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Abstract: We investigate the response characteristics of a two-dimensional neuron model exposed to
an externally applied extremely low frequency (ELF) sinusoidal electric field and the synchronization
of neurons weakly coupled with gap junction. We find, by numerical simulations, that neurons can
exhibit different spiking patterns, which are well observed in the structure of the recurrence plot (RP).
We further study the synchronization between weakly coupled neurons in chaotic regimes under the
influence of a weak ELF electric field. In general, detecting the phases of chaotic spiky signals is not
easy by using standard methods. Recurrence analysis provides a reliable tool for defining phases
even for noncoherent regimes or spiky signals. Recurrence-based synchronization analysis reveals
that, even in the range of weak coupling, phase synchronization of the coupled neurons occurs
and, by adding an ELF electric field, this synchronization increases depending on the amplitude of
the externally applied ELF electric field. We further suggest a novel measure for RP-based phase
synchronization analysis, which better takes into account the probabilities of recurrences.

Keywords: neuron; electric field; weak coupling; gap junction; synchronization; recurrence plot

1. Introduction

Action potentials, or spikes, are responsible for the transmission of information
through the nervous system [1]. A neuron can generate various temporal patterns of
spike signals when it is driven by stimuli or noise from both internal or external envi-
ronments. Therefore, analyzing spiking patterns of neurons under different stimulations
plays an important role in the exploration of the encoding and decoding mechanism of
information for neurons. External environmental stimuli in the brain can be of various
origins, such as a wide utilization of power lines or electrical equipment. Electromagnetic
exposure in the environment today is nearly one hundred times stronger than in previous
centuries and many neuronal diseases are probably caused by electromagnetic exposure,
as reported by Huang et al. [2]. Experiments with transcranial electrical stimulation have
shown that electric field magnitudes in the cortex can be as high as 0.4 mV/mm for a 1 mA
stimulation current. For typical electrode configurations used in clinical trials, maximal
field intensities of up to 0.8 mV/mm were found when applying 2 mA. More extended
areas can reach values of 0.28 mV/mm (95th percentile) under 2 mA stimulation [3–5].

An electromagnetic field can affect the neuron sensibility [6–9]. It also exhibits the
excitability of many nerve cells, such as hippocampal cells, or cortical neurons [10,11].
Neurons exposed to an electromagnetic field can change the normal firing properties,
which may lead to many neural diseases such as amyotrophic lateral sclerosis, senile
dementia, Parkinson’s disease, and Alzheimer’s disease [7,12–14].
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On the other hand, neurons are strongly coupled in the brain, and they need to
synchronize information to encode and decode. Synchronization is a universal concept
of nonlinear dynamics [15]. In the brain system, synchronization is a typical form of
group motion rhythm, which means the neurons discharge at the same time or their
discharge rhythms have at least some kind of relationship [16,17]. Neuronal synchrony
activities can be found not only among coupled neuron groups in the same brain region
but also among uncoupled neuron groups in the same brain region or among different
cortical areas; moreover, synchronization can cross over two hemispheres of the brain [18].
Synchronization processes are crucially important for the neuronal system, and well-
coordinated synchrony within and between neuronal populations appears to play an
important role in neuronal signaling and information processing.

To study synchronization between neurons, different models of neuron dynamics have
been developed, such as the Hodgkin–Huxley (HH) model and all the models derived
from it. One of the derived models is the Morris–Lecar (ML) model [19,20]. It has the
advantage of exhibiting class I and II neurons. Most studies on neuron synchronization
use the Morris–Lecar model under an external electric field. For example, Kitajima and
Kurths [21] investigated forced synchronization of electrically coupled class I and class II
neurons under different coupling strengths. It was found that class II neurons have a wide
parameter region of forced synchronization. However, in general, such studies did not
consider the effect of small variations of the coupling strength between neurons.

The assumption of weak neuronal connection is based on the observation that the
typical size of a postsynaptic potential is less than 1 mV, which is small in comparison to the
mean potential necessary to discharge a cell or the average value of the action potential [22].
In a study of synaptic organization and dynamical properties of weakly connected neuronal
oscillators, Hoppensteadt and Izhikevich [23] showed some phase synchronization between
neurons in this range of coupling. Moreover, Izhikevich [24] studied the synchronization
of elliptic bursters in a range of weak connectivity and found that such weakly connected
bursters need few bursts to synchronize and synchronization is possible for bursters having
quite different quantitative features. These phenomena were found in different neuron
models, such as the FitzHugh–Rinzel, ML, and HH models.

The important question is if, even in the range of small coupling strength, a pair
of neurons weakly coupled with gap junction are able to synchronize under the effect
of an electric field (EF). Because electromagnetic stimulation can cause many disorders
in the neural system, the theoretical investigation of the impact of an external EF on
the synchronization of weakly coupled neurons is an important step to understand what
happens in the brain during this exposure. Thus, in this work, we study the synchronization
of a pair of ML neurons weakly connected with gap junction under an externally applied
extremely low frequency (ELF) EF. Here, extremely low frequency means a frequency
range between 0 and 10 Hz. Mammalian neurons show intrinsic resonance with frequency
selectivity for inputs within the range from 4 to 10 Hz [25–30]. Gap junctions (channels that
physically connect adjacent cells) provide an efficient and extremely fast way to propagate
those signals between neurons [31,32]. In contrast, signal transmissions via chemical
synapses have a significant delay (in the order of milliseconds) [33] and are not fast enough
to respond to the EF. Therefore, we consider here coupling via gap junction, allowing direct
response to the ELF EF. Using recurrence plot-based time series analysis, we investigate
how the applied EF affects the condition of synchronization of the coupled neurons. This
specific method has the advantage of being able to compare the phases of chaotic weakly
coupled systems, even within noncoherent regimes or for spiky signals [34].

Recurrence plots (RPs) represent manifold recurrence features of a dynamical system
in phase space [35] and are widely applied in the field of neuroscience [36–42]. For exam-
ple, RPs can differentiate the stochastic and deterministic dynamics of irregularly firing
cortical neurons [43] and show the average dynamics within a network of synchronized
neurons [44] or spontaneous activity in neuronal in vitro cultures [45]. They are also pow-
erful tools to study inter-relationships, coupling directions, phase synchronization, and
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generalized synchronization [34,46–48] and have been applied in different fields, such as
chemistry, engineering, physiology, financial markets, and climatology [41,49–53]. Based
on EEG measurements, the joint recurrence and the correlation of probability of recurrence
were used to reconstruct brain networks [54,55]. A similar approach was used to study the
synchronization between neurons based on the Hindmarsh–Rose model [39].

The correlation of probability of recurrence is a commonly used measure for recurrence-
based phase synchronization analysis [34,50]. However, this measure is based on Pearson
correlation and, thus, has a methodological concern because of the spiky nature of the
probability of recurrence.

In this study, we first formulate the mathematical modeling of a single ML neuron and
present typical neuron bursting patterns under varying ELF EFs and their corresponding
recurrence features as obtained by RPs. We then study the synchronization of two weakly
coupled chaotic bursting neurons with and without the influence of an ELF EF. We present
the effect of EFs on the mismatch of the mean frequencies of both neurons, even when
they are weakly connected. For this purpose, we suggest a slight modification of the
recurrence-based phase synchronization measure.

2. Model
2.1. Morris–Lecar Neuron Model under an Extremely Low Frequency Electric Field

The ML neuron model is a model for electrical activity in the barnacle muscle fiber [19].
It is a simplified version of the HH neuron model for describing the discharge and the refrac-
tory properties of real neurons. It can explain the dynamical and biophysical mechanisms
of the action potential initiation. This model is chosen as a compromise between a realistic
representation of neuronal dynamics and an analytically tractable system. Furthermore,
it has an advantage in that the excitability of types I and II can be obtained with a single
parameter change. It can also exhibit a variety of bursting types involving regular bursting
or irregular bursting and complex bifurcation structures [20,56–58].

The ML model has a fast activation variable v (membrane voltage) and a slower
recovery variable w. v represents voltage (expressed in mV) and controls the instantaneous
activation of fast currents (ifast); w is a function of v and controls the activation of slower
currents (islow). c dv

dt is the current flowing through the capacitor related to the variation of
ionic density between external and internal faces of the membrane. ifast, islow, and ileak are
ionic currents characterizing the movement of charged particles through the ion channels.
This movement of charged particles is due to the opening and closing of each ion channel.
istim and c are the external input current and the membrane capacity, respectively. Finally,
this model is given by the following equations:

c
dv
dt

= istim − ifast − ileak − islow (1)

dw
dt

= ϕ
m2(v)− w

b(v)
(2)

with the currents

ifast = gfastm1(v)(v− eNa)

islow = gsloww(v− eK)

ileak = gleak(v− eleak).

The parameters eNa, eK, and eleak represent the equilibrium potentials of Na+, K+,
and leak ions, respectively, and gfast, gslow, and gleak are the maximal conductances of the
corresponding ion currents. They reflect the ion channels’ densities distributed over the
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membranes. Control parameter ϕ is used to control the rate of change of w. The steady
states m1 and m2 are nonlinear functions of v, given by

m1(v) = 0.5
(

1 + tanh
v− u1

u2

)
(3)

m2(v) = 0.5
(

1 + tanh
v− u3

u4

)
(4)

b(v) =
1

cosh v−u3
2u4

. (5)

u1 and u3 are the activation midpoint potentials at which the corresponding currents are
half activated. u2 and u4 denote the slope factors of the activation. The time constant
of the potassium activation is b. When a time-varying ELF EF is applied to the brain,
it can induce a charge movement in the brain tissue; in which case, the current flow
occurs mostly in the extracellular medium [59]. Therefore, an external EF will induce a
membrane depolarization ∆v which will modulate neuronal bursting behavior. For the
sake of simplicity, we consider a steady external sinusoidal electrical field

ve =
A
ω

sin ωt + VE (6)

where VE is the direct voltage, A the amplitude, and ω the frequency of the ELF EF. The
field-induced membrane depolarization ∆v can be expressed by [60]

∆v =
A
ω

sin ωt− cos ωt

1 + (ωt1)
2 + VE (7)

with t1 significantly small and the frequency in the extremely low frequency area ωt1 � 1.
Thereby, Equation (7) can be simplified to

∆v =
A
ω

sin ωt + VE. (8)

According to Equation (8), the sinusoidal EF ve equals its field-induced membrane
depolarization ∆v. Considering that ∆v acts as an additive perturbation to the membrane
potential, the dynamics of a neuron during exposure can be described by [61]

c
dv
dt

= istim −
d∆v
dt
− ifast − ileak − islow (9)

dw
dt

= ϕ
m2(v)− w

b(v)
(10)

with

ifast = gfastm1(v)(v + ∆v− eNa)

islow = gsloww(v + ∆v− eK)

ileak = gleak(v + ∆v− eleak).

We assume that the synaptic input current istim = 0 in order to study the response of a
cortical neuron model exposed to an external sinusoidal field. Throughout this paper, we
use the same parameter values for the ML model as explained in Table 1 [62].
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Table 1. Parameters used for the ML model.

u1 −1.2 mV gfast 20 mS/cm2 eNa 50 mV ϕ 0.15
u2 18 mV gslow 20 mS/cm2 eK −100 mV c 2 µ
u3 −13 mV gleak 2 mS/cm2 eleak −70 mV VE −17.63 mV
u4 10 mV

2.2. Bursting Patterns of a Neuron

To explore how the neuron model responds to the externally applied ELF EF, we
study the dynamics described by Equations (9) and (10) under the sinusoidal stimulus ve,
Equation (6). The simulations are implemented using the 4th-order Runge–Kutta method
with a time step of 0.01 ms. Initial conditions are chosen as the resting values of membrane
voltage in the absence of stimuli, that is, v(0) = −65 mV and w(0) = 0. The length of
the time series is 2000 ms. The response of a neuron induced by an EF depends on the
EF’s frequency ω (Figure 1 for ω in the range 0 ≤ ω ≤ 0.5 rad/ms). The amplitude of the
external EF is set very small, A = 0.1.

The firing pattern of a neuron stimulated by an external EF varies when changing the
frequency ω (Figures 1 and 2). For an ELF EF with very low frequency, the neuron fires
periodically. We find n spike bursting states, and the number n can be large. n spike bursting
means that we have n action potentials in every stimulus period (Figures 1A–D and 2) for
ω = [0.001, 0.120] rad/ms. After this range ω of n-periodic bursting, the neuron bursts
synchronously to the stimulus ω = [0.121, 0.280] rad/ms. After this range of ω, the
neuron exhibits a chaotic response (Figure 1E) with ω = [0.281, 0.320] rad/ms where the
membrane potential responses are aperiodic and irregular. As ω is further increased, a
mode locking pattern of bursting appears (Figure 1F), finally followed by synchronized
firing with only one action potential in every stimulus, which can maintain this state for a
long-term frequency band (Figure 1G). Neuron dynamics are obviously very sensitive to
the frequency of the stimulus by the ELF EF.
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Figure 1. Spiking patterns of ML neuron membrane voltage under an external EF for different
frequencies: (A) ω = 0.02 rad/ms, (B) ω = 0.05 rad/ms, (C) ω = 0.06 rad/ms, (D) ω = 0.10 rad/ms,
(E) ω = 0.286 rad/ms, (F) ω = 0.32 rad/ms, and (G) ω = 0.5 rad/ms.
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Figure 2. Bifurcation diagram of ML neuron dynamics under an external EF for varying frequencies
ω (based on interspike intervals of the membrane voltage). For better visibility of the dynamics for
larger ω, the y-axis was bounded to 250 ms.

3. Recurrence Quantification Analysis (RQA)

In the following, neuron dynamics will be studied using recurrence quantification
analysis (RQA). This method quantifies certain recurrence features of the dynamical system
in its corresponding phase space [35,63]. We define a recurrence of a trajectory ~x(t) ∈ Rm

(with m the dimension of the system) of a dynamical system by saying that the trajectory
has returned at time t = j to the former point in phase space visited at t = i (with i ∈ [1, N]
and N the length of time series) if

Ri,j = Θ
(

ε−
∥∥~x(i)−~x(j)

∥∥) (11)

where ε is a pre-defined threshold and Θ(·) is the Heaviside function. We have a matrix of
(0, 1), where 1 at (i, j) means that ~x(i) and ~x(j) are neighbors and 0 means that they are not.
The resulting black and white representation of this binary matrix is called a recurrence
plot (RP). For the selection of the recurrence threshold ε, different strategies are available,
depending on the research question [64–69]. Here, we use an approach to select ε in a way
that ensures a certain recurrence point density. This allows a better comparability between
RPs of different systems [68].

The RP method has been intensively studied and applied in the last years. Different
measures of complexity have been proposed that can classify different dynamics, identify
dynamical transitions, or detect couplings, causality, or synchronization [35].

If not all state variables of the state vector ~x are available, a phase space reconstruction
has to be applied. Here, we use the recently proposed PECUZAL method to reconstruct
the phase space trajectories [70]. This method allows us to use multiple embedding delays
τ. The embedding parameters are listed in Table 2.

Table 2. Embedding parameters indicated by the PECUZAL algorithm.

Time Series Dimension Delay

4 spike burst (ω = 0.05 rad/ms) 3 17, 22
2 spike burst (ω = 0.10 rad/ms) 2 16, 20

chaos (ω = 0.286 rad/ms) 2 20
1 spike (ω = 0.5 rad/ms 2 19

RPs of the different bursting neurons represent a typical pattern (Figure 3, using an
ε that ensures a recurrence point density of 0.15). Each “dashed-dotted” diagonal line in
the RPs corresponds to a spike. For the alternating spiking behavior, we have a set of
dashed lines followed by an extended black region (Figure 3A,B). The set of n spikes is
well distinguished by the number of dashed lines (see some orange boxes marked in the
figure). The block-like black region represents the silent state between each stimulus, which
is a period for which the neuron cannot respond to a stimulus. On the small scale, the
diagonal lines show some additional patterns, i.e., small structures sitting perpendicularly
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at these lines or thickenings, similar to bumps or knobs. This is a typical feature of slow–fast
systems [71].
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Figure 3. RPs of the membrane voltage v of selected bursting neurons: (A) 4 spike burst (ω =

0.05 rad/ms), (B) 2 spike burst (ω = 0.10 rad/ms), (C) chaos (ω = 0.286 rad/ms), and (D) 1 spike
(ω = 0.5 rad/ms). Diagonal lines represent the spikes, the larger extended structures represent the
“silent” epochs, and the structures perpendicular to the diagonal lines and small thickenings represent
the slow–fast dynamics (blue circle in (D)). The orange boxes in (A,B) mark a sequence of diagonal
lines. The number of diagonal lines counted from the main diagonal of such a box towards the corner
of this box represents the number of spikes within this period. Recurrence threshold ε is selected to
ensure a recurrence point density of 0.15.

In order to go beyond the visual impression of the RP, we use recurrence quantification
analysis (RQA) [35,72]. The RQA measures are based on the recurrence point density
and the diagonal and vertical line structures of the RP. For example, the recurrence point
density 1

N2 ∑ Ri,j corresponds to the probability that a state will recur. The calculation of
this measure can also be restricted to a diagonal-wise calculation, i.e., the recurrence point
density along a diagonal with distance τ from the main diagonal Ri,i = 1 [35]. This gives
us an estimator of the probability that the system returns to a previous state after time τ
and is called the τ-recurrence rate,

RRτ =
1

N − τ

N−τ

∑
i=0

Ri,i+τ (12)

where τ is the set time and N the total number of points in the phase space. The distance
between the peaks in an RRτ plot corresponds to the period length of oscillations or the
interspike intervals of spike trains similar to the neuron’s spiking/bursting patterns.
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The spike trains of 4 spikes, 2 spikes, chaos, and 1 spike have their specific probability
distributions for recurrence after lag τ (Figure 4). Where the 1-periodic spike occurrence is
clearly visible for 1 spike (Figure 4D), the 2 and 4 spikes produce more subtle probability
distributions, revealing different periodicities and large blocks between the bursting periods
(Figure 4A,B). The RRτ of the chaotic bursting exhibits a more complicated distribution of
peaks corresponding to the unpredictable occurrence of spikes (Figure 4C).
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Figure 4. Probability of recurrence after time τ (τ-recurrence rate) for the bursting neurons as shown
in Figure 3: (A) 4 spike burst, (B) 2 spike burst, (C) chaos, and (D) 1 spike. The n bursts are visible as
the rather thin side peaks of the main peaks (in addition to the main peak).

4. Coupling of Two Bursting Neurons
4.1. Model and Numerical Simulation

A coupling between ML neurons is realized by a gap junction. We suppose that
the two neurons are slightly different by considering different values of u2 and u3 in
Equations (4) and (5), i.e., u2,1 = −18.0 mV and u2,2 = −18.1 mV, and u3,1 = −12.8 mV
and u3,2 = −10 mV for neurons 1 and 2, respectively. Moreover, both neurons start using
different initial conditions v1(0) = −65.6 mV and v2(0) = −60 mV. We integrate the model
for 50,000 time steps (with dt = 0.05) and remove the first 10,000 points as transients. Using
the ELF EF frequency that leads to chaotic bursting ω = 0.286 rad/ms, the coupled chaotic
bursting ML neurons under ELF EF exposure can be expressed as

c
dv1

dt
= istim −

d∆v1

dt
− i1,fast − i1,slow − i1,leak − g(v1 − v2) (13)

dw1

dt
= ϕ

m2(v1)− w1

b(v1)
(14)

c
dv2

dt
= istim −

d∆v2

dt
− i2,fast − i2,slow − i2,leak − g(v2 − v1) (15)

dw2

dt
= ϕ

m2(v2)− w2

b(v2)
, (16)

where g is the gap which represents the electrical junction between the neurons. With these
two different chaotic neurons, we will now study the phase synchronization between them
and focus on the range of weak coupling, i.e., with 500 values of g within the interval
g = [0, 0.15] (Figure 5).
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Figure 5. Spiking pattern in the membrane voltage of two weakly coupled neurons in an ELF EF in
chaotic regime (ω = 0.286) with (A) no synchronization with g = 0.01 and (B) phase synchronization
with g = 0.04.

When bursting begins at the same time in the coupled neurons, we have bursting
synchronization irrespective of the neurons’ spiking behaviors within a given burst event.
From a dynamical point of view, since we assign a phase that increases by 2π at each
burst event, we regard bursting synchronization as a kind of phase synchronization [73].
Thus, first we will determine the phase of each chaotic bursting neuron. A frequently used
approach to calculate the phase of a signal is using the Hilbert transformation [15]

φ(t) = arctan 2
(
vH(t), v(t)

)
(17)

where vH is the complex part of the Hilbert transform of the membrane voltage v(t) and
φ(t) increases continually with time. Since chaotic neurons have chaotic spikes, the phase
of chaotic neurons changes also chaotically. Unfortunately, this approach does not work
well for spiky signals and can cause slipping of the instantaneous phases. Nevertheless, for
long-term averages, it provides useful results.

To detect phase synchronization of chaotic coupled neurons and to evaluate the ef-
fect of an ELF EF on this synchronization, we first consider the absolute phase difference
between the membrane voltage of both neurons without and with applied EF. Phase syn-
chronization occurs if the difference φ1(t)− φ2(t) between the phases of the two neurons
does not grow with time [74]. This means that the two neurons, on average, generate spikes
almost simultaneously. With the knowledge of the phase φ(t), the frequency ω̄(t) = dφ(t)

dt

and the mean frequency Ω =
〈

dφ(t)
dt

〉
can be defined. A weaker form of synchroniza-

tion is frequency locking. Frequency locking between coupled systems can be measured
by the mismatch between the average frequencies ∆Ω = Ω1 − Ω2, with ∆Ω → 0 for
phase locking.

The weakly coupled neurons show frequency locking without ELF EF when the
coupling exceeds a critical value (Figure 6). The frequency mismatch ∆Ω between both
neurons is constant between g = 0 (no coupling) and g = 0.025. After this value, ∆Ω
is decreasing and vanishes around g = 0.066, indicating the onset of synchronization
frequency locking between the neurons.

With ELF EF applied, the frequency difference is smaller, even for g = 0, and decreases
much faster than without EF; the neurons become frequency-locked for g = 0.037 (Figure 6).
Thus, in a range of weakly connected neurons, applying an external ELF EF on the chaotic
coupled ML neurons enhances frequency-locked synchronization. This confirms earlier
findings of synchronized neurons using a different model of weakly connected bursters [24].
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Figure 6. Frequency mismatch between chaotic coupled neurons for increasing coupling g without
external EF (red) and with external EF where A = 0.1 and ω = 0.286 (blue).

Since the firing pattern strongly depends on the amplitude of the ELF EF, we expect
that the occurrence of frequency locking also depends on this external stimulus amplitude.
In fact, we find that an amplitude value of A = 0.15 is strong enough to cause a complete
synchronization of two neurons even without coupling (Figure 7). Therefore, we select a
lower amplitude value of A = 0.1, where we still have a significant frequency mismatch
between the uncoupled neurons. A weak coupling between the neurons leads, finally, to
frequency-locked synchronization for lower ELF EF amplitudes.
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Figure 7. Frequency mismatch between chaotic coupled neurons for increasing amplitude A and for
different coupling strengths g.

To test for phase synchronization, i.e., whether the difference φ1(t)− φ2(t) remains
constant, we will use an alternative method which can derive the phases of spiky signals in
a more reliable way.

4.2. Phase Synchronization Analysis Using Recurrence Features

Phase synchronization is related to recurrence of states. Therefore, RPs are a natural
tool to study phase synchronization [35]. The spiking pattern causes regular and almost
periodic occurrence of diagonal line structures in the RPs (Figure 8). Here, we use a recur-
rence threshold ε to ensure a recurrence point density of 0.1. Although we notice a certain
amount of similarity between the RPs of neuron 1 and neuron 2 in the nonsynchronized
regime, we still see deviations in the line patterns of the RP of neuron 2 (Figure 8A,B). In
contrast, the RPs of neuron 1 and neuron 2 for the in-phase synchronized regime show a
striking similarity (Figure 8C,D).
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Figure 8. Recurrence plots of the membrane voltage for weakly coupled neurons as shown in Figure 5
for (A,B) no synchronization, g = 0.01, and (C,D) phase synchronization, g = 0.04. Embedding
parameters were estimated using the PECUZAL method [70]; the recurrence threshold is selected to
ensure a recurrence rate of RR = 0.1.

The vertical distance between these diagonal line structures is related to the phase.
Therefore, we can use the density of recurrence points along diagonals parallel to the main
diagonal, the τ-recurrence rate RRτ , Equation (12), as an estimator of the phase distribution
and compare it between different systems. For two nonsynchronized systems, the recur-
rence probabilities should differ significantly (Figure 9A). During phase synchronization,
RRτ should have high probabilities at the same τ values; thus, the shape of RRτ should be
very similar (Figure 9B). Therefore, RRτ has been used to construct a measure for phase
synchronization between two signals x1 and x2 by calculating the Pearson correlation of
probability of recurrence (CPR) between RRx1

τ and RRx2
τ [34]

CPRP =
cov(RRx1

τ , RRx2
τ )

σRR
x1
τ

σRRx2
τ

, (18)

with σRRτ the standard deviation of the corresponding RRτ series. CPR values of 1 would
then correspond to phase synchronization and 0 to no synchronization. Here, it is important
to remove the first peak in RRτ close to τ = 0 because these values correspond to the main
diagonal in the RP present in all systems [50]. Therefore, this first peak would indicate
some kind of similarity between RRτ(x1) and RRτ(x2) even for completely desynchronized
systems. Such exclusion of the first part of the RRτ series corresponds to applying a Theiler
window [75]. Here we used a Theiler window of 25 mS.
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Figure 9. τ-recurrence rate for weakly coupled neurons as shown in Figures 5 and 8 for (A) no
synchronization, g = 0.01, and (B) phase synchronization, g = 0.04. For phase synchronization, the
τ-recurrence rate series for both neurons are almost completely overlapping.

Another concern on calculating the CPR measure using Equation (18) is the spiky
shape of the RRτ series, biasing the Pearson correlation estimation. As an alternative, we
could use the Spearman rank correlation instead of the Pearson correlation,

CPRS =
cov
(
R(RRx1

τ ), R(RRx2
τ )
)

σR(RR
x1
τ )

σR(RRx2
τ )

, (19)

with the RRτ series converted to the ranks R(RRτ). This correlation measure is expected to
work better for non-normal distributed data, as the RRτ series would be.

Both CPR measures clearly show the onset of phase synchronization at g = 0.066 for
neurons without ELF EF and at g = 0.037 for neurons with ELF EF (Figure 10). There are
some differences between CPRP and CPRS. During phase synchronization, CPRP is almost
1, but CPRS is slightly below 1, even more obvious for the coupled neurons without ELF EF.
However, for phase synchronization, we would expect to have a CPR value of 1. Moreover,
the transition from a nonsynchronized regime to a synchronized regime is not as abrupt
as indicated by ∆Ω (Figure 6), but CPRS changes almost abruptly from very low values
to very large values, whereby CPRP shows a more gradual increase (and even step-wise
increase for A = 0). This finding indicates that the Spearman-based CPR is obviously not a
better choice than the Pearson-based CPR measure.

0 0.05 0.1 0.15
Coupling strength g

0

0.2

0.4

0.6

0.8

1

C
PR

A = 0
A = 0.1

CPRP

CPRS

Figure 10. Correlation of probability of recurrence CPR based on Pearson (dotted) and Spearman
(line) correlations indicating the onset of phase synchronization between chaotic coupled neurons
without external EF (red) and with external EF where A = 0.1 and ω = 0.286 (blue).

The RRτ series represents probabilities of recurrence. Therefore, it seems more natural
to use a measure that can directly quantify the difference between probability populations,



Entropy 2022, 24, 235 13 of 17

such as Kullback–Leibler distance [76] or Hellinger distance [77]. Here we test the use of
the Hellinger distance

H(RRx1
τ , RRx2

τ ) =
1√
2

∥∥∥∥√RRx1
τ −

√
RRx2

τ

∥∥∥∥, (20)

which corresponds to the Euclidean norm of the square root distances between the RRτ

series of the two signals. Values of H close to 0 indicate phase transition, whereas values
close to 1 indicate nonsynchronized regimes.

To assess whether the variation of H indeed reveals phase synchronization, we use
a simple block shuffling approach to test the null hypothesis that the signals are not
synchronized. Block shuffling splits a time series into a number of blocks (here, we used
five blocks) of equal width at random indices and randomly concatenates these blocks to
create a new surrogate time series. Such surrogates preserve short-term temporal properties
but destroy long-term dynamical information and, thus, correlations when compared with
another signal. The distribution p(H) derived from the ensemble of surrogates is then
used to define the confidence limit of 95% (simply by using the 95% quantile of this test
distribution p(H)). Considering A = 0, we find the confidence limit by H0.95 as 0.17. Values
of H below this value can be considered to represent phase synchronization.

The measure H indicates the transition from the nonsynchronous to the phase syn-
chronization regime of the two weakly coupled neurons (Figure 11). The change in H is
significant. Moreover, the variation in H over increasing coupling strength g reveals the
more gradual change to the phase synchronization as well as the step-like transition to
phase synchronization for the situation without ELF EF caused by phase jumps.

0 0.05 0.1 0.15
Coupling strength g

0

0.1

0.2

0.3

0.4

0.5

0.6

H

A = 0
A = 0.1

95% confidence limit

Figure 11. Hellinger distance of the τ-recurrence rate indicating the onset of phase synchronization
between chaotic coupled neurons without external EF (red) and with external EF where A = 0.1
and ω = 0.286 (blue). A drop of H below the confidence limit of 95% (dotted line) represents the
significance of this finding.

5. Conclusions

The synchronization of weakly coupled Morris–Lecar neurons under common external
forcing has been studied previously. For example, Kitajima and Kurths [21] used interspike
intervals (to study frequency locking) and Yi et al. [62] considered the average firing rate. In
general, the numerical calculation of the phases of spiky signals using the Hilbert transform
is problematic. An alternative way to identify the phases in dynamical systems is to use
recurrence plots [34]. This method can find phases for noncoherent and spiky signals. We,
therefore, used a recurrence-based approach, which decodes the phase in terms of specific
recurrence patterns in the recurrence plot, and demonstrated its potential for the study of
spiking patterns of neurons.

In this work, the spiking patterns of Morris–Lecar neurons under ELF sinusoidal EF
and the synchronization of two neurons weakly coupled with gap junction under ELF
EF were investigated using this recurrence-based approach. The representation of the
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dynamics of the neurons’ membrane voltages by recurrence plots provided a convenient
approach to compare the recurrence features of their spiking patterns. Various spiking
patterns, such as periodic and chaotic bursting and periodic spikes, were observed. The
spiking patterns were found to be very sensitive to changes of the stimulus frequency.

Moreover, the recurrence approach allows us to consider phase differences between
the spiking patterns in a more robust way than the frequently used Hilbert transform.
We have introduced an alternative measure for testing phase synchronization using re-
currences. Instead of comparing the probabilities of recurrences (as represented by the
τ-recurrence rate) by correlation coefficients, we suggest to use the Hellinger distance as
a more natural measure because it quantifies the differences between probabilities. The
typically used Pearson correlation is biased because the τ-recurrence rate does not follow a
normal distribution. The Spearman rank correlation could be an alternative, but we found
additional bias due the large number of zeros in the τ-recurrence rate series.

By using recurrence-based synchronization measures, we found that even without
external EF, phase synchronization of two ML neurons can occur for a range of values of
coupling strength. Moreover, phase synchronization can be enhanced by an additional
external EF. This physiological behavior might be of importance for the functioning of the
brain when exposed to electromagnetic fields, such as by power lines, electrical equipment,
or cellular radio towers.
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