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Introduction

Rotating machinery is part and parcel of modern industrial applications. Due to
their continuous nature of operation in harsh and varying operating conditions, rotating
machinery is much more prone to failure. Failure to diagnose the fault on time can lead to
catastrophic effects from both a financial and safety point of view. In this context, research
on entropy theory and its application in machine condition monitoring is very interesting,
as it can bring some new insights into the prognostic and health management of academic
and industrial files. Information theory, as one of the greatest discoveries in the history
of science, has formed more than ten different calculation forms after more than 70 years
of development. Information theory has been widely used in the feature extraction field
due to its merits of independence with prior knowledge, the lack of a need to preprocess,
and ease of performance. It has powerful ability for feature representation, has received
extensive attention from both academic and industrial attentions.

This Special Issue in Entropy aims to collect recent research results and the latest
developments in condition monitoring techniques by means of information theory. This
collection contains 10 papers that represent the state of the art application of information
theory in the field of condition monitoring.

To resolve the dilemma of diagnosing non-structural failures, Mao et al. proposed a
fusion domain-adaptation convolutional neural network (FDACNN) to combine infrared
thermal images and vibration signals for the diagnosis of both structural and non-structural
failures under various working conditions [1]. They designed an adversarial network to
recognize of the health condition of structural and non-structural faults in the unlabeled
target domain. The results suggest that the proposed FDACNN method performs best in
the cross-domain fault diagnosis of gearboxes via multi-source heterogeneous data.

Bai et al. proposed a new method based on an improved YOLOv4 for railway surface
defect detection [2]. In this method, MobileNetv3 was used as the backbone network of
YOLOv4 to extract image features, and deep separable convolution as applied on the PANet
layer in YOLOv4 to realize the lightweight network and achieve real-time detection of the
railway surface.

Xiao et al. diagnosed the different types of misalignment fault, such as parallel mis-
alignment, angular misalignment and integrated misalignment, of a wind turbine by means
of information fusion [3]. The concept of information fusion was realized by fusing dif-
ferent types of sensor data, such as vibration, temperature and current. Finally, fault
diagnosis of the wind turbine was achieved from the fused information with the help of
Dempster–Shafer evidence theory.

Jia et al. showed a partial transfer fault diagnosis model based on a weighted subdo-
main adaptation network (WSAN) [4]. This model paid more attention to the important
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local data distribution, while aligning the global distribution through a specially designed
weighted local maximum mean discrepancy (WLMMD), which was able to align relevant
distributions of domain-specific layer activations across different domains.

Targeting the challenges regarding weak fault signal, coupling among different di-
mensions of the collected signal, and scarcity of fault datasets, Wei et al. proposed a
novel fault detection based on multi-dimensional KDE and Jensen–Shannon divergence [5].
Addressing the limitations of the conventional KDE method regarding information loss
for multidimensional problems, in this research, it was extended to a multidimensional
version for tackling the weak fault signal and coupling problem of the collected signal.
Later, Jensen–Shannon divergence was used for unknown fault detection.

Hu et al. proposed a subway gearbox fault diagnosis algorithm based on adaptive
spline impact suppression [6]. Signals collected from the gearbox in a subway are often
associated with the impacts between wheelsets and rail joint gaps. A long time-series
is more often affected by unsteadiness due to the wheel-rail impacts. Motivated by this
phenomenon, in this paper, long times-series were segmented adaptively into short time
series, in order to suppress the effect of the high amplitude of the shock response signal.
The adaptive segmentation of the original signal was achieved using a cubic spline interpo-
lation algorithm. The proposed method was verified by data collected from a real Beijing
subway line.

Yan et al. proposed a universal domain adaptation method to recognize unknown
fault types in the target domain [7]. They took into account the discrepancy of the fault
features shown by different fault types, and formed the feature center for fault diagnosis
by extracting the features of the samples of each fault type.

Wind turbines are one of the major sources of green energy. However, the majority of
the wind turbine fault diagnosis research is focused on single faults rather than combined
faults. In order to fill this gap, in this Special Issue, Xiao et al. proposed a machine-learning-
based approach with the help of the feature extracted by a novel low-pass filtering empirical
wavelet transform [8].

Li et al. proposed a novel anomaly detection framework for a satellite momentum
wheel [9]. Aimed at the lack of research on simulation data, and the scarcity of research
on real telemetry data, the proposed framework was able to detect anomalies in a satellite
momentum wheel, based on the features extracted by a newly proposed Huffman-multi-
scale entropy method. The extracted features were then classified by an optimized support
vector machine algorithm.

Mao et al. suggested a new online detection method, called the deep dual-temporal do-
main adaptation model (DTDA), to effectively extract a domain-invariant temporal feature
representation for online early-fault detection of bearings [10]. They developed a new state
assessment method to determine the period of the normal state and that of the degradation
state for whole-life degradation sequences. A health indicator of target bearings was also
built based on the DTDA features, to intuitively evaluate the detection results.
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