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Abstract: Redundant manipulators are widely used in fields such as human-robot collaboration due 

to their good flexibility. To ensure efficiency and safety, the manipulator is required to avoid obsta-

cles while tracking a desired trajectory in many tasks. Conventional methods for obstacle avoidance 

of redundant manipulators may encounter joint singularity or exceed joint position limits while 

tracking the desired trajectory. By integrating deep reinforcement learning into the gradient projec-

tion method, a reactive obstacle avoidance method for redundant manipulators is proposed. We 

establish a general DRL framework for obstacle avoidance, and then a reinforcement learning agent 

is applied to learn motion in the null space of the redundant manipulator Jacobian matrix. The re-

ward function of reinforcement learning is redesigned to handle multiple constraints automatically. 

Specifically, the manipulability index is introduced into the reward function, and thus the manipu-

lator can maintain high manipulability to avoid joint singularity while executing tasks. To show the 

effectiveness of the proposed method, the simulation of 4 degrees of planar manipulator freedom is 

given. Compared with the gradient projection method, the proposed method outperforms in a suc-

cess rate of obstacles avoidance, average manipulability, and time efficiency. 

Keywords: redundant manipulator; obstacle avoidance; reinforcement learning; null space 

 

1. Introduction 

Compared with traditional robotic manipulators, redundant manipulators have 

more degrees of freedom (DOF) in joint space than task space, which possesses better 

flexibility for complicated tasks. Therefore, redundant manipulators are widely used in 

fields such as human-robot collaboration [1], medical surgery [2], and space exploration 

[3]. Redundant manipulators often work in dynamic environments and often even share 

workspaces with people. The manipulator may collide with people or other obstacles dur-

ing the movement, which requires the capability of real-time obstacle avoidance. In many 

tasks, such as polishing and welding, the manipulator is obliged to track the desired tra-

jectory under complex physical constraints. As a result, manipulators need to achieve real-

time obstacle avoidance while completing given end-effector motion tasks. 

Real-time or reactive obstacle avoidance of redundant manipulators has been exten-

sively investigated. However, most studies, such as the artificial potential field method 

[4,5], mainly focused on obstacle avoidance in point-to-point tasks, where the end-effector 

motion is not specified. To meet the end-effector trajectory constraint while avoiding ob-

stacles, Jacobian pseudoinverse-based methods [6] have been introduced, in which the 

gradient projection method (GPM) [7] is the most popularly adopted. The motion of a 

redundant manipulator is usually divided into end-effector motion and self-motion. The 

gradient projection method projects the optimization function of the self-motion gradient 

to the null space of the Jacobian matrix, which can adjust the configuration to avoid ob-

stacles without affecting the end-effector motion. The optimization function usually 
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consists of distance in different forms, such as distance from the key point to obstacles [8] 

and repulsive potential field generated by obstacles [9]. However, the GPM may lead to 

joint singularity or joint position limits while avoiding obstacles; thus the manipulator 

will fail to track the desired trajectory. The damped least-squares method (DLS) [10] and 

weighted least-norm methods (WLN) [11] are introduced to solve the problem. Combined 

with DSL and WLN, Zhang [12] presented an improved weighted gradient projection 

method (IWGPM), in which the manipulator can handle joint singularity and joint posi-

tion limits, but it increases the tracking error. To coordinate end-effector motion and self-

motion, Liu [13] proposed a weighted additional deviation velocity based on the gradient 

project method (GP-WADV). However, coping with multiple constraints simultaneously 

is still hard for these methods. 

Recently, many studies have applied learning-based methods to obstacle avoidance 

path planning under multiple constraints. Qureshi [14] proposed a motion planning net-

work using deep learning to generate a collision-free path, but it cannot satisfy real-time 

obstacle avoidance. Xu [15] formulated the obstacle avoidance problem as quadratic pro-

gramming (QP), then a deep recurrent neural network is established to solve the QP prob-

lem online. Apart from deep learning (DL) methods, deep reinforcement learning (DRL) 

is considered to be very promising for path planning due to its excellent learning ability. 

Sangiovanni [16] proposed a real-time collision avoidance approach based on Normalized 

Advantage Function for safe human-robot coexistence. However, redundancy is not con-

sidered. Kumar [17] presented a method that used the Proximal Policy Optimization al-

gorithm to directly map task-space goals into joint-space commands. The method can han-

dle redundancy and joint limits automatically without manually specifying constraints, 

but the end-effector tracking process is not considered. Hua [18] proposed a method to 

avoid obstacles for redundant manipulators based on the Deep Deterministic Policy Gra-

dient algorithm, but it is mainly applied in a narrow duct. However, learning-based meth-

ods usually neglect the characteristics of redundant manipulators and can only be applied 

to point-to-point collision-free path planning. 

In summary, the existing methods cannot completely satisfy multiple constraints, 

such as obstacle avoidance and singularity avoidance in trajectory tracking tasks. Moti-

vated by GPM and DRL, we propose a reactive obstacle avoidance method for redundant 

manipulators. The method leverages the null space of GPM and the learning ability of 

DRL, which is very suitable for obstacle avoidance of redundant manipulators under mul-

tiple constraints. The major contributions of this paper are as follows: 

(1) A general DRL framework for obstacle avoidance of redundant manipulators is 

established, in which multiple constraints can be integrated easily. 

(2) An improved representation of the state is given in obstacle avoidance. The 

dimension of state space is independent of the distribution of obstacles. Therefore, 

the learned obstacle avoidance strategy has a good generalization. 

(3) The self-motion of redundant manipulators is utilized to reduce the action space from 

the entire joint space to the null space of the Jacobian matrix, which greatly improves 

the learning efficiency of DRL. 

(4) A novel reward function of reinforcement learning is designed to cover multiple 

constraints. The manipulability of a manipulator is introduced, so the manipulator 

can learn to avoid obstacles while keeping away from the joint singularity. 

The rest of this paper is organized as follows: Section 2 defines the obstacle avoidance 

problem of redundant manipulators. Section 3 describes our proposed reactive obstacle 

avoidance method. Section 4 presents the experiments and results. Section 5 summarizes 

the research work. 

2. Problem Setup 

This paper focuses on the situation in which a redundant manipulator works in a 

populated industrial environment, possibly invaded by obstacles. A collision could occur 
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while the robot is reaching its target or executing a specific task. The manipulator aims to 

avoid surrounding obstacles while tracking the desired trajectory. 

We assume that obstacles will not appear on the desired trajectory of the manipula-

tor; otherwise, the manipulator needs to stop or re-specify the desired motion of the end-

effector. Multiple obstacles may appear in the workspace; the manipulator only needs to 

react when the distance between the manipulator and the obstacle is less than a specified 

safety distance, which can be called reactive obstacle avoidance. As shown in Figure 1, the 

manipulator only needs to avoid Obstacle 2 when tracking the desired trajectory. 

Task Path

Obstacle2

Obstacle1
Obstacle3

Safe Distance

 

Figure 1. Obstacle avoidance for a redundant manipulator. 

When the dimension n in the joint space of the manipulator is greater than the di-

mension m in task space, the manipulator has r = n − m degrees of redundancy for the task. 

The relationship between the movement of the joint space and the task space is given in 

Equation (1): 

x Jq=  (1) 

where mx R  is the end-effector velocity in task space, nq R   is the joint velocity in 

joint space, and m nJ R   is the Jacobian matrix. 

The inverse solution of redundant manipulators is not unique, which means that in-

finite joint configurations can reach the same end-effector pose. According to the GPM, 

the inverse solution can be expressed as Equation (2): 

† †( )q J x I J J φ= + −  (2) 

where † ×n mJ R  is the Moore–Penrose pseudo-inverse, † n nI J J R −   represents the null 

space of the Jacobian matrix, and nφ R  is an arbitrary joint velocity vector. The first 

item is the minimum norm solution, which is used to track the end-effector trajectory. The 

second item is the homogeneous general solution. It refers to self-motion, which can meet 

other requirements, such as obstacle avoidance. Obviously, the first item can be easily 

obtained based on the desired end-effector motion. This paper mainly studies the optimi-

zation for the second item. 

3. Method 

According to Equation (2), the gradient projection method realizes obstacle avoid-

ance through defining φ  in various forms. The manipulator may be singular or exceed 

joint position limits while avoiding obstacles. We propose a DRL-based method to learn 

φ  by a neural network, which can handle multiple constraints automatically. 
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3.1. Reinforcement Learning 

Reinforcement learning (RL) refers to the idea that the agent optimizes its action 

through interaction with the environment. The RL framework is shown in Figure 2. 

Agent

Environment

ActionState Reward
tr ta

+1tr

1ts +

ts

 

Figure 2. Reinforcement learning framework. 

At each time step t, the agent is in the state 
t

s S , then takes an action 
t

a A  ac-

cording to a policy ( )π a s  mapping from state to action. Each action affects the environ-

ment and hence changes its state to 
1t

s
+

. The agent receives a reward 
1t

r R
+
  at time step 

t+1. The goal of the agent is to find the optimal policy *π  that maximizes the total ex-

pected reward 
t

G  with a discount factor γ . The expression of 
t

G  and *π  are given in 

Equations (3) and (4), respectively. 

2

1 2 3 1
0

... k

t t t t t k
k

G r γr γ r γ r


+ + + + +
=

= + + + =  (3) 

*

1π
0

π arg max k

t k
k

γ r


+ +
=

 
=  

 
  (4) 

To find the optimal policy, there are mainly three types of methods: valued-based, 

policy-based, and actor-critic methods. In value-based methods, the optimal value func-

tion is first estimated, and then the optimal policy is derived from the value function. A 

typical method is Deep Q-Network (DQN) [19], which uses a neural network to estimate 

the optimal value function. In policy-based methods, the optimal policy is estimated di-

rectly from the experiences of the agent. A typical method is REINFORCE [20], which uses 

the policy gradient to find the optimal policy. The actor-critic methods combine the char-

acteristics of two types of methods, using the actor for policy estimation and the critic for 

value function estimation. Typical methods are the Deep Deterministic Policy Gradient 

(DDPG) [21], Trust Region Policy Optimization (TRPO) [22], Proximal Policy Optimiza-

tion (PPO) [23], Asynchronous Advantage Actor-Critic (A3C) [24], and Soft Actor-Critic 

(SAC) [25]. In the field of robotics, the state space and action space are generally continu-

ous, and actor-critic methods are widely used. 

For reinforcement learning problems, the design of state, action, and reward func-

tions are very important, which directly affect the training effect. 

3.2. State Definition 

For obstacle avoidance of the manipulator, the state should include the position in-

formation of the manipulator and obstacles. Intuitive design for the state is { , }
o

s q x= , 

where nq R  is the joint angles of the manipulator and m

o
x R  is the position of the 

obstacle. The definition of the state remains as a disadvantage because it needs to expand 

the dimension when multiple obstacles exist. Therefore, the dimension of state space will 

be relevant to the number of obstacles, leading the neural network trained to have no 

generalization. 
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To solve the problem, we convert the position of obstacles to the distance vector from 

each link to its closest obstacle. Specifically, let  be the set of points on the surface of 

all obstacles, and let 
i
 be the set of points of the i th link. Let 

i
o   and 

i i
l   be the 

closest points in the two sets, as given in Equation (5). 

min min
i

i i o l
o l o l

 
− = −  (5) 

The vector for each link connecting these closest points is defined as 
i i i

d o l= − . The 

dimension of 
i

d  is 2 for planar manipulators or 3 for spatial manipulators. The closest 

distance vector for a 3-DOF planar manipulator is shown in Figure 3. 

1d

2d

3d
1d

2d

3d

 

Figure 3. The closet distance vector for each link. 

Based on the closest distance vector, we redefine the state of the obstacle avoidance 

as follows. 

1 2
{ , , ,..., }

n
s q d d d=  (6) 

The state definition realizes the general position representation of multiple obstacles. 

When the number or distribution of obstacles in the environment changes, the state di-

mension remains unchanged. In addition, because the distance between each link and its 

closest obstacle is recorded, it is helpful for the neural network to learn the coordination 

for obstacle avoidance among the links of the manipulator. 

3.3. Action Definition 

The action definition cannot directly adopt the joint velocity of the configuration 

space, which fails to satisfy the self-motion constraint. According to Equation (2), the ac-

tion is naturally defined in Equation (7). 

{ }a φ=  (7) 

Combing the action with the null space of the Jacobian matrix, the manipulator can 

avoid obstacles by adjusting the joint angle while keeping the end-effector position un-

changed. 

3.4. Reward Function Design 

The design for the reward function is indeed important for reinforcement learning, 

and the reward function should guide the manipulator to learn the optimal strategy. In 

addition to avoiding obstacles, the manipulator should also consider other constraints, 

such as joint singularity avoidance and joint position limits. The reward function contains 

three items. 

The obstacle avoidance item is defined as Equation (8). When the closest distance 

between the manipulator and obstacles is less than the safe distance 
s

d , a negative reward 

will be generated. 
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1

min( 1,0)
n

o i s
i

r d d
=

= −  (8) 

The joint motion item is defined as Equation (9). The joint position increment of the 

manipulator is required to be as small as possible. 

( )†

a
r I J J a= − −  (9) 

The joint singularity item is defined as Equation (10). Manipulability [26], introduced 

by Yoshikawa, is a common index to measure singularity. A higher manipulability is good 

for tracking variable trajectories. 

det( )T

m
r JJ=  (10) 

In summary, the reward function is designed as Equation (11). 

1 2 3o a m
r λ r λ r λ r= + +  (11) 

where 
1 2 3
, ,λ λ λ  represent the weight of each item, respectively. The corresponding val-

ues are given in Section 4. It should be noticed that if a collision occurs or any joint exceeds 

its position limits, then a negative reward 10r = −  will be generated. 

3.5. Learning for Reactive Obstacles Avoidance 

Similar to the RL framework in Section 3.1, the reactive obstacle avoidance frame-

work is divided into two parts: agent and environment. The difference lies in where the 

environment part has a null space module for reactive obstacle avoidance, as shown in 

Figure 4. 

Critic Optimizer

Update φ Q Gradient

Soft Update

Online Q 
Network

Target Q 
Network

Policy Network

Actor Optimizer

Update θ Policy Gradient

Soft Actor Critic

Environment

Obstacle

Auto α Optimizer

Update α Policy Gradient

q x

( )N J

Target Entropy

Null Space

Action State Reward

dim( )A= −

Workspace

Nq

 

Figure 4. Framework of reactive obstacle avoidance. 
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3.5.1. SAC Algorithm 

To avoid obstacles and maintain high manipulability during the movement, suffi-

cient exploration in the state space is encouraged under multiple constraints. SAC, one of 

the state-of-the-art deep reinforcement learning algorithms, is widely used for its good 

exploration. Therefore, SAC is very suitable for obstacle avoidance of redundant manip-

ulators. 

Instead of maximizing the discounted cumulative reward, SAC introduces the en-

tropy of the policy, as shown in Equation (12). 

( )( )*

π
π arg max ( , ) π ( )

θ

t

t t θ t
t

γ r s a α s
 

= +   
 
  (12) 

where θ  represents parameters of the policy, α  is the temperature parameter for regu-

lating the entropy term against the reward, and  denotes the entropy of the policy. 

In SAC, the Q function ( , )Q s a


 and policy π
θ

 are approximated by deep neural 

networks, which can be learned with the stochastic gradient descent method. The Q func-

tion can be learned by minimizing the soft Bellman residual, as shown in Equation (13). 

( )
1

2

1
( ) ( , ) ( , ) [ ( )]

tQ t t t t s t
J Q s a r s a V s

+ +

 
= − −

  
 

   (13) 

where 
π

( ) [ ( , ) logπ ( | )]V s Q s a a s= −
  

 , and Q


 is a target Q network, whose param-

eter   is obtained as an exponentially moving average of  . Moreover, the policy π


 

can be learned by minimizing the expected KL-divergence, as shown in Equation (14). 

π ~ ~π
( ) [ logπ ( ) ( , )]

s a
J α a s Q s a =  −

   
  (14) 

where  is the replay buffer for storing experiences of the agent. 

Finally, SAC also provides an automatic way to update the temperature parameter 

α , as shown in Equation (15). 

~π
( ) [ logπ ( ) ]

a
J α α a s α= −  −

 
 (15) 

where  is a hyperparameter interpreted as the target entropy. In continuous action 

tasks, such as most robotic tasks,  is usually defined as the negative of the action di-

mension. 

The SAC algorithm is summarized in Algorithm 1. 

Algorithm 1 Soft Actor-Critic (SAC) 

1. Initialize policy network θ , Q network 
1 2
,  , target Q network 

1 1 2 2
,= =     

2. Initialize replay buffer =   

3. for each epoch do 

4.     for each environment step do 

5.         Sample 
t

a  from π ( )
θ

s  , collect 
1

,
t t

r s
+

 

6.         
1

{ , , , }
t t t t

s a r s
+

=  

7.     end for 

8.     for each gradient step do 

9.         ( )
i i Q Q i

λ J= −    , for {1,2}i  

10.         ( )
π π

θ θ λ J θ= −   

11.         ( )
α

α α λ J α= −   

12.         (1 )
i i i
= − +    , for {1,2}i  
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13.     end for 

14. end for 

3.5.2. RL-Based Reactive Obstacle Avoidance Algorithm for Redundant Manipulators 

The redundant manipulator senses the position of obstacles in real-time and moves 

in the environment. Then the reward is calculated according to Equation (11) and is trans-

mitted to the SAC agent. The actor and critic networks update the parameters from the 

experiences of the agent. The final action φ  is output through the actor network. Com-

bined with the null space of the Jacobian matrix, the joint velocity of the self-motion can 

be obtained as Equation (16). 

( )†

N
q I J J φ= −  (16) 

According to the expected motion 
D

x   of the manipulator end-effector, the mini-

mum norm solution is obtained as Equation (17). 

†

D D
q J x=  (17) 

Finally, the joint velocity of the manipulator can be expressed as Equation (18): 

D N
q q q= +  (18) 

The joint angle updates through time integration, and then a new state can be gener-

ated. The process is repeated until the task of the manipulator is finished. 

The RL-based reactive obstacle avoidance algorithm for redundant manipulators is 

summarized in Algorithm 2. 

Algorithm 2 Proposed Obstacle Avoidance Algorithm for Redundant Manipulators 

1. Obtain state 
1 2

{ , , ,..., }
n

s q d d d=  

2. Calculate the minimum distance min 1 2 min
{ , ,..., }

n
d d d d=  

3. while 
min s

d d , do 

4.     . ( )φ SAC Actor s=  

5.     ( )† †

D
q J x I J J φ= + −  

6.      if q  is out of joint velocity range, then 

7.          q scaled q=   

8.      end if 

9.     q q q t= +   

10.     
1 2

{ , , ,..., }
n

s q d d d=  

11.     min 1 2 min
{ , ,..., }

n
d d d d=  

12. end while 

3.5.3. Training Strategy 

An intuitive training strategy is to randomly generate multiple obstacles in the envi-

ronment and let the manipulator interact with the environment to learn to avoid obstacles, 

as shown in Figure 5a. However, this method will generate many cases where obstacles 

are far from the safe distance. Thus, the manipulator does not need to respond, leading to 

useless learning. To improve the learning efficiency of obstacle avoidance, obstacles can 

be generated directly near the links of the manipulator; that is, in the initial state, obstacles 

have invaded the safe distance of the manipulator. In addition, considering that in most 
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cases there is only one obstacle in the safety distance of the manipulator at a moment, only 

one obstacle is generated during training, as shown in Figure 5b. 

  

(a) (b) 

Figure 5. Methods to generate obstacles: (a) Obstacles randomly generated in the workspace; (b) An 

obstacle generated in the safe distance. 

When the end-effector of the manipulator is fixed, there are infinite distributions of 

obstacles. Except for learning obstacle avoidance in this situation, the RL agent should 

adapt to changes in the end-effector position. Learning varying obstacle distribution and 

end-effector positions simultaneously is very difficult. Therefore, we design a two-stage 

learning strategy motivated by curriculum learning [27]. In Stage I, the manipulator starts 

from a fixed configuration and learns to avoid obstacles in null space. In Stage II, at the 

beginning of each training, the end-effector of the manipulator will move to a new random 

position nearby. After the training of Stage I is completed, its network parameters are used 

to initialize the network of Stage II. 

4. Results and Discussion 

To evaluate the performance of our method and the gradient projection method, two 

scenarios have been carried out. All simulations were run on a computer with a 3.5 GHz 

Intel(R) Xeon(R) E5-1620 v3 processor and 16 GB RAM. 

4.1. System Description 

The simulation environment is built on OpenAI gym [28]. It contains a 4-DOF planar 

redundant manipulator and random obstacles. Each link length of the manipulator is 1 m. 

The ranges of joint position and joint velocity are listed in Table 1. 

Table 1. Joint range of the manipulator. 

Joint Range q
min

 (°) q
max

 (°) q
min

 (°/s) q
max

 (°/s) 

joint 1 −120 120 −20 20 

joint 2 −160 160 −20 20 

joint 3 −160 160 −20 20 

joint 4 −160 160 −20 20 

The manipulator executes tasks in the blue workspace (1.2 m × 1.6 m). The task only 

constraints the end-effector position, so there are two redundant joints. When the manip-

ulator is tracking the desired trajectory, some obstacles in the environment may invade 

the safe distance (0.2 m) of the manipulator. The shape of the obstacle can vary. Consid-

ering that the distance between the manipulator link and its closest obstacle has been cal-

culated, the obstacle can be simplified as a circle. The 4-DOF planar manipulator is shown 

in Figure 6. 
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Obstacles

Desired Path Point

Safe distance

Nearest distance

Workspace

 

Figure 6. The 4-DOF planar redundant manipulator. 

4.2. Parameters Selection 

The training of the SAC algorithm mainly has two types of parameters: network 

structure parameters and training process parameters. The specific network of the SAC 

algorithm is shown in Figure 7. The entire network is composed of fully connected layers, 

and ReLU is used for the activation function. 

State

Fc:256

ReLU

Fc:256

ReLU

Std devMean

Gaussian

Tanh

State Action

Stack

Fc:256

ReLU

Fc:256

ReLU

Fc:1

Actor Network Critic Network  

Figure 7. Network structure of the SAC. 

The main parameters of the training process are shown in Table 2. The training pro-

cess only uses the CPU. 

Table 2. Parameters of training. 

Parameter Value 

Optimizer Adam 

Learning rate 0.001 

Discount factor 0.99 

Polyak update factor 0.995 

Entropy target −4 

Replay buffer size 1 × 105 

Mini-batch size 100 
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Max episode length 400 

1
λ  1 

2
λ  0.2 

3
λ  0.05 

4.3. Training 

According to the training strategy in Section 3.5.3, the training is divided into two 

stages, as shown in Figure 8. In Stage I, the position of the end-effector is fixed. In Stage 

II, at the beginning of each training episode, the end-effector of the manipulator will per-

form a wandering with a radius of R = 0.1 m. 

  

(a) (b) 

Figure 8. (a) Training in Stage I; (b) Training in Stage II. 

At the beginning of each training episode, an obstacle is generated around the link of 

the manipulator. The manipulator continuously learns to avoid obstacles during the in-

teraction with the environment until the closest distance between the manipulator and the 

obstacle is out of the safe distance or the interaction number exceeds 400. A total of 50 

epochs are trained, and each epoch contains 500 environment interactions. The green 

curve in Figure 9 shows the total average return of evaluation during training for SAC. 

We use five different random seeds, with each averaging 10 evaluation episodes after 

every epoch. The solid curve corresponds to the mean and the shaded region to the mini-

mum and maximum returns over the five trials. After 20,000 steps of environment inter-

action (~40 min), it converges and has a good performance. 

 

Figure 9. Learning curve of episode reward. 
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We also trained a SAC agent that the action is directly defined as joint velocity in joint 

space. Because there is no null space constraint, the end-effector of the manipulator cannot 

remain unchanged while avoiding obstacles. As shown in Figure 9, the training curve in 

blue cannot even converge, which implies the importance of the action definition. 

4.4. Simulation and Discussion 

To validate our method, two different scenarios have been carried out in simulation 

with the same 4-DOF planar manipulator. We compared the performance of our method 

in these scenarios to the GPM [8]. 

Scenario I: A single obstacle invades the safe distance of the manipulator. This is the 

most common scenario in which a worker usually approaches the manipulator. 

Scenario II: Two obstacles invade the safe distance of the manipulator simultane-

ously. This scenario is more challenging, and the manipulator may be too constrained to 

avoid obstacles. 

It should be noticed that many obstacles may appear in the workspace, but the ma-

nipulator only needs to react to the obstacles that invade the safe distance. 

• Case study in Scenario I 

The experiments of Cases A and B are aimed at verifying the obstacle avoidance ca-

pability when a single obstacle invades the safe distance of the manipulator. 

(1) Case A: The manipulator is required to keep the end-effector stationary. 

As shown in Figure 10a,b, the two methods start from the same initial configuration 

[45 , 90 ,0 ,90 ]T

ini
q =  −     and eventually succeed in avoiding obstacles. The red lines indi-

cate the initial configuration, while the blue lines represent the final configuration. The 

color of the links changed from light to dark shows the whole process of avoiding obsta-

cles. The blue dotted line in Figure 10e represents the safe distance. According to Figure 

10e,f, our method avoids the obstacle in fewer steps and ends with a higher manipulability 

than GPM. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 10. Case A study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c) 

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability. 

The manipulability of the 4-DOF planar manipulator is shown in Figure 11. Because 

the manipulability of a planar manipulator is independent of joint 1, we use 
2 4

~q q  to 

draw the figure. To show it more clearly, 
2

q  is sliced every 80° while 
3

q  and 
4

q  are 

sliced every 5°. The distribution of manipulability is relatively complicated. To further 

compare the performance of the two methods, the manipulability during the process is 

projected to the plane 
2 3

q q , where 
1 4

45 , 90q q=  =   at the initial position. Figure 12 

clearly shows that our method can move in a direction with higher manipulability, which 

further demonstrates the search capability in a complex space of our method. 

 

Figure 11. Manipulability of the 4-DOF planar manipulator. 
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Figure 12. Comparison of manipulability movement. 

(2) Case B: The manipulator is required to track a line. 

As shown in Figure 13a,b, the two methods start from the same initial configuration 

[45 , 90 ,0 ,90 ]T

ini
q =  −     and eventually succeed in tracking the line in green color. Figure 

13c,d indicates that the joint changes more smoothly in our method. In Figure 13e, the 

manipulator applied in our method avoids the obstacle quickly, while the GPM struggles 

in avoiding the obstacle and tracking the line simultaneously. According to Figure 13f, the 

manipulability of the two methods both decreased due to more constraints in the tracking 

task, but the decline of our method is smaller. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 13. Case B study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c) 

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability. 

• Case study in Scenario II 

The experiments of Cases C and D are aimed at verifying the obstacle avoidance ca-

pability when two obstacles invade the safe distance of the manipulator. 

(1) Case C: The manipulator is required to keep the end-effector stationary. 

As shown in Figure 14a,b, the two methods start from the same initial configuration. 

Our method succeeds in avoiding obstacles while the GPM fails. According to Figure 

14c,e, the manipulator applied in the GPM oscillates while avoiding obstacles. The reason 

for the oscillation is that the GPM only considers the influence of the closest invading 

obstacle. When the manipulator encounters two obstacles, the closest invading obstacle 

may constantly switch from one to another. The manipulator can be stuck in a dilemma 

due to the adverse effects of the two obstacles, leading to obstacle avoidance failure. Our 

method utilizes the distance between each link and its closest obstacle, which ordinates 

the movement of each joint in null space, then the manipulator successfully avoids the 

obstacles. In Figure 14f, the manipulability of the two methods both decreased due to 

more constraints in obstacle avoidance, but the decline of our method is smaller than the 

GPM. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 14. Case C study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c) 

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability. 

(2) Case D: The manipulator is required to track a line. 

Case D is the most challenging in all cases. The manipulator is required to track a line 

when two obstacles invade the safe distance. As shown in Figure 15, although the two 

methods all succeed in tracking the line in green color, joint oscillation exists in the pro-

cess. It should be noticed that our method has less oscillation (Figure 15c,d) and maintains 

a higher manipulability (Figure 15f) than the GPM. 

  
(a) (b) 
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(c) (d) 

  
(e) (f) 

Figure 15. Case D study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c) 

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability. 

• More comparisons 

Except for the case study, we provide more general comparisons about the success 

rate, average manipulability, and time efficiency. Considering that our method differs 

mainly in null space motion from the GPM, we only evaluate the cases that the end-effec-

tor keeps still. 

According to the obstacle generation method in Section 4.3, a single obstacle and two 

obstacles are randomly generated 1000 times near the manipulator links in the initial con-

figuration [45 , 90 ,0 ,90 ]T

ini
q =  −    . The success rate of obstacle avoidance, the average 

manipulability m  under successful obstacle avoidance and the time to calculate 
N

q  in 

two scenarios are compared. 

As shown in Table 3, the success rate of the two methods can both reach 100% in 

Scenario I, but our method has a higher average manipulability while avoiding obstacles. 

In Scenario II, the success rate of our method is 96.8%, which is nearly 20% higher than 

the GPM, and our method still achieves a higher average manipulability. One reason for 

the failure of obstacle avoidance is that the manipulator cannot avoid obstacles only in the 

null space due to over-constraint, which can be seen in Case C above. In addition, in the 

harder, Scenario II, the average manipulability of the two methods decreased. The result 

can be interpreted that more obstacles that invade the safe distance will demand more 

requirements for obstacles avoidance, leading to less optimization for manipulability. As 

for time efficiency, our method calculates null space motion faster because it only needs a 

forward propagation of neural network in a reaction for obstacle avoidance. Moreover, 

our method saves ~22% more time in Scenario I and ~33% more time in Scenario II than 

GPM, which indicates that the calculation time of our method grows slower than the GPM 

when the scenario becomes more complex. 
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Table 3. Comparison of the GPM and our method. 

Comparison GPM Ours 

Success rate in Scenario I 100% 100% 

Success rate in Scenario II 77.4% 96.8% 

m  in Scenario I 3.78 3.95 

m  in Scenario II 3.63 3.72 

Time to calculate 
N

q  in Scenario I 1.484 ms 1.155 ms 

Time to calculate 
N

q  in Scenario II 2.048 ms 1.372 ms 

5. Conclusions 

In this paper, we propose a reactive obstacle avoidance method for redundant ma-

nipulators based on DRL. Except for obstacle avoidance, the proposed method can handle 

joint singularity and joint position limits automatically while tracking the desired task 

trajectory. We establish a general DRL framework for obstacle avoidance of redundant 

manipulators, in which a null space module is introduced, and the SAC algorithm is used 

to train. An improved state definition is used to represent multiple obstacles. The motion 

in null space is defined as the action. A novel reward function is designed to meet multiple 

constraints. The simulation results show the effectiveness of our method. Compared with 

the gradient projection method, our method outperforms in the success rate of obstacle 

avoidance, average manipulability, and time efficiency. When two obstacles invade the 

safe distance of the manipulator simultaneously, our method achieves a 96.8% success 

rate of obstacles avoidance, which is nearly 20% higher than the gradient projection 

method. 

Further research can be conducted based on this paper. The joint speed and obstacles 

speed can be considered so that the manipulator can avoid obstacles in advance. Except 

for the speed level, dynamic constraints of motion can also be considered. 

Author Contributions: Conceptualization, Y.S., Q.J. and G.C.; methodology, Y.S.; software, Y.S.; 

validation, Z.H. and R.W.; formal analysis, Y.S.; investigation, Y.S.; resources, G.C.; data curation, 

Y.S.; writing—original draft preparation, Y.S.; writing—review and editing, J.F.; visualization, Y.S.; 

supervision, Q.J.; project administration, G.C.; funding acquisition, Q.J. All authors have read and 

agreed to the published version of the manuscript. 

Funding: This research was funded by the Major Project of the New Generation of Artificial Intelli-

gence of China (No. 2018AAA0102904) and the National Natural Science Foundation of China (No. 

51975059). 

Institutional Review Board Statement: Not applicable. 

Informed Consent Statement: Not applicable. 

Data Availability Statement: Not applicable. 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Hjorth, S.; Lachner, J.; Stramigioli, S.; Madsen, O.; Chrysostomou, D. An Energy-Based Approach for the Integration of 

Collaborative Redundant Robots in Restricted Work Environments. In Proceedings of the 2020 IEEE/RSJ International 

Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 7152–7158. 

https://doi.org/10.1109/IROS45743.2020.9341561. 

2. Khan, A.H.; Li, S.; Cao, X. Tracking Control of Redundant Manipulator under Active Remote Center-of-Motion Constraints: An 

RNN-Based Metaheuristic Approach. Sci. China Inf. Sci. 2021, 64, 132203. https://doi.org/10.1007/s11432-019-2735-6. 

3. Chen, G.; Yuan, B.; Jia, Q.; Sun, H.; Guo, W. Failure Tolerance Strategy of Space Manipulator for Large Load Carrying Tasks. 

Acta Astronaut. 2018, 148, 186–204. https://doi.org/10.1016/j.actaastro.2018.04.052. 

4. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98. 

https://doi.org/10.1177/027836498600500106. 



Entropy 2022, 24, 279 19 of 19 
 

 

5. Wang, W.; Zhu, M.; Wang, X.; He, S.; He, J.; Xu, Z. An Improved Artificial Potential Field Method of Trajectory Planning and 

Obstacle Avoidance for Redundant Manipulators. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418799562. 

https://doi.org/10.1177/1729881418799562. 

6. Whitney, D.E. Resolved Motion Rate Control of Manipulators and Human Prostheses. IEEE Trans. Man-Mach. Syst. 1969, 10, 

47–53. https://doi.org/10.1109/TMMS.1969.299896. 

7. Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms. IEEE Trans. Syst. Man Cybern. 

1977, 7, 868–871. https://doi.org/10.1109/TSMC.1977.4309644. 

8. Žlajpah, L.; Petrič, T. Obstacle Avoidance for Redundant Manipulators as Control Problem. In Serial and Parallel Robot 

Manipulators; Kucuk, S., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 11. 

9. Wan, J.; Yao, J.; Zhang, L.; Wu, H. A Weighted Gradient Projection Method for Inverse Kinematics of Redundant Manipulators 

Considering Multiple Performance Criteria. Stroj. Vestn. J. Mech. Eng. 2018, 64, 475–487. https://doi.org/10.5545/sv-jme.2017.5182. 

10. Di Vito, D.; Natale, C.; Antonelli, G. A Comparison of Damped Least Squares Algorithms for Inverse Kinematics of Robot 

Manipulators This Work Was Supported by the European Community through TheprojectsROBUST(H2020-

690416),EuRoC(FP7-608849), DexROV (H2020-635491) and AEROARMS (H2020-644271). IFAC-Pap. 2017, 50, 6869–6874. 

https://doi.org/10.1016/j.ifacol.2017.08.1209. 

11. Xiang, J.; Zhong, C.; Wei, W. General-Weighted Least-Norm Control for Redundant Manipulators. IEEE Trans. Robot. 2010, 26, 

660–669. https://doi.org/10.1109/TRO.2010.2050655. 

12. Zhang, X.; Fan, B.; Wang, C.; Cheng, X. An Improved Weighted Gradient Projection Method for Inverse Kinematics of 

Redundant Surgical Manipulators. Sensors 2021, 21, 7362. https://doi.org/10.3390/s21217362. 

13. Liu, J.; Tong, Y.; Ju, Z.; Liu, Y. Novel Method of Obstacle Avoidance Planning for Redundant Sliding Manipulators. IEEE Access 

2020, 8, 78608–78621. https://doi.org/10.1109/ACCESS.2020.2990555. 

14. Qureshi, A.H.; Miao, Y.; Simeonov, A.; Yip, M.C. Motion Planning Networks: Bridging the Gap Between Learning-Based and 

Classical Motion Planners. IEEE Trans. Robot. 2021, 37, 48–66. https://doi.org/10.1109/TRO.2020.3006716. 

15. Xu, Z.; Zhou, X.; Li, S. Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators. Front. 

Neurorobot. 2019, 13, 47. https://doi.org/10.3389/fnbot.2019.00047. 

16. Sangiovanni, B.; Rendiniello, A.; Incremona, G.P.; Ferrara, A.; Piastra, M. Deep Reinforcement Learning for Collision Avoidance 

of Robotic Manipulators. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018; 

pp. 2063–2068. https://doi.org/10.23919/ECC.2018.8550363. 

17. Kumar, V.; Hoeller, D.; Sundaralingam, B.; Tremblay, J.; Birchfield, S. Joint Space Control via Deep Reinforcement Learning. In 

Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic, 

27 September–1 October 2021; pp. 3619–3626. https://doi.org/10.1109/IROS51168.2021.9636477. 

18. Hua, X.; Wang, G.; Xu, J.; Chen, K. Reinforcement Learning-Based Collision-Free Path Planner for Redundant Robot in Narrow 

Duct. J. Intell. Manuf. 2021, 32, 471–482. https://doi.org/10.1007/s10845-020-01582-1. 

19. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.; 

Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533. 

https://doi.org/10.1038/nature14236. 

20. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function 

Approximation. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–

4 December 1999; pp. 1057–1063. 

21. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep 

Reinforcement Learning. arXiv 2019, arXiv:1509.02971. 

22. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd 

International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1889–1897. 

23. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017, 

arXiv:1707.06347. 

24. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for 

Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 

19–24 June 2016; pp. 1928–1937. 

25. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning 

with a Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15 

July 2018; pp. 1861–1870. 

26. Yoshikawa, T. Manipulability of Robotic Mechanisms. Int. J. Robot. Res. 1985, 4, 3–9. https://doi.org/10.1177/027836498500400201. 

27. Luo, S.; Kasaei, H.; Schomaker, L. Accelerating Reinforcement Learning for Reaching Using Continuous Curriculum Learning. 

In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–

8. https://doi.org/10.1109/IJCNN48605.2020.9207427. 

28. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016, 

arXiv:1606.01540. 

 


