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Abstract: In recent years, the identification of the essential nodes in complex networks has attracted
significant attention because of their theoretical and practical significance in many applications,
such as preventing and controlling epidemic diseases and discovering essential proteins. Several
importance measures have been proposed from diverse perspectives to identify crucial nodes more
accurately. In this paper, we propose a novel importance metric called node propagation entropy,
which uses a combination of the clustering coefficients of nodes and the influence of the first- and
second-order neighbor numbers on node importance to identify essential nodes from an entropy
perspective while considering the local and global information of the network. Furthermore, the
susceptible–infected–removed and susceptible–infected–removed–susceptible epidemic models along
with the Kendall coefficient are used to reveal the relevant correlations among the various importance
measures. The results of experiments conducted on several real networks from different domains
show that the proposed metric is more accurate and stable in identifying significant nodes than
many existing techniques, including degree centrality, betweenness centrality, closeness centrality,
eigenvector centrality, and H-index.

Keywords: complex networks; important nodes; node propagation entropy; epidemic models;
importance metric

1. Introduction

Complex systems in many real-world domains are modeled as complex networks to
ensure efficient analysis. Such systems include electrical networks [1], social networks [2,3],
protein–DNA networks [4], transportation networks [5], and biological networks [6]. In
recent years, the identification of the essential nodes in complex networks has attracted
significant interest because of their important theoretical and practical significance, e.g., in
preventing and controlling epidemic diseases [7,8], controlling the spread of rumors [9,10],
proposing new marketing strategies [11], and discovering essential proteins [12]. Faced
with a large-scale complex network, the question of how to rapidly and productively
determine the important nodes in the network is the first challenge that has to be addressed
in the study of node importance.

Several importance metrics have been proposed to evaluate the significance of nodes
from a network topology perspective. They include degree centrality [13], betweenness
centrality [14], closeness centrality [14], k-shell [15], and eigenvector centrality [16]. Degree
centrality, which asserts that the more neighbors a node has, the more influential it is, is
relatively simple, intuitive, and easy to implement. However, it generally does not consider
the global properties of the network or the individual properties of nodes. Therefore, it does
not perform well in most real-world applications. Betweenness centrality asserts that the
more times the shortest length path between any pair of nodes in the network passes over
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one node, the more mediated the node is, and the more critical in the network. Closeness
centrality asserts that the smaller the mean value of the shortest length path from a node
to the rest of the nodes in the network, the more influential the node is in the network.
K-shell asserts that the closer the node is to the core of the network, the more critical it is.
Nodes within the same shell are considered to have the same importance and the same
scalability. However, k-shell is unsuitable for real networks. Eigenvector centrality asserts
that a node’s importance is determined by the number and importance of its neighbors
(i.e., the degree of the node). However, it is unsuitable for large networks.

Zhao et al. [17] asserted that the significance of a node is related to both its own signifi-
cance and to that of the nodes to which it connects. However, any metric that takes this into
consideration will have high time complexity. Ullah et al. [18] proposed a Local and Global
Centrality (LGC) measurement algorithm that identifies significant nodes by processing
both local and global information about network topology. Methods have been proposed
based on random walks, e.g., the famous PageRank [19], LeaderRank [20], VoteRank [21],
and HITS [22]. Entropy has been used to scale the importance of nodes as well [23,24]. For
example, Zareie et al. [25] proposed a method based on information entropy to test the
propagation ability of a node in a network according to the topological information of the
node. Fei et al. [26] integrated the advantages of existing importance metrics and proposed
a method to identify critical nodes using relative entropy and the technique for order per-
formance by similarity to idea solution (TOPSIS) method. Hu et al. [27] proposed a sorting
method for influential nodes with structural holes. Thus, the use of entropy for identifying
key nodes has a sound theoretical basis and is the basis of several proposed approaches.

The idea of complex networks originated in the field of statistical physics, where
entropy is an important concept. The primary starting point of this study is the application
of entropy to the identification of important nodes in complex networks. Traditionally,
Shannon entropy [24] has been used to analyze the overall statistical characteristics of
networks. The centrality of nodes considers the importance of a node in the whole network;
thus, the entropy of nodes can be considered as reflecting the importance of a node.
Furthermore, the decision tree, which is very common in machine learning for data analysis,
is also based on entropy.

Inspired by the useful applications of entropy outlined above, we propose a novel
entropy-based metric to measure the importance of nodes in complex networks. The pro-
posed metric, called node propagation entropy, combines the clustering coefficients of nodes
and the influence of the first- and second-order neighbor numbers on node importance
from an entropy perspective. We evaluate the proposed node propagation entropy metric
via epidemic models and robustness experiments. The results of experiments conducted
on twelve real networks from different domains show that the proposed node propagation
entropy metric provides superior performance in terms of monotonicity, rankings list ac-
curacy, and stability. The application of node propagation entropy in complex networks
expands the practical application of information entropy theory.

The remainder of this paper is structured as follows: Section 2 describes the critical
metrics used in the comparison experiments; Section 3 provides the details of the proposed
node propagation entropy metric and its implementation; Section 4 analyzes the experi-
mental performance of the proposed metric; and Section 5 provides concluding remarks.

2. Centrality Indicators

A complex network can be modeled as G = (V,E), where V = {v1,v2, . . . ,vn} is a set of
nodes, E = {e1,e2, . . . ,em} is the set of edges between the nodes, and n, m denote the number
of nodes and edges in the network, respectively. Each edge in E is located between its
corresponding nodes in V.

Many methods have been proposed for the identification and determination of the
significance of key nodes in complex networks in terms of degree centrality, betweenness
centrality, closeness centrality, eigenvector centrality, H-index, and GIN. The definitions of
these methods and metrics are as follows.
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Definition 1 (Important Nodes). Important nodes are nodes that play an essential role in the
organization of network structure or the dynamical behavior of network system [28]. Previous
research has generally used node centrality to quantify node importance. We propose the node
propagation entropy metric to quantify the importance of nodes by calculating node centrality from
an entropy perspective.

Definition 2 (Degree Centrality, DC). The DC [13] of a node, i, is calculated as follows:

DC(i) =
n

∑
j 6=i

aij (1)

where node j represents any node other than i, n is the total number of nodes, and aij denotes the
edge between nodes i and j. If an edge exists, aij has a value of “1”; otherwise, its value is “0”.

Definition 3 (Betweenness Centrality, BC). The BC [14] of a node, i, is calculated as follows:

BC(i) = ∑
j,l 6=i

gjl(i)
gjl

(2)

where nodes j and l represent any two nodes other than i, gjl denotes the number of shortest length
paths from node j to node l, and gjl(i) denotes the number of shortest length paths from node j to
node l via node i.

Definition 4 (Closeness Centrality, CC). The CC [14] of a node, i, is calculated as follows:

CC(i) =

[
N

∑
j

dij

]−1

(3)

where dij denotes the distance from node i to node j.

Definition 5 (Eigenvector Centrality, EC). The EC [16] of a node, i, is evaluated as follows:

EC(i) = xi = c ∑
j∈N(i)

aijxj (4)

where N(i) denotes the neighbors of node i, c is a constant, xi signifies the importance of node
i, and aij denotes the edge between nodes i and j. If the edge exists, then aij has a value of “1”;
otherwise, its value is “0”. We denote x = [x1, x2, x3, . . . , xn]

T , and after several iterations to reach
the steady-state, we obtain the following form:

x = cAx (5)

where x is an eigenvector corresponding to the eigenvalue c−1 of matrix A. In addition, it can be
expressed as Ax = c−1x , where c−1 is the eigenvalue of matrix A.

Definition 6 (H-index). Lü et al. [29] constructed the operator H to act on a limited number of
real numbers (x1,x2, . . . ,xn) which return an integer y, where y is the maximum value satisfying
the condition that there are at least y items in (x1,x2, . . . ,xn), each not smaller than y. Then, the
H-index of node i is calculated as follows:

hi = H(ka, kb, . . . , kc) (6)

where ki denotes the degree of node i and ka, kb, . . . , kc denote the degrees of the node’s neighbors.
We define hi

(0) = ki to be a node i with zero-order H-index. More generally, an n-order H-index (n >
0) is defined as follows:

hi
(n) = H(ha

(n−1), hb
(n−1), . . . , hc

(n−1)) (7)

where the first-order H-index value is the final H-index value, i.e., hi
(1) = hi.
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Definition 7 (GIN). The GIN [17] of a node, i, is calculated as follows:

GIN(i) = e
ki
n ∑

i 6=j

k j

dij
(8)

where ki denotes the degree of node i and * signifies the multiplication operator.

Definition 8 (LGC). The LGC [18] of a node, i, is calculated as follows:

LGC(i) =
ki
n ∑

j 6=i

√
k j + ∂

dij
(9)

where ∂ is a tunable parameter. LGC performs best when ∂ = 0.4 [18]; therefore, we herein set
∂ = 0.4.

3. Materials and Methods

In general, the importance of a node and its impact on other nodes are enhanced
when the node effectively spreads information throughout the network. To evaluate the
ability of nodes to locate important nodes in complex networks, we propose the node
propagation entropy (PE) metric, which combines the clustering coefficients of nodes and
the influence of the first- and second-order neighbor numbers on node importance from an
entropy perspective.

3.1. Node Propagation Entropy

Nodes prefer to form relatively tightly connected groups with each other [30]. This
tendency is greater than the average probability of establishing a random relationship
between two nodes. In complex networks, the clustering coefficient is used as a measure of
the degree of node clustering. The clustering coefficient is divided into the global and local
clustering coefficients. This study uses the local clustering coefficient. The local clustering
coefficient of a node i is given by the ratio of the actual number of edges existing between
the neighboring nodes of node i to the largest number of possible edges. Thus, the local
clustering coefficient of an undirected network is defined as follows:

ci =

2 ∑
j,k∈N(i)

ajk

ki(ki − 1)
(10)

where N(i) denotes all first-order neighboring nodes of node i and ki denotes the degree of
node i. If ki ≤ 1, we allow ci = 0.

Degree centrality states that any increase in a node’s neighbors extends its influence;
therefore, we extend degree centrality to second-order neighbors. The propagation ability
of a node is related to both the number of first-order neighbors and to the number of
second-order neighbors, which is comparable to the probability of befriending the friend of
a friend. Further, we consider the effect of the clustering coefficient on node propagation
ability. According to the random walk theory, information from a node in the network is
transmitted to other nodes to which it is connected with a certain probability; the larger
the clustering coefficient of a node, the easier it is for the information to be transmitted
back. Therefore, the larger the clustering coefficient, the worse the node’s propagation
ability. The larger the average node clustering coefficient, the slower the propagation if
other network parameters remain constant.

Accordingly, we propose the idea of Clustering Coefficient and Neighbors (cn), which
describes the local propagation capacity of nodes and is defined as follows:

cni = (N2(i)+N(i))/(1 + ci) (11)

where N(i) and N2(i) represent the number of first- and second-order neighbors of node i,
respectively; ci denotes the clustering coefficient of node i.

cn only considers local information, not global information. Entropy has been success-
fully used to assess the significance of nodes in a network [31]. Therefore, we adopt the
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definition of information entropy and propose node PE, which considers a certain amount
of global information in the network as an indicator of node importance.

Node PE is defined as follows in Equations (12) and (13):

Ii =
cni

n
∑

j=1
cnj

(12)

where node j denotes any node in a network, n is the total number of nodes, and cnj denotes
the local propagation capacity of node j.

PEi = − ∑
j∈N(i)

Ij ln Ij (13)

where N(i) denotes all first-order neighbors of node i and j represents any node in N(i).
Equation (12) compensates for the deficiency in Equation (11), where the local prop-

agation capacity only considers local information about the nodes. More specifically, it
considers a certain amount of global information about the network which replaces the
relative importance of the nodes with the ratio of the local propagation capacity of each
node to that of the total nodes.

Meanwhile, Equation (13) is based on the definition of information entropy considering
the relative importance of nodes obtained from Equation (12). It replaces the probability of
j with the relative importance of neighbor node j to derive the PE of node i. Node PE states
that the importance of a node should be assessed by considering all its neighbors, and that
each neighbor node contributes differently. −Ij ln Ij indicates the contribution of neighbor
node j. The importance of node i is equal to the sum of the contributions of all neighbors of
node i.

Algorithm 1 outlines the calculation process of PE.

Algorithm 1 Propagation entropy (PE) computation procedure

Input: G = (V,E)
1: Initialize network G
2: for each vertex i in V do
3: if i degree ≤ 1:
4: ci = 0
5: else:
6: compute ci via Equation (10)
7: end for
8: sumcn = 0.0
9: for each vertex i in V do
10: sumneigh = N(i) + N2(i)
11: cni = sumneigh/(1 + ci)
12: sumcn += cni
13: end for
14: for each vertex i in V do
15: Ii = cni/sumcn
16: end for
17: for each vertex i in V do
18: sum_Ii = 0.0
19: for each vertex j in N(i) do
20: sum_Ii += −Ijln(Ij)
21: PEi = sum_Ii
22: end for
23: Rank the PE value of all nodes
Output: An ordered list of nodes

The PE computation procedure comprises four steps. First, calculate the clustering
coefficient of each node (time complexity: O(n2)). Second, calculate the number of second-
order neighbors (time complexity: O(n2)). The time complexity of the third and fourth
steps is O(n). Consequently, the aggregate time complexity of PE is O(n2).



Entropy 2022, 24, 275 6 of 17

3.2. Effectiveness of the Proposed Node Propagation Entropy Metric

In this section, the yeast protein interaction network of Saccharomyces cerevisiae [32]
is used to verify the effectiveness of the proposed node PE metric. Nodes in the network
represent proteins, while each edge represents the interactions between two proteins. The
yeast–protein interaction network contains 5093 nodes and 24,743 edges. Of the 5093 nodes
in the yeast network, 1167 are important, 3591 are unimportant, and the importance of the
remaining 335 is unknown.

We used ten different centrality measures to identify important proteins in this yeast
network. Further, we used the precision metric [33] to evaluate the accuracy with which
the important proteins are identified. The indicator only considers whether the top k nodes
are predicted accurately; its value is equal to the proportion of nodes in the first k nodes
that are predicted accurately. The precision metric is defined as follows:

precision =
np

k
(14)

where np denotes the number of important nodes contained in the first k nodes of the
prediction. k was set as 1167 in this yeast network test.

It can be seen from Table 1 that the accuracy of the PE metric is on par with that of
other importance measures, and PE can accurately identify important nodes in the network.
These results indicate that it is reasonable and adequate to use PE as a metric for evaluating
node importance.

Table 1. Accuracy comparison of important proteins identified by ten different centrality indicators.

Network PE K − Shell + + DC BC CC EC VoteRank H-Index GIN LGC

Saccharomyces 0.375 0.404 0.402 0.35 0.354 0.367 0.351 0.405 0.364 0.404

4. Experiments and Results
4.1. Date

To better demonstrate the validity of the node PE metric for representing the impor-
tance of nodes, we evaluated it on twelve real networks from different domains. None
of the networks allow for the existence of self-loops, i.e., two vertices of an edge having
the same vertex. The twelve real networks comprised (i) two human social networks,
the Train [34] and Karate [35] networks; (ii) a collaboration network, Ca_Sandi_Auth [36];
(iii) an animal network, Dolphins [34]; (iv) a DIMACS10 and a bio-c. elegans neural
network [36]; (v) an email network, Email-Enron [36]; (vi) two miscellaneous networks,
PolBooks [34] and AdjNoun [36]; (vii) an interaction network, Crime [34]; (viii) a metabolic
network, Yeast [34]; a co-authorship network, Netscience [34]; and an infrastructure
network, Uspowergrid [34]. These networks are publicly available and were down-
loaded from http://konect.cc/networks/ (accessed on 13 December 2021) and https:
//networkrepository.com/networks.php (accessed on 13 December 2021).

The topological features of the network dataset are presented in Table 2.

Table 2. Topological features of the twelve actual networks used in the study.

Network n m <c> <k> d

AdjNoun 112 425 0.173 7.589 0.068
Train 64 243 0.561 7.593 0.120

Karate 34 78 0.255 4.588 0.139
Ca_Sandi_Auth 86 124 0.414 2.883 0.034

Email-Enron 143 623 0.434 8.713 0.061
Dolphins 62 159 0.308 5.129 0.084
Polbooks 105 441 0.348 7.589 0.068

Bio_celegansneural 297 2300 0.311 15 0.053

http://konect.cc/networks/
https://networkrepository.com/networks.php
https://networkrepository.com/networks.php
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Table 2. Cont.

Network n m <c> <k> d

Crime 1380 1476 0.009 2.14 0.002
Yeast 1870 2277 0.094 2.435 0.001

Netscience 1461 2742 0.694 3.753 0.001
Uspowergrid 4941 6594 0.08 2.669 0.001

Note: n, total number of nodes in each network; m, total number of connected edges in each network; 〈c〉 = ∑n
i ci
n

is the average clustering coefficient of each network; 〈k〉 = ∑n
i ki
n is the average degree of each network; and

d = 2m
n(n−1) is the network density.

4.2. Evaluation of the Susceptible–Infected–Removed Model

This section focuses on the principles and implementation of the susceptible–infected–
removed (SIR) model to set the stage for subsequent experiments. In the study of infectious
disease dynamics, to analyze the influence of crucial nodes in complex networks, the
SIR model [37] (developed by Kermack and McKendrick in 1927 when they studied the
transmission patterns of the Black Death and plague) is frequently employed. The SIR
model replicates the natural state of disease transmission. It divides the population into the
following three categories: S for susceptible, I for infected, and R for removed (Figure 1).

Figure 1. Susceptible–infected–removed (SIR) epidemic model.

The proportions of individuals in susceptible, infected, and recovered status as a
percentage of the total over time is expressed as follows:

ds(t)
dt = −βi(t)s(t)

di(t)
dt = βi(t)s(t)− γi(t)

dr(t)
dt = γi(t)

(15)

where, s(t), i(t), and r(t) denote those nodes in susceptible, infected, and recovered status at
time t, respectively; β is the infection rate; and γ is the recovery rate.

In the SIR model, the proportion of nodes in different states to all nodes varies with
time (Figure 2). When the probability of infection is high, all susceptible nodes even-
tually become infected over time, whereas all infected individuals are eventually in the
recovered state.

We applied the SIR model to analyze the impact of critical nodes in the complex
networks and to model the propagation of information between the nodes. The propagation
process was as follows. First, one node was infected, and all others were susceptible. In
each time step, nodes in the infected condition infected other neighboring nodes in the
susceptible condition with a probability β (here, set as the prevalence threshold of the
network). Second, each of the previously infected nodes entered the recovered state with a
probability γ (set as 1) [18,38]; nodes in the recovered state would not be reinfected. The
process of propagation was reiterated until the network was free of infected nodes. The
propagation capability of node i is expressed by Ri, which is the mean number of final
nodes recovered over 1000 independent runs, with each independent run of node i being
the only infected seed. The higher the value of Ri, the better is the propagation capability
of node i. Third, a list of nodes ranked in descending order of importance was obtained
based on the propagation ability of the nodes in the network.
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Figure 2. Variation in the percentage of different state nodes in the SIR model.

Based on the theory of heterogeneous mean fields [39], the prevalence threshold of the
SIR model was approximated as

βc =
< k >

< k2 > − < k >
(16)

where <k> denotes the mean degree of community c.

4.3. Evaluation of the Susceptible–Infected–Removed–Susceptible Model

The SIR model, the Susceptible–Infected–Removed–Susceptible (SIRS) model [40], is
obtained by adding antibody time to the SIR model. Further, in the SIRS model the recov-
ered only have temporary immunity. After the antibody time, they become susceptible and
may be infected again. This divides the total population into the following three categories:
S for susceptible, I for infected, and R for removed (Figure 3).

Figure 3. Susceptible–infected–removed–susceptible (SIRS) epidemic model.

The proportions of individuals with susceptible, infected, and recovered status as a
percentage of the total over time is expressed as follows:

ds(t)
dt = −βi(t)s(t) + λr(t)

di(t)
dt = βi(t)s(t)− γi(t)

dr(t)
dt = γi(t)− λr(t)

(17)

where, s(t), i(t), and r(t) denote those nodes with susceptible, infected, and recovered status
at time t, respectively; β is the infection rate; λ is the loss of immunization rate; and γ is the
recovery rate.

4.4. Kendall Coefficient (τ)

We used the SIR and SIRS models to produce a descending order rankings list of node
importance based on their propagation ability in the network. The Kendall coefficient,
τ [41], was applied to estimate the correlation between the importance rankings list obtained
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by each importance measure and the real importance rankings list generated by the SIR
model. The higher the τ value, the higher the correlation between the two rankings lists
and the higher the accuracy of the results obtained by the method. The closer the Kendall
coefficient is to one, the more accurate the ranking result is and the more effective the
method is in identifying important nodes.

The Kendall coefficient considers a pair of binary groups consisting of two sets of
random variables, X and Y. For any pair (Xi, Yi) and (Xj, Yj), the pair of binaries is said
to be consistent if both Xi > Xj and Yi > Yj or Xi < Xj and Yi < Yj. They are considered
inconsistent if Xi > Xj and Yi < Yj or Xi < Xj and Yi > Yj; if Xi = Xj or Yi = Yj, the pair is
neither consistent nor inconsistent. The Kendall coefficient, τ, is calculated as follows:

τ =
2(nc − ni)

n(n− 1)
(18)

where nc and ni denote the number of consistent and inconsistent binary groups, respec-
tively, and n denotes the number of binary groups. The Kendall coefficient τ is in the range
[−1, 1]. Ideally, if τ = 1, then the rankings list produced by the degree centrality metric is
identical to the rankings list produced by the actual propagation process.

4.5. Epidemic Models Experiment

This section compares the node PE metric with nine other node importance metrics:
K-shell++, DC, BC, CC, EC, PE(N2), H-index, GIN, and LGC. In order to compare the
performance of cn and N2, we use PE for PE calculated with cn and PE(N2) for PE calculated
with N2. First, the SIR and SIRS models were applied to determine the impact of nodes on
the dynamic propagation process to obtain the node propagation ability generated by the
natural propagation process of the ranked list. Then, the Kendall coefficient was applied to
estimate the extent to which the node PE metric was similar to the propagation capability
of a single node. The performance of the other nine comparison metrics was similarly
measured using the Kendall coefficient.

The correlation between the rankings lists provided by the ten different importance
measures for nine real networks in different domains and the rankings list obtained from
the SIR model by adjusting the infection rate, β, are depicted in Figure 4.

Figure 4 shows that the fold of the node PE metric is at the top of each comparison
plot, especially near the threshold value where the value of τ for PE is largest, indicating
its effectiveness in identifying vital nodes. When 0.1 ≤ β ≤ 0.4, PE obtained larger τ
values in the nine real networks, especially in the Adjnoun, Ca_Sandi_Authh, and PolBooks
networks, indicating that PE more accurately identified important nodes in the networks.
In large networks, such as Crime and NetScience, PE performed well and obtained the
maximum τ value for both networks, indicating that PE has an advantage in identifying
important nodes. In contrast to certain centrality measures, the performance of which
fluctuated widely from network to network, the node PE metric performed well across
networks, indicating its stability.

When the contagion probability, β, is very low in the SIR model, the disease does not
spread because the infected node has only a small probability of infecting its neighbors;
hence, the node only infects a limited area or not at all, making it difficult to measure the
proper spread of the node. Conversely, when the transmission rate is high, the disease
infects a large proportion of nodes regardless of which node it started from, which is
meaningless for comparing the impact of individual nodes. Therefore, we focused on the
range in which the transmission rate was around the epidemic threshold [39].

From Table 3, we obtained the τ values of each importance metric under the prevalence
threshold of each network, from which it can be seen that the node PE metric performed
better than the other importance metrics; PE performed best for eight of the nine networks.

The nine real networks used in the SIR model experiments are representative networks
in various fields, and the experimental results are general. Figure 4 and Table 3 show
that PE obtained higher τ values for all nine networks, especially the Ca_Sandi_Auth,
Email-Enron, Dolphins, Crime, and Polbooks networks, for which the value was higher
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than that of the other nine methods. The closer τ was to one, the more accurate the sorting
results were. We found that PE tends to perform better than PE(N2), indicating that cn
is better suited to identify important nodes than N2. The results show that PE identified
the critical nodes in the network more accurately, and had strong applicability and good
performance in most networks.

Figure 4. Performance comparison of the critical indicators in the SIR model for different values of β

(infection rate). Each subgraph (a–i) of the graph represents a real network; the network name is at
the top of the graph and the vertical dashed line inside the graph indicates the prevalence threshold
of that network. The performance of the node propagation entropy, PE, is highlighted in red, and
the performance of the node propagation entropy, PE(N2), is highlighted in green. The higher the
τ value, the better the performance of the corresponding centrality methods.
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Table 3. Performance of the SIR model for ten indicators under a prevalence threshold, β, of nine
networks. The best-performing results are highlighted in bold.

Network PE K − Shell + + DC BC C EC PE(N2) H-Index GIN LGC

AdjNoun 0.894 0.780 0.828 0.641 0.866 0.925 0.844 0.716 0.905 0.827
Train 0.892 0.740 0.830 0.558 0.763 0.761 0.849 0.661 0.857 0.809

Ca_Sandi_Auth 0.858 0.555 0.572 0.428 0.658 0.772 0.808 0.433 0.776 0.578
Email − Enron 0.854 0.768 0.822 0.488 0.676 0.853 0.844 0.703 0.852 0.827

Dolphins 0.909 0.713 0.747 0.541 0.652 0.707 0.898 0.577 0.856 0.75
Polbooks 0.864 0.715 0.762 0.362 0.378 0.601 0.802 0.611 0.737 0.775

Crime 0.869 0.596 0.648 0.654 0.854 0.786 0.857 0.582 0.861 0.647
Netscience 0.751 0.471 0.540 0.378 0.337 0.656 0.730 0.424 0.551 0.539

Yeast 0.748 0.407 0.503 0.474 0.672 0.606 0.689 0.460 0.694 0.503

The correlation between the rankings lists provided by nine different importance
measures, six real networks in different domains, and the rankings lists obtained from the
SIRS model by adjusting the infection rate β are shown in Figure 5.

Figure 5 shows that PE performed the best compared to the other eight importance
measures on both small and large networks. We found that the performance of degree
centrality was best when the value of β was small. This might be because when the infection
rate is small, it is difficult for infected nodes to infect other nodes; at this time, the more
neighboring nodes a node has, the more likely it is that the node will infect other nodes,
which is consistent with reality. Figure 5 shows that the rankings list obtained from PE
correlates more strongly with that obtained from the SIRS model as the infection rate
increased, especially when β was near the prevalence threshold, and was higher than other
importance indicators. Therefore, the rankings list of nodes obtained by PE was more
accurate, and PE identified important nodes in the network accurately.

Table 4 shows that we obtained the τ values of each importance metric under the
prevalence threshold of each network, from which it can be seen that the node PE met-
ric performed better than the other importance metrics; PE performed the best on all
six networks.

Table 4. Performance of the SIRS model for nine indicators under the prevalence threshold, β, of nine
networks. The best-performing results are highlighted in bold.

Network PE K − Shell + + DC BC CC EC H-Index GIN LGC

Train 0.770 0.676 0.722 0.477 0.718 0.696 0.635 0.762 0.716
Dolphins 0.802 0.646 0.691 0.497 0.596 0.672 0.525 0.768 0.688
Polbooks 0.745 0.641 0.676 0.341 0.352 0.550 0.522 0.670 0.671

Crime 0.875 0.592 0.649 0.651 0.853 0.775 0.582 0.868 0.649
Netscience 0.744 0.473 0.552 0.378 0.341 0.644 0.431 0.549 0.551

Yeast 0.747 0.400 0.495 0.468 0.668 0.610 0.473 0.692 0.495

Figure 5 and Table 4 show that in the six real networks used in the SIRS model
experiment, regardless of size, the importance rankings list obtained by PE was more closely
related to the real importance rankings list simulated by the SIRS model. Furthermore,
the τ value was higher and better than that of the other eight importance indexes. In
addition, the results show that PE could identify the important nodes in the network in the
SIRS model.
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Figure 5. Performance comparison of the critical indicators in the SIRS model for different values of
β (infection rate). Each subgraph (a–f) of the graph represents a real network; the network name is
at the top of the graph, the vertical dashed line inside the graph indicates the prevalence threshold
of that network, and the performance of the node PE metric is highlighted in red. The higher the
τ value, the better the performance of the corresponding centrality methods.

4.6. Robustness Experiment

This section evaluates the accuracy of the algorithm in identifying important nodes
from the perspective of robustness [42] and whether the significance of a node is determined
by the impact on network connectivity after removing the node. We assess the impact of
node failure on network connectivity through the largest connectivity coefficient [43]; the
greater the impact, the more important the failed node is.



Entropy 2022, 24, 275 13 of 17

A connected component is a network subgraph in which any two nodes in a subgraph
are connected. There are many disconnected networks in the real world. These are broken
down into multiple connected components, in which the connected component with the
largest number of nodes is called the largest connected component [43]. The size of the
largest connected component reflects the connectivity of a complex networks. The scale of
the largest connected component changes owing to the removal of nodes. After removing
the important nodes, its scale becomes smaller; the greater the change, the more crucial the
nodes that were removed. Hence, the robustness of the network was estimated with the
largest connectivity coefficient.

The largest connected coefficient (denoted r) can be defined as the ratio of the number
of nodes contained in the network’s largest connected component to the overall number of
nodes in the network. It is formulated as follows:

r =
nc

n
(19)

where nc denotes the number of nodes contained in the network’s largest connected
component after the removal of some nodes and n denotes the total number of nodes
in the network. The value varies according to the ratio of the number of nodes removed
from the network to the overall number of nodes in the network, which is denoted f.
A gradual decrease in the r value is observed as the number of nodes removed increases.

By drawing the network nodes on two-dimensional coordinates in terms of the impor-
tance evaluation algorithm, the curve of the change in the largest connectivity coefficient of
the network was analyzed after the nodes were removed one by one on the basis of their
order of importance, from largest to smallest. The more pronounced the downward trend
of the curve, the better the effect of the algorithm. Eight different real-world networks
respectively used six different importance measures to sort the nodes and remove them in
order of importance from largest to smallest (Figure 6).

We used the robustness value, R [42,44], to estimate the performance of the method; R
is calculated as follows:

R =
1
n

n

∑
j=1

rj (20)

where n denotes the total number of nodes in the original network and rj signifies the
largest connected coefficients after removing j nodes. Every time a node is removed, the
largest connectivity coefficient of the network is calculated and added to R; this process
iterates until the network is empty. Consequently, the smaller the final R value is, the faster
the network crashes, illustrating that the important nodes identified by the algorithm are
more accurate.

We analyzed the robustness of the above six different importance measures on the
basis of connectivity. Table 4 presents the evaluation results of their robustness, R.

From Equation (19), it was inferred that the smaller the robustness value, the faster
the network collapses, expressed as better performance of the algorithm in identifying
important nodes. Table 5 shows that PE rapidly reduced the maximum connectivity
coefficient, r, of the network on all eight networks, with the smallest R value, and identified
the important nodes in the network. The results verify that when PE removed network
nodes in order of importance from largest to smallest, it minimized the robustness; i.e., the
node PE metric accurately identified the important nodes in the network.
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Figure 6. Downward trend of the maximum connectivity coefficient of the critical indicators for
different values of f (the proportion of removed nodes to the overall number of nodes). The hori-
zontal coordinate denotes the node removal ratio f, and the vertical coordinate denotes the largest
connectivity coefficient value, r, after the removal of the node. Each subgraph (a–h) of the graph
demonstrates the results of an experiment on a real network. The subgraph is ordered in increments
by the total number of network nodes. At the same node removal scale, f, the more noticeable the
maximum connectivity coefficient downtrend is, the more important the removed node is deemed to
be. The graphs show that the downward trend of PE on eight networks is faster than that of the other
five indicators, illustrating that PE performed the best. In conclusion, the PE indicator has the highest
practical value.
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Table 5. Robustness (R) values for six indicators of eight networks. The best-performing results are
highlighted in bold.

Network. PE K − Shell + + CC EC H − Index GIN

Ca_Sandi_Auth 0.082 0.210 0.131 0.164 0.143 0.112
AdjNoun 0.315 0.373 0.329 0.338 0.316 0.333

Email − Enron 0.319 0.386 0.325 0.391 0.324 0.347
Bio_celegansneural 0.351 0.387 0.398 0.389 0.364 0.374

Crime 0.168 0.291 0.246 0.290 0.180 0.247
Netscience 0.093 0.625 0.186 0.434 0.408 0.172

Yeast 0.065 0.163 0.132 0.213 0.084 0.123
Uspowergrid 0.073 0.200 0.197 0.294 0.097 0.165

5. Discussion

This paper proposed a novel importance metric, node PE, for identifying critical nodes
in complex networks. Node PE achieves this by combining the effects of the clustering
coefficients and number of first- and second-order neighbor on the importance of nodes
from an entropy perspective while considering the global and local information of the
network. We applied the proposed method to nine real networks in order to evaluate its
performance, and simulated the propagation process using the epidemic model. The rank-
ing correlation between the rankings lists (those generated by different centrality metrics
and that generated by simulation results) was measured using the Kendall coefficient, τ.

The results of comparative experiments conducted using nine different importance
measures, specifically, K-Shell++, DC, BC, CC, EC, H-index, GIN, and LGC, showed that
our proposed node PE metric provides superior performance and is relatively stable as
compared to other methods. We observed that PE provided very accurate results in the
epidemic models as well as in the robustness experiments. Furthermore, our proposed
measure outperformed other measures and was consistent on most networks. Through
experimental demonstrations on twelve real networks from different domains, the proposed
node PE metric proved to be more effective and stable in identifying significant nodes in
complex networks. However, there are limitations to node PE, such as the fact that it is
designed to be used only on undirected networks. In future work, we will investigate the
viability of the node PE metric in directed networks and verify whether PE is predictive in
real-world contexts.
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