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Abstract: The minimun description length (MDL) is a powerful criterion for model selection that is
gaining increasing interest from both theorists and practicioners. It allows for automatic selection of
the best model for representing data without having a priori information about them. It simply uses
both data and model complexity, selecting the model that provides the least coding length among
a predefined set of models. In this paper, we briefly review the basic ideas underlying the MDL
criterion and its applications in different fields, with particular reference to the dimension reduction
problem. As an example, the role of MDL in the selection of the best principal components in the
well known PCA is investigated.

Keywords: minimum description length; principal component analysis; dimension reduction;
classification; features extraction

1. Introduction

Dimensionality reduction plays a crucial role in the analysis of high-dimensional data.
It consists of reducing the number or the dimension of features referred to in a given class
of data without losing the capability of being distinctive for that class. It represents a critical
issue in classification, as it has been widely proved that classifiers are not able to reach
their goal whenever the number of features is too high (too much data) or too small [1,2].
The literature is rich in methods and approaches for reaching this goal; some well-known
and popular examples are principal components analysis (PCA) [3], non-negative matrix
factorization [4], isomaps [5], t-distributed stochastic neighbor embedding [6], uniform
manifold approximation and projection for dimension reduction [7], autoencoders [8],
multidimensional scaling (MDS) [9], and so on. Each one is based on one or more criteria
to use for dimension reduction. For example, principal components analysis (PCA), which
represents one of the most popular and commonly used methodologies, mainly consists
of an orthogonal projection of the data onto a lower-dimensional linear space, where the
variance of the data is preserved or maximized. As a matter of fact, the dimension reduction
problem resembles the sparsity problem, as it requires condensing the peculiarity of the
object of interest, which makes it distinguishable from others, into a very small number of
features. This comparison/connection is as true as those features that are the coefficients of
a given transform: linear or not linear, redundant or not redundant, defined by a single basis
or a dictionary. However, the data compaction/compression task is a longstanding, still
unsolved, and open problem that has been partially overcome by introducing a dictionary
of bases. However, even in this case, it is necessary to define a fast and effective algorithm
for the selection of the most significant elements of the dictionary.

The equivalence between dimension reduction , sparsity, and optimal coding tasks,
especially in the blind context, is well summarized and conveyed by the minimum descrip-
tion length (MDL) principle, which allows the selection of a good model for approximating
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the data with the least complexity [10]. It is based on the concept that good compression
means good approximation, which is in agreement with the Kolmogorov complexity.

The MDL principle was formulated about 30 years ago [10,11]. It is mainly based
on information theory principles and has inherited several aspects from the Kolmogorov
complexity [12]. It has been designed as a statistical inference method [13], where the
rationale is that the observed data have to be compressed by the model. Several candidate
models can be then compared on the basis of how much they can compress data—by
retaining useful information while discarding noise. It turns out that the best model (i.e.,
the model along with its free parameters) will be the one that gives the shortest code for
the data under examination [14,15]. It is worth outlining that MDL changes the perspective
of model selection. In fact, it does not assume any ’true’ model for the specified data, as
do classical probability and Bayesian models. It simply tries to do its best with the set of
available candidate models. The basic principle founding MDL is, then, very simple: the
simplest model that fits the data well is also the best one.

The simplest formal way to implement MDL is the crude MDL (or two-part code);
it selects a model from a set of candidates by minimizing the total cost that is defined as
the cost (expressed in terms of bits) required for coding the model plus the number of
bits required for coding the data given the model. It is worth observing that the latter
is strictly related to the ability of the model to represent the data, and it is often reached
by costly models. Hence, the selection of the best model consists of a trade-off between
the complexity of the model and good data representation/coding. Unfortunately, the
practical construction of the MDL functional is not trivial, nor is its minimization. This
is why the literature is rich in proposals that allow researchers to address one or more
of these technical issues. In any case, despite the difficulty in designing effective and
computable algorithms, many papers demonstrate, both theoretically and empirically, that
the information-theoretic minimum message length principle has some advantages over
the standard maximum likelihood estimate [16,17]. In addition, as proved in [18,19], a
robust, monotonically convergent, and moderately short algorithm for the selection of the
optimal two-part MDL code can be defined only by taking advantage of the concept of
Kolmogorov complexity.

MDL was originally designed for model selection (see, for instance, [13,20–23]) and
it has been successively applied in different contexts and for different tasks, such as, for
example, picking and tuning the best parameters for a given model [14,15]. However,
as mentioned at the beginning of this section, in this paper, we are mainly interested in
focusing on the feature reduction problem and, specifically, on how MDL can help with
’automatically’ setting the number of components in PCA [24–26]—this represents one
of the widely used tools for dimension reduction. To this end, the approximation of the
normalised version of the MDL functional proposed in [27] has been studied and applied
to some conventional data classification problems.

The remainder of the paper is organized as follows. The next section reviews the
theoretical formulation of MDL principle. Section 3 presents a brief overview of some of the
main uses of the MDL principle in the field of data processing, with a particular focus on
principal component analysis. To show the advantages and potentialities of this framework,
some numerical examples concerning MDL-PCA are presented in Section 4, with reference
to data classification. Finally, Section 5 draws the conclusions.

2. A Short Review about MDL

The interest of the scientific community has been increasing in recent years, and
different versions of MDL have been proposed. In the following, a short overview of the
crude MDL (sometimes dubbed ’two-part’ code) will be given. However, the normalized
maximum likelihood (NML) is actually the most-adopted version of MDL, as it provides an
effective solution that is supported by an elegant formalism. Hence, a short review of NLM
will be provided. The following explanation is not exhaustive at all. For further reading, an
introductory and simple lecture on NML can be found in [13], while a technical summary
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can be found in [21,28,29]. Details concerning how NML can be used to select the optimal
number of features in a classification problem will be given in the next section. Specifically,
the approach in [27] will be presented and discussed in order to evaluate pros and cons of
NML as a ’features reduction device’.

As already outlined, the simplest formal way to implement MDL is the crude MDL.
Specifically, the simplest model that fits a given data sample xxx well is also the best one. It
turns out that the best MDL model M̄, from a set of candidatesM(1),M(2), . . . is given by
the following minimization:

M̄ = argmin
M=M(1),M(2),...

l(M) + l(xxx|M), (1)

where l(M) is the cost (in terms of bits) for coding the modelM, and l(xxx|M) is the cost
required for coding the data xxx given the model. This minimization is not trivial, as it leads
to the best trade-off between two competing requirements: the approximation performance
of the model and its cost—measured in terms of bits. The result will then be a suitable
balance between (model) complexity and (data through the model) representation.

From Crude MDL to Refined MDL: NML

Crude MDL can be considered the first implementation of the Rissanen philosophy.
However, its use is limited in different applications, as it usually needs a suitable weight
λ for balancing the two cost terms that define the functional minimized in Equation (1).
In fact, as emphasized in [21], ”it is more problematic to find a good code for hypotheses
M and often ‘intuitively reasonable’ codes are used; however, it can happen that the
description length l(M) of any fixed point hypothesis M can be very large under one
code, but quite short under another”, making the procedure somewhat arbitrary. There are
several approaches in the literature that use crude MDL in a empirical way by applying a
corrective weight to one of the lengths in Equation (1), or by properly selecting the coding
procedure [15,30,31]—even with optimal performance. A way of making MDL perform
better while still being elegant consists of its refined version, namely, the normalized
maximum likelihood (NML). In order to introduce this, some preliminary information
theory concepts have to be recalled.

In information theory, it is well known that any message xxx, i.e., a sequence of n symbols
x1, x2, . . . xn belonging to a binary alphabet H = {0, 1}, can be encoded and compressed in
a new message yyy with m symbols with m ≤ n — as matter of fact, there is no constraint
on the alphabet: the only request is a finite cardinality, and the binary one allows us to
denote messages’ lengths in terms of bits. In other words, message xxx can be compressed,
giving the (possibly) shorter message yyy. More formally, we can say that the codelengths
of xxx and yyy satisfy the following relation, l(xxx) ≥ l(yyy), where l is the codelength function.
There are various ways to encode xxx. A property required for the codewords that have to
encode xxx is that they belong to a prefix code: any codeword must not be a prefix of any
other. This requirement is necessary to produce a uniquely decodable code that is also
instantaneous: any codeword can be decoded once it has been received [12]. This class
of (prefix) codes plays a fundamental role, as it regulates the foundations of information
theory. On the one hand, there is a sort of equivalence between probability distributions
and prefix codes. For any probability density function (pdf) p, there is a corresponding
prefix code able to encode xxx via a code with length l(xxx) = −dlog2 p(xxx)e, where d·e denotes
the first integer ≥ ·. On the other hand, Shannon’s source coding theorem states that this
code, with its relative (ideal) length l(xxx)− log p(xxx), is optimal for xxx and then for p. To make
the presentation more general, in this paper, log will be used by considering a generic basis.
From an Information Theory point of view, log2 should be used in agreement with the only
language any real device understands: the binary one.

Now, let us suppose that we have a familyM of distributions f (·|θθθ) depending on
one or more parameters θθθ. Let us suppose that we have to select among them the model
that better fits xxx. Obviously, the best approximation, i.e., the best code for any data xxx, will
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be f (·|θ̂θθ), where θ̂θθ is the maximum likelihood estimate for the data xxx. The codelength of
the optimal encoding for xxx, using any distribution ofM, is called the stochastic complexity
of xxx with respect toM. However, the optimal encoding of xxx, using f (·|θ̂θθ), cannot be used
in practice, as its code cannot be specified before data observation. It turns out that an
alternative strategy must be found. In particular, the idea is to determine a distribution,
and then a code, that performs as well as the family of distributions belonging toM [20].
MDL suggests introducing the concept of universal distribution pu, formally defined as:

− log(pu)(xxx) ≤ − log( f (xxx|θ̂θθx) + Cn(M),

where Cn(M) behaves as o(n), i.e., limn
Cn(M)

n = 0. The corresponding code will be de-
noted with universal code. Cn(M) characterizes the universal distribution and represents
the maximum difference between the two codes (the universal and the maximum likelihood
ones). It is worth observing that more than one universal distribution may exist, and each
one is characterized by its own Cn(M); however, apart from a constant, they are almost
equivalent and good to approximate xxx.

As already outlined, NML does not assume a ’true’ distribution. It simply requires
a distribution that is able to fit the data, separating useful information (to preserve) from
noise (to discard) [32]. Keeping in mind that, theoretically, the best the model family can do
on a dataset xxx is − log f (xxx|θ̂θθx), but this is useless from an information theory point of view
because it requires prior knowledge of the data xxx; the universal distribution pu(xxx) allows
us to write the additional cost required to encode it, as it follows:

− log pu(x) + log f (xxx|θ̂θθx).

This quantity is called ’regret’ of p(xxx) with respect toM with the data xxx. It expresses the
fact that the universal distribution pu(xxx) works well, but not ’perfectly’, as the original
(hypothetical) distribution that originates data xxx does not exist. Now, the natural question
is: which is the worst case scenario?

It can be simply written as a regret, and then:

R(pu||M) = max
q

Eq

[
log

f (xxx|θ̂θθx)

pu(xxx)

]
∀q.

Such a regret should hold for any distribution q, while Eq is the relative expectation. The
expression above recalls the Kullback–Leibler divergence [12] that was originally designed
for measuring ’the extrabits’ required when a message is encoded through a ’wrong’
distribution. Hence, the problem can be seen as a minimax one, and it can be formalized as
follows:

f NML = argp min
p

max
q

Eq

[
log

f (xxx|θ̂θθx)

p(xxx)

]
.

It is worth providing a few additional details about the equation above.
q stands for any probability distribution that guarantees that Eq

[
log q(xxx)

f (xxx|θ̂θθx)

]
is finite.

f NML is then the NML solution, and it is defined as [20,33]:

f NML =
f (yyy|θ̂θθx)∫
f (yyy|θ̂θθy) dyyy

. (2)

It is straightforward to see that θ̂θθy is the ML for the data xxx. Moreover, the denominator
integrates over the ML of all possible datasets in a specified context (the one that originated
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xxx). The corresponding codelength −log ( f NML(xxx)) is the stochastic complexity of xxx with
respect toM, that is,

sc(xxx) = − log f (xxx|θ̂θθx) + log
∫

f (yyy|θ̂θθy)dyyy.

It is worth outlining that it is not required for pu and q to belong to the model M as well as
f NML—an interesting example is in [13], where the selected distribution does not behave
as the one that originated the data.

The stochastic complexity is composed of two terms: the first one quantifies how much
the model M approximates the data xxx, while the second one is a measure of the complexity
of M. The latter is interesting, as it describes ’how many data’ can be well fitted by the
model M: as many data can be fit by M as the model M is complex [34].

Finally, an equivalent definition of complexity is provided by the minimum of the
worst-case expected regret—details can be found in [33]. Additional aspects concerning
MDL, such as asymptotic approximations to NML, and its relation to Bayesian statistics and
MDL predictive inference, are out of the scope of this contribution—a deeper but simpler
reading concerning these topics can be found in [13].

3. MDL Applications: A Review

Despite the difficulty of its practical application and implementation, MDL has been
widely used in different fields by introducing different kinds of approximation, technical
tricks, bounds, and so on, for practically using and adapting it to each context. Rissanen
himself accurately studied the problem of MDL-based denoising and clustering. In the
first case, noise is considered the incompressible part of the data [35]; as a result, MDL can
provide the best threshold value whenever denoising is performed in the wavelet domain.
In the second one [36], optimal clustering provides the best compression, i.e., the lowest
coding cost for each cluster. In this section, we briefly describe some examples of the variety
of applications and uses of MDL by grouping them with respect to the main purpose of the
specific application they refer to.

Most of papers concerning MDL mainly use it according to its general and original
meaning, i.e., the compression and learning model. In this context, it is worth mentioning
some recent studies which provide new practical MDL-based ways to compute tight com-
pression bounds in deep-learning models. In particular, in [37], it has been observed that
prequential coding yields much better codelengths than variational inference, correlating
better with the test set performance — we remind that in the prequential coding, a model
with default values is used to encode the first few data; then, the model is trained on
these few encoded data; the partially trained model is used to encode the next data; then,
the model is retrained on all data encoded so far, and so on. On the contrary, in [38],
an MDL-based strategy is used for determining a parameter-free stopping criterion for
semi-supervised learning in time series classification, while in [39], the problem of model
change tracking and detection has been addressed and studied in both data-compression
and hypothesis-testing scenarios. In the first case, an upper bound for the minimax regret
for model changes has been found; in the second one, error probabilities for the MDL
change test have been derived, and they rely on the information-theoretic complexity, i.e.,
the complexity of the model class or the model itself and the α-divergence. In a more recent
paper [40], the same author introduced the descriptive dimension that characterizes the
performance of the MDL-based learning and change detection. In the context of machine
learning, MDL has been used for preventing overfitting [41], especially in the case of little
available training data. In particular, it has been used for ensuring that there is less informa-
tion in the weights than in the output vectors of the training cases; to this aim, the model
cost is the number of bits it takes to describe the weights, and the cost of the data given
the model is the number of bits it takes to describe the discrepancy between the correct
output and the output of the neural network on each training case. Very recently, in [42],
the neural network training process has been seen as a model selection problem, and the
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model complexity of its layers has been computed as the optimal universal code length by
means of a normalized maximum likelihood formulation. This kind of approach offers a
new tool for analyzing and understanding neural networks while speeding up the training
phase and increasing the sensitivity to imbalanced data. More generally, model selection
theory allows for an information-theoretic analysis of deep neural networks through the
information bottleneck principle [43,44].

With regard to fitting/regression, in [45], MDL is used to successfully reduce the
number of false positives in best-fitting-based gene regulatory networks that govern specific
cellular behavior and processes. In particular, it has been proved that MDL-based filtering
strategies can be computationally less burdensome than using the MDL algorithm alone;
in fact, the computation of data-coding length is more complex than calculating the error
estimate of the best-fit algorithm, and the computational complexity increases dramatically
as the sample size increases. In the same application context, MDL is used for finding
the optimal threshold that defines the regulatory relationships between genes [46]. In a
different context, and using a different strategy, MDL is used for determining the number
of modes in non stationary and highly oscillating signals [31], while in [47], MDL allows
for unsupervised spectral unmixing of spectrally interfering gas components of unknown
nature and number.

A pioneering paper concerning MDL-based clustering is [48], where a simple MDL
cost functional is used to search the tree for a level of clustering with a minimum description
length. In [36], the MDL principle is used for data clustering based on the assumption that
a good clustering is such that it allows efficient compression when the data are encoded
together with the cluster labels. It is worth stressing that, based on the observation that an
efficient compression is possible only by discovering the underlying regularities that are
common to all the members of a group, this approach also implicitly defines a similarity
metric between the data items. Formally, the global code length criterion to be optimized
is defined by using the intuitively appealing universal normalized maximum likelihood
code, which has been shown to produce optimal compression rates in an explicitly defined
manner—the local independence of the model has to be assumed to get a computable algo-
rithm. Ref. [49] presents a study concerning the use of MDL, specifically, the normalized
maximum likelihood (NML) version, in the dynamic model selection. The aim is to track
changes of clustering structures so that the sum of the data’s code-length and clustering
changes’ code-length is minimized. The study is restricted to the Gaussian mixture model
for representing the data, and it has been shown that the proposed method is able to
detect cluster changes significantly more accurately than the Akaike information criterion
(AIC)-based methods [50] and Bayesian information criterion (BIC) [51]-based methods—
an application to market analysis is proposed. In [52], MDL is used for IoT applications.
Specifically, a hierarchical clustering is applied for grouping datasets received from sensor
nodes: if any pairs of received datasets can be compressed by the MDL principle, they are
combined into one cluster.

MDL based strategies are successfully applied for solving the dimension/features
reduction problem. Among them, it is worth mentioning the one recently presented in [27],
where MDL has been used for the selection of the number of components for the PCA
method. Since it is not trivial to practically define MDL, a linear regression model has
been used as the bound for its normalized version. In the same context, MDL-based matrix
factorization has been proposed in [53], where the objective function is designed through
an MDL-based formulation to guide the formation of the matrices defining the model,
allowing an automatic and natural trade-off between accuracy and model complexity.
In [54], the problem of finding the appropriate feature functions and number of moments
is formulated as a model selection problem. MDL is then used for solving it, and it has
also been shown that it generalizes the minimax entropy principle. The method has been
successfully applied to the gene selection problem to decide on the quantization level and
number of moments for each gene; however, the extension to problems involving larger
datasets requires more efficient approximations to calculate the complexity.
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As further examples, MDL can also be properly used for selecting: (i) the least number
of image points from which image quality is assessed, in agreement with the human visual
system information coding approach, as in [30]; (ii) features, which are selected adaptively
during online learning, based on their usefulness for improving the objective function, as
in [55] ; (iii) points on shapes defined as curves to allow for shape recognition, as in [56];
(iv) a characteristic subset of patterns on labeled graphs with complex shapes and that
are representative of the data, as in [57]. Interesting MDL applications are also the ones
that directly work in the wavelet domain and that further take adavantage of the data
decorrelation and compaction properties of the transform. For example, in [58], the MDL
principle is used for preventing over- or underfitting problems in detrending near-infrared
spectroscopy (NIRS) data for neuroimaging applications; in [59], the same principle is
used for wavelet-based compression and, in particular, for the selection of the best wavelet
and threshold, while in [60], the soft-thresholding-based denoising problem is considered.
Finally, in [61], the noisy and original data are properly separated by determining their
histogram and retaining the coefficients belonging to specific bins—the optimal set of bins
is found by minimizing the sum of the two code lengths for the denoised signal and the
noise.

Finally, with regard to the computational cost required by the implementation of an
MDL-based method, several efforts have been made in the literature. As a representative
example, we mention the method presented in [62], where a computationally feasible
algorithm for computing the NML (normalized maximum likelihood) criterion for tree-
structured Bayesian networks has been proposed. In particular, the exponential time,
required for building Bayesian trees and forests, has been reduced to a polynomial law—
in this way, the advantages offered by the information-theoretic normalized maximum
likelihood (NML) criterion in Bayesian network structure learning are preserved and easily
exploited.

NML for Dimension Reduction in PCA

As mentioned in the Introduction, in this paper, we focus on MDL-based feature
reduction and, in particular, on the ’automatic’ selection of the number of components in
PCA (principal component analysis). The standard measure of quality of a given principal
component is the proportion of total variance that it accounts for. As a result, very often,
the desidered percentage is fixed and the number of components is derived. However,
the number of components often depends on the specific task, and setting the optimal
percentage of variance to retain is sometimes user-dependent. However, as the problem
is crucial, different methods and criteria have been proposed in the literature. A possible
classification of those methods refers to the methodological approach [63,64], i.e.:

• ad-hoc rules, as, for example, the Cattel’s scree test [65] and the indicator function [66];
• statistical tests, such as Bartlett’s test [67] and the Malinowski’s F-test [68];
• computational criteria, such as cross-validation (CV) [69], bootstrapping and permuta-

tion, such as Horn’s parallel analysis [70], and SVD-based methods [71].

However, it has been shown that each selection method performs differently in real
cases, depending on the task. In addition, most of them require a certain computational
burden—see [69] for a complete review.

An interesting approach that combines NML and PCA is contained in [27], where an
elegant formulation for solving this problem is proposed.

Let us suppose that XXX is an n×m matrix, containing the data or the corresponding
features. The PCA of XXX consists of the following minimization:

argWWW,ZZZ:rank(W)=rank(Z) min ||XXX−WZWZWZT ||2F, (3)

where WWW and ZZZ are two matrices whose sizes, respectively, are n × k and k × m, and
whose rank is equal to k, while || · ||F denotes the Frobenius norm [72]. The following
theorem [25,73] holds that:
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Theorem 1 (Eckart–Young–Mirsk). Let XXX = UΛVUΛVUΛVT be the SVD (singular value decomposi-
tion) of XXX, with ΛΛΛ = diag(λ1, . . . , λm), while UUU and VVV are unitary. Let UUUk and VVVk be the ’reduced
versions’ of UUU and VVV, i.e., containing their first k columns, then:

||XXX−WZWZWZT ||2F ≥ ||XXX−UUUkdiag(λ1, . . . , λk)VVVk||2F =
m

∑
i=k+1

λ2
i , (4)

with WWW = UUUkdiag(λ1, . . . , λk); ZZZ = VVVk.

This theorem shows that any ’selection/reduction’ component leads to a loss of
information, and it also quantifies this loss. It turns out that, in principle, Equation (4)
could be combined with the NML solution in Equation (2) in order to get the formal
stochastic complexity of the PCA-based reduction of X to k components. Unfortunately, the
evaluation of the denominator in Equation (2) is not trivial, as it depends on the eigenvalues
of arbitrary matrices. The approach presented in [27] suggests a way to address this issue
by adopting the NML of linear regression that takes advantage of quantized versions of the
unitary matrices VVVk. The main trick of this approach consists in considering the generative
form of PCA, i.e.,

XXX = WWWkVVVT
k + η,

where η ∼ N (0, τIIIk) is the error that is supposed to be normally distributed, and by
considering a perturbation of the matrix Vk as follows:

Vε
k = Vk + εEk,

where ε is the quantization bin size for the values of the unitary matrix Vk (whose elements
belong to the range (−1, 1)), with ε ≤ 1

m and |Ek| ≤ 1
2 , and by writing the corresponding

NML—see [27] for the technical details. It turns out that the problem resembles the linear
regression one, where the elements of the unitary matrix VVV are suitably quantized using the
quantization parameter ε. This way leads to the following result, in agreement with [35]:

Theorem 2. Let sc(XXX; k) be the stochastic complexity of the PCA-based reduction of XXX to k
components, then:

sc(XXX; k) ' (nm− kn) log
(
∑m

i=k+1 λ2
i
)
+ nk log(||XXXTXXX||2F) +

+(mn− kn− 1) log
(

mn
mn−kn

)
− (nk + 1) log(nk) + ∆s, (5)

with 0 ≤ ∆s ≤ mk log(2/(mε)), n×m as the dimension of XXX, and ε as the quantization bin, such
that ε < 1

m .

It is worth observing that the first term in the second member of Equation (5) represents
the code length of the part of the data that adds no further information about the optimal
model, i.e., the information that can be neglected; the remaining terms define the length of
a code from which the optimal model, which is defined by the ML parameters and that
belongs to the subclass of quantized loading matrices of rank k, can be decoded. As a result,
the optimal number of principal components is the value of k that minimizes the second
member of Equation (5), and the latter only depends on quantities that are known or that
can be computed directly from the data.

4. Experimental Results

To better evaluate pros and cons of the theoretical results presented in the previous
section, three numerical experiments are presented, referring to two very different datasets.
The first dataset is the hyperspectral image Indian Pines [74], captured through the AVIRIS
sensor at the Indian test site of North-Western Indiana; each spectrum contains the spectral
information of 220 bands in the 0.4–2.5 µm wavelength region, and it is classified in one of
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the 16 (+ background) identified classes (such as farmland, forest, highway, housing); each
image is composed of 145× 145 pixels. In particular, the corrected Indian Pines dataset has
been downloaded, in which the number of spectral bands is reduced to 200 by removing
the ones covering the region of water absorption. The second dataset consists in 162 ECG
recordings from the PhysioNet database [75] obtained from three groups of people with
cardiac arrhythmia (96 records), congestive heart failure (30 records), and normal sinus
rhythms (36 records). For comparative studies, two standard methods for the selection of
the number of components to be retained have been considered. The first one refers to the
percentage of variance that the components are required to retain; in particular, 90%, 95%,
and 99% of the variance of the original data have been considered; the second one refers to
the Bartlett test [67]. All tests have been performed implementing a Matlab code (release
2021) on a Intel(R) Core(TM) i7-1065G7 CPU 1.30GHz-1.50 GHz workstation with RAM
equal to 16GB.

For the sake of clarity, we split the formula of sc(XXX; k) in Equation (5) into the following
terms:

1. a = (nm− kn) log
(

∑
min(m,n)
i=k+1 [λ2

i ]
)
;

2. b = nk log
(
||XTX||2F

)
;

3. c = (mn− kn− 1) log
( mn

mn−kn
)
;

4. d = −(nk + 1) ln(nk);
5. e = mk log

( 2
mε

)
, i.e., the upper bound of ∆s.

The value of the quantization parameter ε has been selected using the theoretical re-
sults concerning high resolution quantizers [76]. In this context, the distortion is minimized
with a uniform scalar quantization, which means that the distortion has to be significantly
less than the variance of the signal to quantize [77]. That is why ε has been selected two or
three orders of magnitude less than the variance of the matrix VVV of the SVD decomposition
of original data matrix XXX.

TEST 1 The first test is carried out on the hyperspectral dataset and follows the numerical
experiments presented in [27]. A set composed of N signals randomly picked from
N different classes (N ≤ 16) plus P random linear combinations of them corrupted
by Gaussian noise has been considered—the weights of the linear combination are
extracted from a normal distribution of non-negative values with variance σ2 = 1,
while the Gaussian noise is zero mean, with standard deviation equal to σ = 0.001.
The goal is to find the number of the original signals N.
Each column of the resulting matrix XXX is a signal so that the dimension of XXX
is n × m, with n = 200 being the number of spectral bands and m = (N + P)
being the total number of signals. In agreement with [27], the following two
configurations have been considered: (i) N = 5 and P = 25, (ii) N = 10 and P = 20.
In both cases, the number of independent components N is correctly identified.
Figure 1 depicts the behaviour of sc(XXX; k) with respect to k. As can be observed, the
estimated stochastic complexity clearly presents a minimum in correspondence to
k = N. It is worth noting that the local relative minimum shown by the two curves
is caused by the term a, which depends on the singular values. The quantization
step ε has been set equal to 10−8. However, it is worth noting that, in this case,
the choice of the quantization parameter is not crucial, since the contribution of
the term e to the general trend of sc(XXX; k) is negligible when compared with the
contribution of the term b. The computing time required for performing the test
has been less than 0.066 s.

TEST 2 The second test refers to ECG data. Here, the same number of signals is randomly
selected from the three classes, and the aim is to identify the number of classes.
It is worth observing that, in this case, the dimension of the data matrix XXX is such
that m ≤ 90, while n = 65536. As a consequence of this imbalance, the combined
effect of the terms a and d for not-normalized data, and of the term d in the case of
data normalized w.r.t the (euclidean) norm of the signal with a maximum norm,
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leads to a trivial absolute minimum corresponding to k = m, independently of the
choice of the quantization step ε—resulting in a not-consistent estimation of the
cost of the model. This results in the conclusion that the formula in Equation (5)
generally fails in any case for which the length of the signals n far outweighs their
number m. In Figure 2, the shape of sc(XXX, k) is depicted for both not-normalized
and normalized data, ε = 10−8, and m = 90 (30 recordings from each class).
Similar plots are obtained for m = 60 and m = 30. The computing time required
for performing the test has been less than 0.135 s. More consistent results are
obtained by sampling the analyzed signals; however, sampling may cause the
loss of some distinctive features for the signal belonging to the different classes,
resulting in the estimation of a smaller number of independent classes, as is shown
in Figure 3. In this case, a NML depending on both the number of components
and the sampling step would be preferable.

Figure 1. TEST 1. (Top) Red dotted line: sc(XXX; k) versus the number of components k for N = 5,
P = 25; the minimum is correctly attained at k = 5. Blue dashed line: sc(XXX; k) versus the number
of components k for N = 10, P = 20; the minimum is correctly attained at k = 10. (Bottom) The
same plot where log(sc(XXX; k)) has been considered to improve its readability in correspondence to
the minimum value.
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Figure 2. TEST 2. Plot of sc(XXX; k) and its components versus the number of components k. (Top):
non-normalized data. (Bottom): normalized data.

Figure 3. TEST 2. (Top) Plot of sc(XXX; k) and its components versus the number of components k.
Signals have been uniformly sampled so that the dimension of XXX is n×m = 66× 90. (Bottom) Plot
of log(sc(XXX; k)).

TEST 3 The third test aims at using the proposed NML-based feature reduction method in
a more interesting (real) case concerning hyperspectral image classification.
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For classification purposes, the conventional approach consists of first reducing the
dimensionality of the data by applying PCA, and then feeding the transformed data
to an SVM (support vector machine), which classifies them. It is straightforward
that the selection of the right number of new components is a core problem, and
often, several trials are needed to find the best classification score, resulting in a
time-consuming and computationally expensive process.
Our intent is to determine whether minimizing sc(XXX; k) allows us to simplify the
process, i.e., if it could be a good choice to simply select the first k̂ components,
where k̂ minimizes sc(XXX; k). For the numerical experiment, the procedure adopted
in [78] is taken as a reference, and the results concerning the Indian Pines dataset
are compared with the ones presented there. Accordingly, the training set for the
SVM is composed of 10% of the samples in each class, randomly selected and
normalized; these samples are the columns of the matrix XXX that is analyzed. As
depicted in Figure 4, the value k̂ which minimizes sc(XXX; k) is 22, which is consistent
with the best classification result for PCA+SVM obtained in [78], as shown in
Figure 5.
In this case, the ε-dependent term e plays a key role in determining the trend of
sc(XXX; k) for two reasons: first, the arguments of the logarithms in the terms b and
e have the same magnitude; second, the dimensions n and m of the matrix XXX are
such that n << m, so that the term e overwhelms the term b as k grows. It turns
out that, in this case, the selection of the quantization step ε is crucial. As in the
first test, the presented results refer to ε = 10−8 and the required computing time
has been about 1.10 s.

Figure 4. TEST 3. Plot of sc(XXX; k) and its components versus the number of components k; the
minimum is attained at k = 22.

Figure 5. TEST 3. (Left) Ground-truth Indian Pines image; (Middle) classification image using the
best result of PCA-SVM in [78]; (Right) classification image using the PCA-SVM method and the
number of components estimated using the stochastic complexity, as in Equation (5).

To conclude this section, Table 1 contains the number of components selected using
standard criteria for the selection of components in PCA, i.e., the percentage of the total
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variance and Bartlett’s test. The table refers to the three tests described above. As it can
be observed, the MDL criterion is able to select the number of components closer or equal
to the expected one in almost all tests, showing some robustness to the task. This is due
to the fact that the MDL criterion tends to maximize the accuracy with the least cost. This
confirms the potential of the MDL criterion in feature reduction procedures and offers a
new and different approach to the solution of the selection of the best principal components’
number.

Table 1. Number of principal components selected for the three tests by using different criteria:
percentage of variance to be retained (90%, 95%, 99%), Bartlett’s test with significance level α equal
to 0.05 and 0.01, and the MDL criterion. The last column contains the expected number.

Test 90% 95% 99% Bartlett’s Test Bartlett’s Test MDL True
(α = 0.05) (α = 0.01) Value

Test 1 1 1 1 30 30 5 5

Test 2 37 52 75 90 90 90 3

Test 2 2 6 24 63 63 2 3
(decimated data)

Test 3 2 6 27 161 159 22 22

5. Conclusions

This short review has shown some of the main features of MDL by referring to a few
specific applications. MDL is appealing in data approximation-based problems, as it simply
uses available data and models to make the best choice. In fact, the rationale of discarding
the hypothesis that a ’true’ distribution produced the current data is a conceptual step
forward in data analysis. In addition, apart from the model selection problem, MDL has
shown, in its different declinations, to be an effective tool for many other applications. The
selection of the suitable number of features to adopt in the classification process is only
the latest of the several applications where it plays a fundamental role. In addition, this
specific use opens new possible ways in machine/deep learning that implicitly or explicitly
depend on both the type and the number of features. On the other hand, as the presented
simulations have shown, MDL often suffers from an explicit or implicit dependence on one
or more parameters that have to be set. Usually, this is not a critical step, as setting them
often is easier than competing approaches. However, this is one of the main points to be
investigated in the future research.
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