

Entropy 2022, 24, 279. https://doi.org/10.3390/e24020279 www.mdpi.com/journal/entropy

Article

Reinforcement Learning-Based Reactive Obstacle Avoidance

Method for Redundant Manipulators

Yue Shen, Qingxuan Jia, Zeyuan Huang, Ruiquan Wang, Junting Fei and Gang Chen *

School of Modern Post (School of Automation), Beijing University of Posts and Telecommunications,

Beijing 100876, China; yuefei@bupt.edu.cn (Y.S.); qingxuan@bupt.edu.cn (Q.J.); zyh214@bupt.edu.cn (Z.H.);

wangruiquan@bupt.edu.cn (R.W.); fjt@bupt.edu.cn (J.F.)

* Correspondence: chengang_zdh@bupt.edu.cn

Abstract: Redundant manipulators are widely used in fields such as human-robot collaboration due

to their good flexibility. To ensure efficiency and safety, the manipulator is required to avoid obsta-

cles while tracking a desired trajectory in many tasks. Conventional methods for obstacle avoidance

of redundant manipulators may encounter joint singularity or exceed joint position limits while

tracking the desired trajectory. By integrating deep reinforcement learning into the gradient projec-

tion method, a reactive obstacle avoidance method for redundant manipulators is proposed. We

establish a general DRL framework for obstacle avoidance, and then a reinforcement learning agent

is applied to learn motion in the null space of the redundant manipulator Jacobian matrix. The re-

ward function of reinforcement learning is redesigned to handle multiple constraints automatically.

Specifically, the manipulability index is introduced into the reward function, and thus the manipu-

lator can maintain high manipulability to avoid joint singularity while executing tasks. To show the

effectiveness of the proposed method, the simulation of 4 degrees of planar manipulator freedom is

given. Compared with the gradient projection method, the proposed method outperforms in a suc-

cess rate of obstacles avoidance, average manipulability, and time efficiency.

Keywords: redundant manipulator; obstacle avoidance; reinforcement learning; null space

1. Introduction

Compared with traditional robotic manipulators, redundant manipulators have

more degrees of freedom (DOF) in joint space than task space, which possesses better

flexibility for complicated tasks. Therefore, redundant manipulators are widely used in

fields such as human-robot collaboration [1], medical surgery [2], and space exploration

[3]. Redundant manipulators often work in dynamic environments and often even share

workspaces with people. The manipulator may collide with people or other obstacles dur-

ing the movement, which requires the capability of real-time obstacle avoidance. In many

tasks, such as polishing and welding, the manipulator is obliged to track the desired tra-

jectory under complex physical constraints. As a result, manipulators need to achieve real-

time obstacle avoidance while completing given end-effector motion tasks.

Real-time or reactive obstacle avoidance of redundant manipulators has been exten-

sively investigated. However, most studies, such as the artificial potential field method

[4,5], mainly focused on obstacle avoidance in point-to-point tasks, where the end-effector

motion is not specified. To meet the end-effector trajectory constraint while avoiding ob-

stacles, Jacobian pseudoinverse-based methods [6] have been introduced, in which the

gradient projection method (GPM) [7] is the most popularly adopted. The motion of a

redundant manipulator is usually divided into end-effector motion and self-motion. The

gradient projection method projects the optimization function of the self-motion gradient

to the null space of the Jacobian matrix, which can adjust the configuration to avoid ob-

stacles without affecting the end-effector motion. The optimization function usually

Citation: Shen, Y.; Jia, Q.; Huang, Z.;

Wang, R.; Fei, J.; Chen, G.

Reinforcement Learning-Based

Reactive Obstacle Avoidance

Method for Redundant

Manipulators. Entropy 2022, 24, 279.

https://doi.org/10.3390/e24020279

Academic Editors: Udo Von

Toussaint and Adam Lipowski

Received: 4 January 2022

Accepted: 14 February 2022

Published: 15 February 2022

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional

claims in published maps and institu-

tional affiliations.

Copyright: © 2022 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://cre-

ativecommons.org/licenses/by/4.0/).

Entropy 2022, 24, 279 2 of 19

consists of distance in different forms, such as distance from the key point to obstacles [8]

and repulsive potential field generated by obstacles [9]. However, the GPM may lead to

joint singularity or joint position limits while avoiding obstacles; thus the manipulator

will fail to track the desired trajectory. The damped least-squares method (DLS) [10] and

weighted least-norm methods (WLN) [11] are introduced to solve the problem. Combined

with DSL and WLN, Zhang [12] presented an improved weighted gradient projection

method (IWGPM), in which the manipulator can handle joint singularity and joint posi-

tion limits, but it increases the tracking error. To coordinate end-effector motion and self-

motion, Liu [13] proposed a weighted additional deviation velocity based on the gradient

project method (GP-WADV). However, coping with multiple constraints simultaneously

is still hard for these methods.

Recently, many studies have applied learning-based methods to obstacle avoidance

path planning under multiple constraints. Qureshi [14] proposed a motion planning net-

work using deep learning to generate a collision-free path, but it cannot satisfy real-time

obstacle avoidance. Xu [15] formulated the obstacle avoidance problem as quadratic pro-

gramming (QP), then a deep recurrent neural network is established to solve the QP prob-

lem online. Apart from deep learning (DL) methods, deep reinforcement learning (DRL)

is considered to be very promising for path planning due to its excellent learning ability.

Sangiovanni [16] proposed a real-time collision avoidance approach based on Normalized

Advantage Function for safe human-robot coexistence. However, redundancy is not con-

sidered. Kumar [17] presented a method that used the Proximal Policy Optimization al-

gorithm to directly map task-space goals into joint-space commands. The method can han-

dle redundancy and joint limits automatically without manually specifying constraints,

but the end-effector tracking process is not considered. Hua [18] proposed a method to

avoid obstacles for redundant manipulators based on the Deep Deterministic Policy Gra-

dient algorithm, but it is mainly applied in a narrow duct. However, learning-based meth-

ods usually neglect the characteristics of redundant manipulators and can only be applied

to point-to-point collision-free path planning.

In summary, the existing methods cannot completely satisfy multiple constraints,

such as obstacle avoidance and singularity avoidance in trajectory tracking tasks. Moti-

vated by GPM and DRL, we propose a reactive obstacle avoidance method for redundant

manipulators. The method leverages the null space of GPM and the learning ability of

DRL, which is very suitable for obstacle avoidance of redundant manipulators under mul-

tiple constraints. The major contributions of this paper are as follows:

(1) A general DRL framework for obstacle avoidance of redundant manipulators is

established, in which multiple constraints can be integrated easily.

(2) An improved representation of the state is given in obstacle avoidance. The

dimension of state space is independent of the distribution of obstacles. Therefore,

the learned obstacle avoidance strategy has a good generalization.

(3) The self-motion of redundant manipulators is utilized to reduce the action space from

the entire joint space to the null space of the Jacobian matrix, which greatly improves

the learning efficiency of DRL.

(4) A novel reward function of reinforcement learning is designed to cover multiple

constraints. The manipulability of a manipulator is introduced, so the manipulator

can learn to avoid obstacles while keeping away from the joint singularity.

The rest of this paper is organized as follows: Section 2 defines the obstacle avoidance

problem of redundant manipulators. Section 3 describes our proposed reactive obstacle

avoidance method. Section 4 presents the experiments and results. Section 5 summarizes

the research work.

2. Problem Setup

This paper focuses on the situation in which a redundant manipulator works in a

populated industrial environment, possibly invaded by obstacles. A collision could occur

Entropy 2022, 24, 279 3 of 19

while the robot is reaching its target or executing a specific task. The manipulator aims to

avoid surrounding obstacles while tracking the desired trajectory.

We assume that obstacles will not appear on the desired trajectory of the manipula-

tor; otherwise, the manipulator needs to stop or re-specify the desired motion of the end-

effector. Multiple obstacles may appear in the workspace; the manipulator only needs to

react when the distance between the manipulator and the obstacle is less than a specified

safety distance, which can be called reactive obstacle avoidance. As shown in Figure 1, the

manipulator only needs to avoid Obstacle 2 when tracking the desired trajectory.

Task Path

Obstacle2

Obstacle1
Obstacle3

Safe Distance

Figure 1. Obstacle avoidance for a redundant manipulator.

When the dimension n in the joint space of the manipulator is greater than the di-

mension m in task space, the manipulator has r = n − m degrees of redundancy for the task.

The relationship between the movement of the joint space and the task space is given in

Equation (1):

x Jq= (1)

where mx R is the end-effector velocity in task space, nq R is the joint velocity in

joint space, and m nJ R  is the Jacobian matrix.

The inverse solution of redundant manipulators is not unique, which means that in-

finite joint configurations can reach the same end-effector pose. According to the GPM,

the inverse solution can be expressed as Equation (2):

† †()q J x I J J φ= + − (2)

where † ×n mJ R is the Moore–Penrose pseudo-inverse, † n nI J J R −  represents the null

space of the Jacobian matrix, and nφ R is an arbitrary joint velocity vector. The first

item is the minimum norm solution, which is used to track the end-effector trajectory. The

second item is the homogeneous general solution. It refers to self-motion, which can meet

other requirements, such as obstacle avoidance. Obviously, the first item can be easily

obtained based on the desired end-effector motion. This paper mainly studies the optimi-

zation for the second item.

3. Method

According to Equation (2), the gradient projection method realizes obstacle avoid-

ance through defining φ in various forms. The manipulator may be singular or exceed

joint position limits while avoiding obstacles. We propose a DRL-based method to learn

φ by a neural network, which can handle multiple constraints automatically.

Entropy 2022, 24, 279 4 of 19

3.1. Reinforcement Learning

Reinforcement learning (RL) refers to the idea that the agent optimizes its action

through interaction with the environment. The RL framework is shown in Figure 2.

Agent

Environment

ActionState Reward
tr ta

+1tr

1ts +

ts

Figure 2. Reinforcement learning framework.

At each time step t, the agent is in the state
t

s S , then takes an action
t

a A ac-

cording to a policy ()π a s mapping from state to action. Each action affects the environ-

ment and hence changes its state to
1t

s
+

. The agent receives a reward
1t

r R
+
 at time step

t+1. The goal of the agent is to find the optimal policy *π that maximizes the total ex-

pected reward
t

G with a discount factor γ . The expression of
t

G and *π are given in

Equations (3) and (4), respectively.

2

1 2 3 1
0

... k

t t t t t k
k

G r γr γ r γ r


+ + + + +
=

= + + + = (3)

*

1π
0

π arg max k

t k
k

γ r


+ +
=

 
=  

 
 (4)

To find the optimal policy, there are mainly three types of methods: valued-based,

policy-based, and actor-critic methods. In value-based methods, the optimal value func-

tion is first estimated, and then the optimal policy is derived from the value function. A

typical method is Deep Q-Network (DQN) [19], which uses a neural network to estimate

the optimal value function. In policy-based methods, the optimal policy is estimated di-

rectly from the experiences of the agent. A typical method is REINFORCE [20], which uses

the policy gradient to find the optimal policy. The actor-critic methods combine the char-

acteristics of two types of methods, using the actor for policy estimation and the critic for

value function estimation. Typical methods are the Deep Deterministic Policy Gradient

(DDPG) [21], Trust Region Policy Optimization (TRPO) [22], Proximal Policy Optimiza-

tion (PPO) [23], Asynchronous Advantage Actor-Critic (A3C) [24], and Soft Actor-Critic

(SAC) [25]. In the field of robotics, the state space and action space are generally continu-

ous, and actor-critic methods are widely used.

For reinforcement learning problems, the design of state, action, and reward func-

tions are very important, which directly affect the training effect.

3.2. State Definition

For obstacle avoidance of the manipulator, the state should include the position in-

formation of the manipulator and obstacles. Intuitive design for the state is { , }
o

s q x= ,

where nq R is the joint angles of the manipulator and m

o
x R is the position of the

obstacle. The definition of the state remains as a disadvantage because it needs to expand

the dimension when multiple obstacles exist. Therefore, the dimension of state space will

be relevant to the number of obstacles, leading the neural network trained to have no

generalization.

Entropy 2022, 24, 279 5 of 19

To solve the problem, we convert the position of obstacles to the distance vector from

each link to its closest obstacle. Specifically, let be the set of points on the surface of

all obstacles, and let
i
 be the set of points of the i th link. Let

i
o  and

i i
l  be the

closest points in the two sets, as given in Equation (5).

min min
i

i i o l
o l o l

 
− = − (5)

The vector for each link connecting these closest points is defined as
i i i

d o l= − . The

dimension of
i

d is 2 for planar manipulators or 3 for spatial manipulators. The closest

distance vector for a 3-DOF planar manipulator is shown in Figure 3.

1d

2d

3d
1d

2d

3d

Figure 3. The closet distance vector for each link.

Based on the closest distance vector, we redefine the state of the obstacle avoidance

as follows.

1 2
{ , , ,..., }

n
s q d d d= (6)

The state definition realizes the general position representation of multiple obstacles.

When the number or distribution of obstacles in the environment changes, the state di-

mension remains unchanged. In addition, because the distance between each link and its

closest obstacle is recorded, it is helpful for the neural network to learn the coordination

for obstacle avoidance among the links of the manipulator.

3.3. Action Definition

The action definition cannot directly adopt the joint velocity of the configuration

space, which fails to satisfy the self-motion constraint. According to Equation (2), the ac-

tion is naturally defined in Equation (7).

{ }a φ= (7)

Combing the action with the null space of the Jacobian matrix, the manipulator can

avoid obstacles by adjusting the joint angle while keeping the end-effector position un-

changed.

3.4. Reward Function Design

The design for the reward function is indeed important for reinforcement learning,

and the reward function should guide the manipulator to learn the optimal strategy. In

addition to avoiding obstacles, the manipulator should also consider other constraints,

such as joint singularity avoidance and joint position limits. The reward function contains

three items.

The obstacle avoidance item is defined as Equation (8). When the closest distance

between the manipulator and obstacles is less than the safe distance
s

d , a negative reward

will be generated.

Entropy 2022, 24, 279 6 of 19

1

min(1,0)
n

o i s
i

r d d
=

= − (8)

The joint motion item is defined as Equation (9). The joint position increment of the

manipulator is required to be as small as possible.

()†

a
r I J J a= − − (9)

The joint singularity item is defined as Equation (10). Manipulability [26], introduced

by Yoshikawa, is a common index to measure singularity. A higher manipulability is good

for tracking variable trajectories.

det()T

m
r JJ= (10)

In summary, the reward function is designed as Equation (11).

1 2 3o a m
r λ r λ r λ r= + + (11)

where
1 2 3
, ,λ λ λ represent the weight of each item, respectively. The corresponding val-

ues are given in Section 4. It should be noticed that if a collision occurs or any joint exceeds

its position limits, then a negative reward 10r = − will be generated.

3.5. Learning for Reactive Obstacles Avoidance

Similar to the RL framework in Section 3.1, the reactive obstacle avoidance frame-

work is divided into two parts: agent and environment. The difference lies in where the

environment part has a null space module for reactive obstacle avoidance, as shown in

Figure 4.

Critic Optimizer

Update φ Q Gradient

Soft Update

Online Q
Network

Target Q
Network

Policy Network

Actor Optimizer

Update θ Policy Gradient

Soft Actor Critic

Environment

Obstacle

Auto α Optimizer

Update α Policy Gradient

q x

()N J

Target Entropy

Null Space

Action State Reward

dim()A= −

Workspace

Nq

Figure 4. Framework of reactive obstacle avoidance.

Entropy 2022, 24, 279 7 of 19

3.5.1. SAC Algorithm

To avoid obstacles and maintain high manipulability during the movement, suffi-

cient exploration in the state space is encouraged under multiple constraints. SAC, one of

the state-of-the-art deep reinforcement learning algorithms, is widely used for its good

exploration. Therefore, SAC is very suitable for obstacle avoidance of redundant manip-

ulators.

Instead of maximizing the discounted cumulative reward, SAC introduces the en-

tropy of the policy, as shown in Equation (12).

()()*

π
π arg max (,) π ()

θ

t

t t θ t
t

γ r s a α s
 

= +   
 
 (12)

where θ represents parameters of the policy, α is the temperature parameter for regu-

lating the entropy term against the reward, and denotes the entropy of the policy.

In SAC, the Q function (,)Q s a


 and policy π
θ

 are approximated by deep neural

networks, which can be learned with the stochastic gradient descent method. The Q func-

tion can be learned by minimizing the soft Bellman residual, as shown in Equation (13).

()
1

2

1
() (,) (,) [()]

tQ t t t t s t
J Q s a r s a V s

+ +

 
= − −

  
 

  (13)

where
π

() [(,) logπ (|)]V s Q s a a s= −
  

 , and Q


 is a target Q network, whose param-

eter  is obtained as an exponentially moving average of  . Moreover, the policy π


can be learned by minimizing the expected KL-divergence, as shown in Equation (14).

π ~ ~π
() [logπ () (,)]

s a
J α a s Q s a =  −

   
 (14)

where is the replay buffer for storing experiences of the agent.

Finally, SAC also provides an automatic way to update the temperature parameter

α , as shown in Equation (15).

~π
() [logπ ()]

a
J α α a s α= −  −

 
 (15)

where is a hyperparameter interpreted as the target entropy. In continuous action

tasks, such as most robotic tasks, is usually defined as the negative of the action di-

mension.

The SAC algorithm is summarized in Algorithm 1.

Algorithm 1 Soft Actor-Critic (SAC)

1. Initialize policy network θ , Q network
1 2
,  , target Q network

1 1 2 2
,= =   

2. Initialize replay buffer = 

3. for each epoch do

4. for each environment step do

5. Sample
t

a from π ()
θ

s  , collect
1

,
t t

r s
+

6.
1

{ , , , }
t t t t

s a r s
+

=

7. end for

8. for each gradient step do

9. ()
i i Q Q i

λ J= −    , for {1,2}i

10. ()
π π

θ θ λ J θ= − 

11. ()
α

α α λ J α= − 

12. (1)
i i i
= − +    , for {1,2}i

Entropy 2022, 24, 279 8 of 19

13. end for

14. end for

3.5.2. RL-Based Reactive Obstacle Avoidance Algorithm for Redundant Manipulators

The redundant manipulator senses the position of obstacles in real-time and moves

in the environment. Then the reward is calculated according to Equation (11) and is trans-

mitted to the SAC agent. The actor and critic networks update the parameters from the

experiences of the agent. The final action φ is output through the actor network. Com-

bined with the null space of the Jacobian matrix, the joint velocity of the self-motion can

be obtained as Equation (16).

()†

N
q I J J φ= − (16)

According to the expected motion
D

x of the manipulator end-effector, the mini-

mum norm solution is obtained as Equation (17).

†

D D
q J x= (17)

Finally, the joint velocity of the manipulator can be expressed as Equation (18):

D N
q q q= + (18)

The joint angle updates through time integration, and then a new state can be gener-

ated. The process is repeated until the task of the manipulator is finished.

The RL-based reactive obstacle avoidance algorithm for redundant manipulators is

summarized in Algorithm 2.

Algorithm 2 Proposed Obstacle Avoidance Algorithm for Redundant Manipulators

1. Obtain state
1 2

{ , , ,..., }
n

s q d d d=

2. Calculate the minimum distance min 1 2 min
{ , ,..., }

n
d d d d=

3. while
min s

d d , do

4. . ()φ SAC Actor s=

5. ()† †

D
q J x I J J φ= + −

6. if q is out of joint velocity range, then

7. q scaled q=

8. end if

9. q q q t= + 

10.
1 2

{ , , ,..., }
n

s q d d d=

11. min 1 2 min
{ , ,..., }

n
d d d d=

12. end while

3.5.3. Training Strategy

An intuitive training strategy is to randomly generate multiple obstacles in the envi-

ronment and let the manipulator interact with the environment to learn to avoid obstacles,

as shown in Figure 5a. However, this method will generate many cases where obstacles

are far from the safe distance. Thus, the manipulator does not need to respond, leading to

useless learning. To improve the learning efficiency of obstacle avoidance, obstacles can

be generated directly near the links of the manipulator; that is, in the initial state, obstacles

have invaded the safe distance of the manipulator. In addition, considering that in most

Entropy 2022, 24, 279 9 of 19

cases there is only one obstacle in the safety distance of the manipulator at a moment, only

one obstacle is generated during training, as shown in Figure 5b.

(a) (b)

Figure 5. Methods to generate obstacles: (a) Obstacles randomly generated in the workspace; (b) An

obstacle generated in the safe distance.

When the end-effector of the manipulator is fixed, there are infinite distributions of

obstacles. Except for learning obstacle avoidance in this situation, the RL agent should

adapt to changes in the end-effector position. Learning varying obstacle distribution and

end-effector positions simultaneously is very difficult. Therefore, we design a two-stage

learning strategy motivated by curriculum learning [27]. In Stage I, the manipulator starts

from a fixed configuration and learns to avoid obstacles in null space. In Stage II, at the

beginning of each training, the end-effector of the manipulator will move to a new random

position nearby. After the training of Stage I is completed, its network parameters are used

to initialize the network of Stage II.

4. Results and Discussion

To evaluate the performance of our method and the gradient projection method, two

scenarios have been carried out. All simulations were run on a computer with a 3.5 GHz

Intel(R) Xeon(R) E5-1620 v3 processor and 16 GB RAM.

4.1. System Description

The simulation environment is built on OpenAI gym [28]. It contains a 4-DOF planar

redundant manipulator and random obstacles. Each link length of the manipulator is 1 m.

The ranges of joint position and joint velocity are listed in Table 1.

Table 1. Joint range of the manipulator.

Joint Range q
min

 (°) q
max

 (°) q
min

 (°/s) q
max

 (°/s)

joint 1 −120 120 −20 20

joint 2 −160 160 −20 20

joint 3 −160 160 −20 20

joint 4 −160 160 −20 20

The manipulator executes tasks in the blue workspace (1.2 m × 1.6 m). The task only

constraints the end-effector position, so there are two redundant joints. When the manip-

ulator is tracking the desired trajectory, some obstacles in the environment may invade

the safe distance (0.2 m) of the manipulator. The shape of the obstacle can vary. Consid-

ering that the distance between the manipulator link and its closest obstacle has been cal-

culated, the obstacle can be simplified as a circle. The 4-DOF planar manipulator is shown

in Figure 6.

Entropy 2022, 24, 279 10 of 19

Base

Obstacles

Desired Path Point

Safe distance

Nearest distance

Workspace

Figure 6. The 4-DOF planar redundant manipulator.

4.2. Parameters Selection

The training of the SAC algorithm mainly has two types of parameters: network

structure parameters and training process parameters. The specific network of the SAC

algorithm is shown in Figure 7. The entire network is composed of fully connected layers,

and ReLU is used for the activation function.

State

Fc:256

ReLU

Fc:256

ReLU

Std devMean

Gaussian

Tanh

State Action

Stack

Fc:256

ReLU

Fc:256

ReLU

Fc:1

Actor Network Critic Network

Figure 7. Network structure of the SAC.

The main parameters of the training process are shown in Table 2. The training pro-

cess only uses the CPU.

Table 2. Parameters of training.

Parameter Value

Optimizer Adam

Learning rate 0.001

Discount factor 0.99

Polyak update factor 0.995

Entropy target −4

Replay buffer size 1 × 105

Mini-batch size 100

Entropy 2022, 24, 279 11 of 19

Max episode length 400

1
λ 1

2
λ 0.2

3
λ 0.05

4.3. Training

According to the training strategy in Section 3.5.3, the training is divided into two

stages, as shown in Figure 8. In Stage I, the position of the end-effector is fixed. In Stage

II, at the beginning of each training episode, the end-effector of the manipulator will per-

form a wandering with a radius of R = 0.1 m.

(a) (b)

Figure 8. (a) Training in Stage I; (b) Training in Stage II.

At the beginning of each training episode, an obstacle is generated around the link of

the manipulator. The manipulator continuously learns to avoid obstacles during the in-

teraction with the environment until the closest distance between the manipulator and the

obstacle is out of the safe distance or the interaction number exceeds 400. A total of 50

epochs are trained, and each epoch contains 500 environment interactions. The green

curve in Figure 9 shows the total average return of evaluation during training for SAC.

We use five different random seeds, with each averaging 10 evaluation episodes after

every epoch. The solid curve corresponds to the mean and the shaded region to the mini-

mum and maximum returns over the five trials. After 20,000 steps of environment inter-

action (~40 min), it converges and has a good performance.

Figure 9. Learning curve of episode reward.

Entropy 2022, 24, 279 12 of 19

We also trained a SAC agent that the action is directly defined as joint velocity in joint

space. Because there is no null space constraint, the end-effector of the manipulator cannot

remain unchanged while avoiding obstacles. As shown in Figure 9, the training curve in

blue cannot even converge, which implies the importance of the action definition.

4.4. Simulation and Discussion

To validate our method, two different scenarios have been carried out in simulation

with the same 4-DOF planar manipulator. We compared the performance of our method

in these scenarios to the GPM [8].

Scenario I: A single obstacle invades the safe distance of the manipulator. This is the

most common scenario in which a worker usually approaches the manipulator.

Scenario II: Two obstacles invade the safe distance of the manipulator simultane-

ously. This scenario is more challenging, and the manipulator may be too constrained to

avoid obstacles.

It should be noticed that many obstacles may appear in the workspace, but the ma-

nipulator only needs to react to the obstacles that invade the safe distance.

• Case study in Scenario I

The experiments of Cases A and B are aimed at verifying the obstacle avoidance ca-

pability when a single obstacle invades the safe distance of the manipulator.

(1) Case A: The manipulator is required to keep the end-effector stationary.

As shown in Figure 10a,b, the two methods start from the same initial configuration

[45 , 90 ,0 ,90]T

ini
q =  −    and eventually succeed in avoiding obstacles. The red lines indi-

cate the initial configuration, while the blue lines represent the final configuration. The

color of the links changed from light to dark shows the whole process of avoiding obsta-

cles. The blue dotted line in Figure 10e represents the safe distance. According to Figure

10e,f, our method avoids the obstacle in fewer steps and ends with a higher manipulability

than GPM.

(a) (b)

(c) (d)

Entropy 2022, 24, 279 13 of 19

(e) (f)

Figure 10. Case A study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c)

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability.

The manipulability of the 4-DOF planar manipulator is shown in Figure 11. Because

the manipulability of a planar manipulator is independent of joint 1, we use
2 4

~q q to

draw the figure. To show it more clearly,
2

q is sliced every 80° while
3

q and
4

q are

sliced every 5°. The distribution of manipulability is relatively complicated. To further

compare the performance of the two methods, the manipulability during the process is

projected to the plane
2 3

q q , where
1 4

45 , 90q q=  =  at the initial position. Figure 12

clearly shows that our method can move in a direction with higher manipulability, which

further demonstrates the search capability in a complex space of our method.

Figure 11. Manipulability of the 4-DOF planar manipulator.

Entropy 2022, 24, 279 14 of 19

Figure 12. Comparison of manipulability movement.

(2) Case B: The manipulator is required to track a line.

As shown in Figure 13a,b, the two methods start from the same initial configuration

[45 , 90 ,0 ,90]T

ini
q =  −    and eventually succeed in tracking the line in green color. Figure

13c,d indicates that the joint changes more smoothly in our method. In Figure 13e, the

manipulator applied in our method avoids the obstacle quickly, while the GPM struggles

in avoiding the obstacle and tracking the line simultaneously. According to Figure 13f, the

manipulability of the two methods both decreased due to more constraints in the tracking

task, but the decline of our method is smaller.

(a) (b)

(c) (d)

Entropy 2022, 24, 279 15 of 19

(e) (f)

Figure 13. Case B study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c)

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability.

• Case study in Scenario II

The experiments of Cases C and D are aimed at verifying the obstacle avoidance ca-

pability when two obstacles invade the safe distance of the manipulator.

(1) Case C: The manipulator is required to keep the end-effector stationary.

As shown in Figure 14a,b, the two methods start from the same initial configuration.

Our method succeeds in avoiding obstacles while the GPM fails. According to Figure

14c,e, the manipulator applied in the GPM oscillates while avoiding obstacles. The reason

for the oscillation is that the GPM only considers the influence of the closest invading

obstacle. When the manipulator encounters two obstacles, the closest invading obstacle

may constantly switch from one to another. The manipulator can be stuck in a dilemma

due to the adverse effects of the two obstacles, leading to obstacle avoidance failure. Our

method utilizes the distance between each link and its closest obstacle, which ordinates

the movement of each joint in null space, then the manipulator successfully avoids the

obstacles. In Figure 14f, the manipulability of the two methods both decreased due to

more constraints in obstacle avoidance, but the decline of our method is smaller than the

GPM.

(a) (b)

Entropy 2022, 24, 279 16 of 19

(c) (d)

(e) (f)

Figure 14. Case C study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c)

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability.

(2) Case D: The manipulator is required to track a line.

Case D is the most challenging in all cases. The manipulator is required to track a line

when two obstacles invade the safe distance. As shown in Figure 15, although the two

methods all succeed in tracking the line in green color, joint oscillation exists in the pro-

cess. It should be noticed that our method has less oscillation (Figure 15c,d) and maintains

a higher manipulability (Figure 15f) than the GPM.

(a) (b)

Entropy 2022, 24, 279 17 of 19

(c) (d)

(e) (f)

Figure 15. Case D study. (a) Obstacle avoidance of GPM; (b) Obstacle avoidance of our method; (c)

Joint angle changes of GPM; (d) Joint angle changes of our method; (e) Comparison of closest dis-

tance to obstacle; (f) Comparison of manipulability.

• More comparisons

Except for the case study, we provide more general comparisons about the success

rate, average manipulability, and time efficiency. Considering that our method differs

mainly in null space motion from the GPM, we only evaluate the cases that the end-effec-

tor keeps still.

According to the obstacle generation method in Section 4.3, a single obstacle and two

obstacles are randomly generated 1000 times near the manipulator links in the initial con-

figuration [45 , 90 ,0 ,90]T

ini
q =  −    . The success rate of obstacle avoidance, the average

manipulability m under successful obstacle avoidance and the time to calculate
N

q in

two scenarios are compared.

As shown in Table 3, the success rate of the two methods can both reach 100% in

Scenario I, but our method has a higher average manipulability while avoiding obstacles.

In Scenario II, the success rate of our method is 96.8%, which is nearly 20% higher than

the GPM, and our method still achieves a higher average manipulability. One reason for

the failure of obstacle avoidance is that the manipulator cannot avoid obstacles only in the

null space due to over-constraint, which can be seen in Case C above. In addition, in the

harder, Scenario II, the average manipulability of the two methods decreased. The result

can be interpreted that more obstacles that invade the safe distance will demand more

requirements for obstacles avoidance, leading to less optimization for manipulability. As

for time efficiency, our method calculates null space motion faster because it only needs a

forward propagation of neural network in a reaction for obstacle avoidance. Moreover,

our method saves ~22% more time in Scenario I and ~33% more time in Scenario II than

GPM, which indicates that the calculation time of our method grows slower than the GPM

when the scenario becomes more complex.

Entropy 2022, 24, 279 18 of 19

Table 3. Comparison of the GPM and our method.

Comparison GPM Ours

Success rate in Scenario I 100% 100%

Success rate in Scenario II 77.4% 96.8%

m in Scenario I 3.78 3.95

m in Scenario II 3.63 3.72

Time to calculate
N

q in Scenario I 1.484 ms 1.155 ms

Time to calculate
N

q in Scenario II 2.048 ms 1.372 ms

5. Conclusions

In this paper, we propose a reactive obstacle avoidance method for redundant ma-

nipulators based on DRL. Except for obstacle avoidance, the proposed method can handle

joint singularity and joint position limits automatically while tracking the desired task

trajectory. We establish a general DRL framework for obstacle avoidance of redundant

manipulators, in which a null space module is introduced, and the SAC algorithm is used

to train. An improved state definition is used to represent multiple obstacles. The motion

in null space is defined as the action. A novel reward function is designed to meet multiple

constraints. The simulation results show the effectiveness of our method. Compared with

the gradient projection method, our method outperforms in the success rate of obstacle

avoidance, average manipulability, and time efficiency. When two obstacles invade the

safe distance of the manipulator simultaneously, our method achieves a 96.8% success

rate of obstacles avoidance, which is nearly 20% higher than the gradient projection

method.

Further research can be conducted based on this paper. The joint speed and obstacles

speed can be considered so that the manipulator can avoid obstacles in advance. Except

for the speed level, dynamic constraints of motion can also be considered.

Author Contributions: Conceptualization, Y.S., Q.J. and G.C.; methodology, Y.S.; software, Y.S.;

validation, Z.H. and R.W.; formal analysis, Y.S.; investigation, Y.S.; resources, G.C.; data curation,

Y.S.; writing—original draft preparation, Y.S.; writing—review and editing, J.F.; visualization, Y.S.;

supervision, Q.J.; project administration, G.C.; funding acquisition, Q.J. All authors have read and

agreed to the published version of the manuscript.

Funding: This research was funded by the Major Project of the New Generation of Artificial Intelli-

gence of China (No. 2018AAA0102904) and the National Natural Science Foundation of China (No.

51975059).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hjorth, S.; Lachner, J.; Stramigioli, S.; Madsen, O.; Chrysostomou, D. An Energy-Based Approach for the Integration of

Collaborative Redundant Robots in Restricted Work Environments. In Proceedings of the 2020 IEEE/RSJ International

Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA, 24 October–24 January 2020; pp. 7152–7158.

https://doi.org/10.1109/IROS45743.2020.9341561.

2. Khan, A.H.; Li, S.; Cao, X. Tracking Control of Redundant Manipulator under Active Remote Center-of-Motion Constraints: An

RNN-Based Metaheuristic Approach. Sci. China Inf. Sci. 2021, 64, 132203. https://doi.org/10.1007/s11432-019-2735-6.

3. Chen, G.; Yuan, B.; Jia, Q.; Sun, H.; Guo, W. Failure Tolerance Strategy of Space Manipulator for Large Load Carrying Tasks.

Acta Astronaut. 2018, 148, 186–204. https://doi.org/10.1016/j.actaastro.2018.04.052.

4. Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. Int. J. Robot. Res. 1986, 5, 90–98.

https://doi.org/10.1177/027836498600500106.

Entropy 2022, 24, 279 19 of 19

5. Wang, W.; Zhu, M.; Wang, X.; He, S.; He, J.; Xu, Z. An Improved Artificial Potential Field Method of Trajectory Planning and

Obstacle Avoidance for Redundant Manipulators. Int. J. Adv. Robot. Syst. 2018, 15, 1729881418799562.

https://doi.org/10.1177/1729881418799562.

6. Whitney, D.E. Resolved Motion Rate Control of Manipulators and Human Prostheses. IEEE Trans. Man-Mach. Syst. 1969, 10,

47–53. https://doi.org/10.1109/TMMS.1969.299896.

7. Automatic Supervisory Control of the Configuration and Behavior of Multibody Mechanisms. IEEE Trans. Syst. Man Cybern.

1977, 7, 868–871. https://doi.org/10.1109/TSMC.1977.4309644.

8. Žlajpah, L.; Petrič, T. Obstacle Avoidance for Redundant Manipulators as Control Problem. In Serial and Parallel Robot

Manipulators; Kucuk, S., Ed.; IntechOpen: Rijeka, Croatia, 2012; Chapter 11.

9. Wan, J.; Yao, J.; Zhang, L.; Wu, H. A Weighted Gradient Projection Method for Inverse Kinematics of Redundant Manipulators

Considering Multiple Performance Criteria. Stroj. Vestn. J. Mech. Eng. 2018, 64, 475–487. https://doi.org/10.5545/sv-jme.2017.5182.

10. Di Vito, D.; Natale, C.; Antonelli, G. A Comparison of Damped Least Squares Algorithms for Inverse Kinematics of Robot

Manipulators This Work Was Supported by the European Community through TheprojectsROBUST(H2020-

690416),EuRoC(FP7-608849), DexROV (H2020-635491) and AEROARMS (H2020-644271). IFAC-Pap. 2017, 50, 6869–6874.

https://doi.org/10.1016/j.ifacol.2017.08.1209.

11. Xiang, J.; Zhong, C.; Wei, W. General-Weighted Least-Norm Control for Redundant Manipulators. IEEE Trans. Robot. 2010, 26,

660–669. https://doi.org/10.1109/TRO.2010.2050655.

12. Zhang, X.; Fan, B.; Wang, C.; Cheng, X. An Improved Weighted Gradient Projection Method for Inverse Kinematics of

Redundant Surgical Manipulators. Sensors 2021, 21, 7362. https://doi.org/10.3390/s21217362.

13. Liu, J.; Tong, Y.; Ju, Z.; Liu, Y. Novel Method of Obstacle Avoidance Planning for Redundant Sliding Manipulators. IEEE Access

2020, 8, 78608–78621. https://doi.org/10.1109/ACCESS.2020.2990555.

14. Qureshi, A.H.; Miao, Y.; Simeonov, A.; Yip, M.C. Motion Planning Networks: Bridging the Gap Between Learning-Based and

Classical Motion Planners. IEEE Trans. Robot. 2021, 37, 48–66. https://doi.org/10.1109/TRO.2020.3006716.

15. Xu, Z.; Zhou, X.; Li, S. Deep Recurrent Neural Networks Based Obstacle Avoidance Control for Redundant Manipulators. Front.

Neurorobot. 2019, 13, 47. https://doi.org/10.3389/fnbot.2019.00047.

16. Sangiovanni, B.; Rendiniello, A.; Incremona, G.P.; Ferrara, A.; Piastra, M. Deep Reinforcement Learning for Collision Avoidance

of Robotic Manipulators. In Proceedings of the 2018 European Control Conference (ECC), Limassol, Cyprus, 12–15 June 2018;

pp. 2063–2068. https://doi.org/10.23919/ECC.2018.8550363.

17. Kumar, V.; Hoeller, D.; Sundaralingam, B.; Tremblay, J.; Birchfield, S. Joint Space Control via Deep Reinforcement Learning. In

Proceedings of the 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Prague, Czech Republic,

27 September–1 October 2021; pp. 3619–3626. https://doi.org/10.1109/IROS51168.2021.9636477.

18. Hua, X.; Wang, G.; Xu, J.; Chen, K. Reinforcement Learning-Based Collision-Free Path Planner for Redundant Robot in Narrow

Duct. J. Intell. Manuf. 2021, 32, 471–482. https://doi.org/10.1007/s10845-020-01582-1.

19. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;

Ostrovski, G.; et al. Human-Level Control through Deep Reinforcement Learning. Nature 2015, 518, 529–533.

https://doi.org/10.1038/nature14236.

20. Sutton, R.S.; McAllester, D.A.; Singh, S.P.; Mansour, Y. Policy Gradient Methods for Reinforcement Learning with Function

Approximation. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–

4 December 1999; pp. 1057–1063.

21. Lillicrap, T.P.; Hunt, J.J.; Pritzel, A.; Heess, N.; Erez, T.; Tassa, Y.; Silver, D.; Wierstra, D. Continuous Control with Deep

Reinforcement Learning. arXiv 2019, arXiv:1509.02971.

22. Schulman, J.; Levine, S.; Abbeel, P.; Jordan, M.; Moritz, P. Trust Region Policy Optimization. In Proceedings of the 32nd

International Conference on Machine Learning, Lille, France, 7–9 July 2015; pp. 1889–1897.

23. Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; Klimov, O. Proximal Policy Optimization Algorithms. arXiv 2017,

arXiv:1707.06347.

24. Mnih, V.; Badia, A.P.; Mirza, M.; Graves, A.; Lillicrap, T.; Harley, T.; Silver, D.; Kavukcuoglu, K. Asynchronous Methods for

Deep Reinforcement Learning. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA,

19–24 June 2016; pp. 1928–1937.

25. Haarnoja, T.; Zhou, A.; Abbeel, P.; Levine, S. Soft Actor-Critic: Off-Policy Maximum Entropy Deep Reinforcement Learning

with a Stochastic Actor. In Proceedings of the 35th International Conference on Machine Learning, Stockholm, Sweden, 10–15

July 2018; pp. 1861–1870.

26. Yoshikawa, T. Manipulability of Robotic Mechanisms. Int. J. Robot. Res. 1985, 4, 3–9. https://doi.org/10.1177/027836498500400201.

27. Luo, S.; Kasaei, H.; Schomaker, L. Accelerating Reinforcement Learning for Reaching Using Continuous Curriculum Learning.

In Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN), Glasgow, UK, 19–24 July 2020; pp. 1–

8. https://doi.org/10.1109/IJCNN48605.2020.9207427.

28. Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.; Schulman, J.; Tang, J.; Zaremba, W. OpenAI Gym. arXiv 2016,

arXiv:1606.01540.

