees in a
manufacturing factory. UCI [32] is an online social network composed of text messages
transmitted between students at the University of California, Irvine. LEM [33] is an in-
teractive network collected by the Kansas event data system based on folders containing
WEIS coded events, covering events from April 1979 to June 2004. BIT [32] is a record of
reputation scores among members in the Bitcoin OTC trading platform. The SXA2Q [34]
is a record of interactions on the stack exchange website Ask Ubuntu. Basic characteristic
parameters of data sets are shown in Table 1.

Table 1. Basic characteristic parameters of dataset.

Dataset Email Enron Facebook DNC MAN UCI LEM BIT SXA2Q

Node number 1005 87,273 60,290 2029 167 1899 485 5881 137,517
Edge number 332,334 1,048,576 838,090 39,264 82,927 59,835 196,364 35,592 280,102

Start date October
2003

1 January
2001

November
2006

23 April
2016

January
2010

15 April
2004 April 1979 9 November

2010

29
September

2009

End date May 2005 31 March
2002

January
2009 25 May 2016 October

2010
26 October

2004 June 2004 25 January
2016

6 March
2016

Total duration 526 days 454 days 103 weeks 33 days 268 days 195 days 303 months 1904 days 2351 days
Temporal period week week 2 weeks day week week half a year month month
Snapshot number 76 66 52 33 39 28 51 63 79

4.2. Baselines

The algorithms compared in this paper include methods based on moving average,
topology trend change, and node importance indices. The training and testing set sizes of
baseline methods are the same as the proposed method. Details are as follows:

• Moving Average [35]: this kind of method makes quantitative analysis by using
the similarity mean of relevant snapshots within the moving range, as shown in
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Formula (23), which is recorded as Average. If the moving range is only one window
before prediction, the model can be used as the nearest time algorithm, as shown
in Equation (24), which is recorded as Last. If the whole moments of the moving
range are regarded as a weighted static window, the model can be used as the nearest
neighbor algorithm of the iteration cycle, as shown in Equation (25), which is recorded
as Reduce.

_

S
Average

(T) =
1
m

T−1

∑
t=T−m−1

f2(A(t)) (23)

_

S
Last

(T) = f2(A(T − 1)) (24)

_

S
Reduce

(T) = f2(
T−1

∑
t=T−p+1

A(t)) (25)

• Node2vec [36]: this method uses the idea of word embedding, inputs the network
topology and outputs the representation vector of each node. Equation (26) is the
objective function, f (u) is the node mapping function, Ns(u) is the characteristic node
set of node u sampled by sampling strategy S. In this paper, we set the walking
parameters p = 1 and q = 2, and give priority to the breadth walking strategy.

max ∑
u∈V

[−logZu + ∑
ni∈Ns(u)

f (ni) · f (u)] (26)

• LINE [37]: this method uses the first-order information directly connected between
nodes and the second-order information of common neighbors to jointly design the
objective function, such as Equation (27), O1 and O2 are the first-order and second-
order objective function, respectively, wij is the edge weight. This paper uses the
second-order similarity method for calculation.

O1 = − ∑
(i,j)∈E

wij log p1(vi, vj)

O2 = − ∑
(i,j)∈E

wij log p2(vj|vi)
(27)

• DySAT [38]: this method combines the structural self-attention layer characteristics
and temporal self-attention layer characteristics of the network. The multi-head
attention mechanism is adopted to capture the evolution characteristics between
network snapshots. The obtained graph embedded representation vectors are used to
realize link prediction. Equation (28) is the loss function of the prediction model.

L =
T
∑

t=1
∑

v∈V
( ∑

u∈Nt
walk(v)

− log(σ(< et
u, et

v >)− wn · ∑
u′∈Pt

n(v)
log(1− σ(< et

u, et
v >))) (28)

• TSAM [39]: This method uses graph attention network to capture network motif
features, and gated recurrent units (GRU) are utilized to learn temporal variations in
the snapshot sequence. Both node-level self-attention and time-level self-attention
mechanisms are adopted in the model to accelerate the learning process and improve
the prediction performance. Equation (29) is the loss function of the prediction model.

Lt
(
θ; At

t−T , At+1
)
= ‖(St+1 −At+1)�B‖2

F +
λ

2
‖θ‖2

2 (29)

• EvolveGCN [40]: this method uses gated recurrent unit (GRU) or long short-term
memory network (LSTM) to adjust the parameters of graph convolutional network
(GCN) at each time step to capture the dynamic characteristics of graph sequence and
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then realize the prediction function. This paper uses LSTM to dynamically adjust the
network parameters.

H(l+1)
t = GCONV(At, H(l)

t , W(l)
t )

W(l)
t = GRU/LSTM(W(l)

t−1)

(30)

4.3. Results
4.3.1. Comparison of Link Prediction Accuracy under AUC Standard

In Experiment 1, set the sphere radius of collective influence ` = 3, that is, the points
on the boundary of the sphere with radius 3 are considered for calculation. Set the training
parameters sliding window lag = 1, time window T = 7, that is, using the network
data of 7 time steps before the prediction time for training. Set the temporal attenuation
coefficient of collective influence α = 0.9, and set the random walk parameters, including
the dimensions = 128, the walk-length = 80, the num-walks = 10, the window-size = 10, and
concatenate the node collective influence, the three centrality influence, and the walking
embedded vector to predict by using the similarity score of Equation (24), which is recorded
as TLP-CCC . The AUC performance comparison of the experimental results is shown in
Table 2, TLP-CCC method achieves the best prediction accuracy in all data sets.

Firstly, compared to the proposed method with the three CN-based moving average
temporal methods, namely Last, Average, and Reduce, it can be seen that the prediction
performance of Last is the worst, Average is better than Last and worse than Reduce, which
indicates that more topology information can improve the prediction accuracy. These three
methods perform well in MAN and LEM datasets, but are a little worse than TLP-CCC. For
the other seven datasets, the mean performance of TLP-CCC has been greatly improved,
which is about 39% higher than last, 23% higher than Average and 17% higher than Reduce.

Then, we compared the network representation learning methods of node2vec and
LINE. These two methods are not end-to-end learning, and the learning process of the node
vector is closely related to the random walk path. Useful information in local topology
cannot be accurately captured in many cases, and the prediction accuracy will fluctuate by
about 1%. TLP-CCC performs a little better in Enron and Facebook, about 2% higher than
node2vec and 3% than LINE. For the other seven datasets, the AUC value of TLP-CCC is
increased by 11∼49%.

Moreover, compared with the DySAT, TSAM, and EvolveGCN methods based on
graph neural network. The results show that the graph neural network methods use richer
data dimensions for training and establishes more hidden layer networks to represent the
topology, but the improvement in the actual prediction is limited. The accuracy of TLP-CCC
has slightly improved in MAN dataset and 7∼26% higher in the other eight datasets.

Table 2. Comparison results of prediction accuracy AUC. The proposed method achieves the best
prediction accuracy in nine data sets.

Dataset Email Enron Facebook DNC MAN UCI LEM BIT SXA2Q

Last 0.7535 0.6056 0.5158 0.7011 0.8415 0.5152 0.9021 0.5376 0.5340
Average 0.8793 0.7282 0.5350 0.8156 0.8964 0.5724 0.9520 0.5802 0.6604
Reduce 0.8954 0.7732 0.5522 0.8252 0.9025 0.6157 0.9530 0.6329 0.7593
node2vec 0.8384 0.8877 0.8049 0.8420 0.6028 0.5227 0.7444 0.7019 0.7981
LINE 0.8253 0.8784 0.7576 0.8624 0.6068 0.6507 0.7713 0.6266 0.7621
DySAT 0.8603 0.7885 0.7515 0.8376 0.9020 0.7187 0.8352 0.7173 0.8256
TSAM 0.8501 0.7945 0.7702 0.8462 0.8975 0.7230 0.8373 0.6534 0.7266
EvolveGCN 0.7503 0.6347 0.6752 0.8789 0.8016 0.6810 0.8969 0.7565 0.8098
TLP-CCC 0.9518 0.9077 0.8182 0.9120 0.9092 0.8471 0.9563 0.7765 0.8865

In a word, methods based on static indices moving average perform better in small
scale network, while methods based on graph neural network are relatively more adaptable
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for large scale complex network applications, and TLP-CCC is outperforming better in
nine datasets.

4.3.2. Sensitivity Test of Ball Radius Parameters

The reference [23] recommends setting a three-layer radius in the experiment of
connectivity optimization, we set the layer number of the collective influence method from
1 to 6, and observe the influence of the ball radius for the TLP-CCC AUC value. As shown
in Figure 6, in the five datasets of Enron, DNC, UCI, LEM, and SXA2Q, the AUC value
curve has the largest value when the radius is 1. With the increase of radius, the AUC
results show a small fluctuation trend. In BIT and Facebook, it can get the best AUC value
when the radius is 6, and in Email and MAN, the best AUC value when the radius is 3 or 4.
These results show that using the topology information of the nearest neighbor is the best
for the temporal prediction of the structure.
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Figure 6. Comparison results of different collective influence radius. (a) The optimal radius of the
Email data set is 3. (b) the optimal radius of the Enron data set is 1. (c) the optimal radius of the DNC
data set is 1. (d) the optimal radius of the MAN data set is 4. (e) the optimal radius of the UCI data
set is 1. (f) the optimal radius of the LEM data set is 1. (g) the optimal radius of the BIT data set is 6.
(h) the optimal radius of the SXA2Q data set is 1. (i) the optimal radius of the Facebook data set is 6.

To sum up, the layer number of the spherical radius has a little impact on TLP-
CCC, and the fluctuation range of accuracy is about 1%. In general, when the radius of
collective influence is large, the node-local topology information has certain limitations. The
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improvement effect of using only the information of collective influence on link prediction
is limited. According to the experimental results, it is recommended to set the ball radius
parameter to 1.

4.3.3. Sensitivity Test of Random Walk Parameter

The sensitivity of Skip-gram walk parameters is tested by observing the change of AUC
score when changing the size of vector dimension, random walk step, node walk times, and
walk window size. Figure 7 shows the score of link prediction using node representation
vector when different settings of random walk parameters of TLP-CCC. Figure 7a shows
the results of vector dimension parameters. With the increase of dimension parameters,
the AUC score fluctuates in a small range, and the optimal value is obtained when the
dimension is 32, 64, or 128, respectively. However, the change of dimension parameters has
little impact on the AUC score, and the fluctuation range is about 1%. Figure 7b shows the
results of the walking step parameter. With the increase of the parameter, the AUC score
also gradually increases in a small range. We can see that it has a great impact on the Email
and MAN datasets, which increases by about 3% when the step is 80 compared with 20,
and the change of the other 4 datasets does not exceed 1%. Figure 7c,d show the test results
of the changes of the walk number parameter and the walk window. With the increase of
the parameter, the AUC score changes slightly. Considering the computational complexity
and the experimental average effect, it is recommended to set the vector dimension greater
than 64, the walk step between 40 and 80, the walk times to be 5 and the walk window size
to be 10.

8 16 32 64 128

0.80

0.85

0.90

0.95

0 20 40 60 80

0.80

0.85

0.90

0.95

2 4 6 8 10

0.80

0.85

0.90

0.95

2 4 6 8 10

0.80

0.85

0.90

0.95

A
U
C

(a) dimensions (b) walk-length

A
U
C

(c) num-walks

A
U
C

 Email  Enron  DNC  MAN  UCI
 LEM    BIT    SXA2Q    Facebook

(d) window-size

 
A
U
C

Figure 7. Prediction results of different walking parameters. (a) Different dimensions for nine data sets.
(b) Different walk-length for nine data sets. (c) Different num-walks for nine data sets. (d) Different
window-size for nine data sets.
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4.3.4. Sensitivity Test of Training Window Size

For different data sets, with the training snapshot window size set to 1, 3, 5, 7, 9, and 11,
respectively, the experimental results are shown as Figure 8. When the train window size
becomes larger, TLP-CCC changes linearly in most datasets except Email, MAN, and UCI,
and the optimal value is obtained when the window size is 7 or 9 in the other 3 datasets,
which indicates that the topology information of the snapshot will have a certain negative
impact on the link prediction result when the initial time is far from the prediction time.
Generally speaking, the larger the training window, the better the prediction accuracy in
most cases, but there are also fluctuations with the change of the window. Therefore, it is
necessary to select the appropriate window size for different real networks.

0 1 2 3 4 5 6 7 8 9 10 11 12
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0.90
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 Email
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 DNC
 MAN
 UCI
 LEM
 BIT
 SXA2Q
 Facebook

Figure 8. AUC performance results of different train window size.

5. Conclusions

Combining with sociological theory, this paper proposes three novel similarity indices,
including SCI based on collective influence, SCom based on community biased walk, and
SCCC based on multi-feature fusion. The novel method TLP-CCC uses collective influence,
degree centrality, betweenness centrality, closeness, and representation learning within
the community, which can make more effective use of network subgraph structure in-
formation and dynamic network evolution information. By comparing several temporal
link prediction methods including moving average, network representation learning, and
graph neural network, the experimental results show that our proposed method achieved
better prediction accuracy and robustness in nine datasets. This paper does not analyze
the impact of the interaction between different subgraphs on the prediction results. The
follow-up research problem in the future is how to characterize the different roles of nodes
in subgraphs and the influence between subgraphs.
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