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Abstract: This paper systematically presents the λ-deformation as the canonical framework of de-
formation to the dually flat (Hessian) geometry, which has been well established in information
geometry. We show that, based on deforming the Legendre duality, all objects in the Hessian case
have their correspondence in the λ-deformed case: λ-convexity, λ-conjugation, λ-biorthogonality,
λ-logarithmic divergence, λ-exponential and λ-mixture families, etc. In particular, λ-deformation
unifies Tsallis and Rényi deformations by relating them to two manifestations of an identical
λ-exponential family, under subtractive or divisive probability normalization, respectively. Un-
like the different Hessian geometries of the exponential and mixture families, the λ-exponential
family, in turn, coincides with the λ-mixture family after a change of random variables. The resulting
statistical manifolds, while still carrying a dualistic structure, replace the Hessian metric and a pair of
dually flat conjugate affine connections with a conformal Hessian metric and a pair of projectively flat
connections carrying constant (nonzero) curvature. Thus, λ-deformation is a canonical framework in
generalizing the well-known dually flat Hessian structure of information geometry.

Keywords: Legendre duality; λ-duality; λ-exponential family; λ-mixture family; conformal Hessian;
constant curvature space

1. Introduction

Information geometry is a differential-geometric framework for studying finite-dimensional
statistical models that coherently integrates the following notions:

(i) A differentiable manifold M consisting of probability density functions or finite
measures on a common sample space;

(ii) A divergence function D[p||p′] that defines an asymmetric proximity between points
p, p′ inM;

(iii) A Riemannian metric g plus a pair of torsion-free dual (conjugate) affine connections
∇,∇∗ onM.

For completeness, we recall that a pair of affine connections ∇, ∇∗ onM are said to
be dual (or conjugate) with respect to a Riemannian metric g if for any vector fields X, Y,
and Z onM, one has:

Zg(X, Y) = g(∇ZX, Y) + g(X,∇∗ZY). (1)

Here, (M, g,∇,∇∗) is called a dualistic structure. When D is the Kullback–Leibler diver-
gence (or more generally, f -divergence), the induced Riemannian metric g is the Fisher–Rao
metric, and the induced cubic form C = ∇∗ −∇ is the Amari–Chentsov tensor [1]. It can
be shown that the Fisher–Rao metric and the Amari–Chentsov tensor are unique invariants,
of respectively second and third orders, under sufficient statistics on the manifoldM [2].
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Geometrically, the standard model (denoted the S-model in this paper) uses a pair
of affine connections that are torsion-free, though in general, they are not curvature-free.
An alternative, “partially flat” model (denoted the P-model in this paper) was recently
investigated in [3], leading to the notion of “statistical mirror symmetry” [4]. Under the
P-model, the affine connections ∇ and ∇∗ are allowed to carry torsion, but are both
curvature-free. See [4] for the geometric properties of the P-model leading to a symplectic-
to-complex correspondence characteristic of mirror Calabi–Yau manifolds studied in string
theory and mathematical physics.

Within the usual S-model, a special case is the dually flat geometry where the Rieman-
nian metric can be expressed under special coordinate systems as a Hessian metric. Two
prominent examples are the exponential family and the mixture family, where the Hessian
metric coincides with the Fisher–Rao metric. The Hessian geometry is said to be dually flat
because the Riemann curvature tensors of both the primal and the dual connections vanish;
the corresponding primal and dual affine coordinate systems are linked via Legendre trans-
formations by a pair of convex potentials. For an exponential family, these coordinates are
precisely the natural (canonical) and mixture (expectation) coordinate systems, respectively.
Note that the Hessian metric itself is not flat as its Levi-Civita connection contains curvature
in general.

Between the well-understood dually flat Hessian geometry and the full-blown S-
model, there is a wide range of geometries capturing various probability models. Of
special interest are generalizations of the exponential family, namely deformed exponential
families. The φ-exponential family was introduced in the context of statistical physics [5];
it was later shown [6] to be equivalent to the U-model [7] motivated by applications in
machine learning—[6] revealed that both the φ- and U-models can be generated from the
(ρ, τ)-model [8] through the mechanism of “gauge selection”. The (ρ, τ)-metric generalizes
the Fisher–Rao metric and may lead to a conformal Hessian metric for a φ-exponential
family. However, the connections are typically not curvature-free unless a special type of
gauge is selected; this underlies the geometric characterization of the q-exponential model
of Tsallis by [9–11].

In recent years, the second author [12], motivated by previous works with Pal on
mathematical finance and optimal transport [13–16], studied a class of deformed exponen-
tial families generating constant curvatures through the use of a new divergence function
called logarithmic divergence. By constant (information geometric) curvature, we mean that
both the primal and dual Riemann curvature tensors have (the same) constant sectional
curvature with respect to g. In [17], the present authors developed a unified framework,
based on the notions of λ-duality and the λ-exponential family, which appears to provide a
canonical extension of the dually flat geometry to the constant curvature case. Previously,
statistical manifolds with constant curvature were studied using the abstract tools of affine
differential geometry; see, e.g., [1,18] (also see [19]). Our framework provides a concrete
approach and an explicit construction that elucidates how the properties of the exponential
family and the dually flat geometry may be extended to the constant curvature case. In
this paper, a careful exposition of the λ-deformation framework is provided from the
perspective of λ-duality, namely the λ-deformation of Legendre duality.

The rest of the paper is organized as follows. In Section 2, we review the standard
S-model of information geometry with a focus on the dually flat geometry, based on convex
duality and Bregman divergence, of the exponential and mixture families. The section
closes with a preview of λ-deformation by introducing a suite of four deformation functions,
as two pairs of mutually inverse functions: logλ versus expλ and κλ versus γλ, with the
first pair deforming log and exp and the second pair deforming the identity function.
In Section 3, we describe the λ-duality, which deforms the standard convex duality. In
particular, we compare λ-duality and standard Legendre duality and show their relations
to each other upon a change of parameterization. In Section 4, we define the λ-gradient and
then the λ-logarithmic divergence and study the constant curvature information geometry
the latter induces. In Section 5, we relate λ-divergence to Rényi entropy by introducing the
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λ-exponential and λ-mixture family. The two expressions of the λ-exponential family under
divisive and subtractive normalization correspond to, respectively, Rényi deformation and
Tsallis deformation. Section 6 concludes with a comparison of λ-deformation with the
standard dually flat (Hessian) framework.

2. The Standard Model of Information Geometry
2.1. The Standard Model

We begin by recalling the standard framework (referred to as the S-model) of para-
metric information geometry [1,20]. LetM be a finite-dimensional differentiable manifold
with dimension d and θ = (θ1, . . . , θd) be a local coordinate system. The most important
case is whereM is a manifold of parametric probability density functions. However, the
idea of deforming Legendre duality to λ-duality and hence dually flat (Hessian) manifolds
to manifolds of constant curvature discussed in Sections 3 and 4 is entirely general and
does not rely onM being a manifold of probability density functions.

Let (X , µ) be a measure space, where µ is called the reference (or dominating) measure.
Let Θ ⊂ Rd be an open domain. A parametric family of density functions is a mapping
θ ∈ Θ 7→ p(·|θ), where each p(·|θ) is a probability density function with respect to µ, i.e.,∫
X p(ζ|θ)dµ(ζ) = 1. We assume that the family is sufficient regular such that all analytical

operations (such as differentiation under the integral sign) can be performed as needed.
While a dualistic structure (M, g,∇,∇∗) can be defined abstractly, in practice, it

is often constructed by a divergence, namely a smooth, non-negative function D[·||·] on
M×M such that D[p||p′] = 0 only if p = p′ and the (0,2)-tensor g it induces onM (see
(2) below) is positive definite. Intuitively, D[p||p′] defines a notion of “asymmetric distance”
between points p and p′ ofM. WhenM is a manifold of density functions, a prominent
example is the Kullback–Leibler (KL) divergence (relative entropy) given by:

H[p||p′] =
∫

p log
p
p′

dµ.

When dealing with parametric probability families, p and p′ are replaced by p(·|θ) and
p(·|θ′), then we denote D[p||p′] as D(θ, θ′) with an abuse of notation, that is:

D[p(·|θ)||p(·|θ′)] ≡ D(θ, θ′),

and similarly for H as well—the notation of [p||p′] in the divergence for probability density
functions emphasizes the non-symmetricity in p, p′; see [1].

Eguchi [21] showed that any divergence function (called a “contrast function” there)
induces a dualistic structure (M, g,∇,∇∗). In local coordinates, given D(θ, θ′), the compo-
nents gij of the metric g are given by:

gij(θ) = −
∂2

∂θi∂θ′j
D(θ, θ′)

∣∣∣∣
θ=θ′

=
∂2

∂θi∂θ j D(θ, θ′)

∣∣∣∣
θ=θ′

, (2)

and the Christoffel symbols of the conjugate connections ∇ and ∇∗ are given respec-
tively by:

Γij,k(θ) = −
∂3

∂θi∂θ j∂θ′k
D(θ, θ′)

∣∣∣∣
θ′=θ

, Γ∗ij,k(θ) = −
∂3

∂θ′i∂θ′j∂θk D(θ, θ′)

∣∣∣∣
θ=θ′

. (3)

Conversely, given any dualistic structure (M, g,∇,∇∗), there exists a divergence D that
induces it, but this D is not unique in general [22]. Thus, the standard model S is completely
encoded by the choice of a divergence function.

2.2. Dually Flat Geometry

The most important example of a dualistic structure is the dually flat geometry, which is
induced by a Bregman divergence [23]. LetM be prescribed with an affine coordinate chart
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θ ∈ Θ on an open convex set Θ ⊂ Rd. Let φ : Θ → R be a differentiable convex function;
specifically, we assumed that φ is C2 and its Hessian D2φ is strictly positive definite. The
Bregman divergence of φ is defined by:

Bφ(θ, θ′) = φ(θ)− φ(θ′)−Dφ(θ′) · (θ − θ′), θ, θ′ ∈ Θ,

where Dφ(θ) = ( ∂
∂θ1 φ(θ), . . . , ∂

∂θd φ(θ))> is the Euclidean gradient and a · b denotes the
standard dot product. We call θ ∈ Θ the primal coordinates, and η = Dφ(θ) the dual
coordinates, where the inverse of Dφ is given by θ = Dφ∗(η). Here, the Legendre conjugate
φ∗ (or convex conjugate) of φ is defined by:

φ∗(η) = sup
θ

(θ · η − φ(θ)). (4)

Then, the components gij of the Riemannian metric g, under the respective local coordinate
system, are given by:

gij(θ) =
∂2

∂θi∂θ j φ(θ), gij(η) =
∂2

∂ηi∂η j φ∗(η). (5)

In particular, g is a Hessian metric with potential φ (resp. φ∗) under θ (resp. η). Furthermore,
the Christoffel symbols of ∇ and ∇∗ are given respectively by:

Γij,k(θ) = 0, Γ∗ij,k(η) = 0. (6)

From (6), we see that the Riemann curvature tensors of both ∇ and ∇∗ vanish. Thus, we
call this a dually flat geometry. Furthermore, a ∇-geodesic (resp. ∇∗-geodesic) is a constant
velocity straight line under the θ (resp. η) coordinate system.

Moreover, the θ and η coordinates are biorthogonal in the sense that:

g

(
∂

∂θi ,
∂

∂η j

)
= δij, (7)

and the Bregman divergence takes the forms of:

Bφ(θ, θ′(η′)) = Aφ(θ, η′) = Aφ∗(η
′, θ) = Bφ∗(η

′, η(θ))

with η = Dφ(θ) and θ′ = Dφ∗(η′), where A is called the canonical divergence:

Aφ(θ, η′) = φ(θ) + φ∗(η′)− θ · η′ = Aφ∗(η
′, θ). (8)

Following [24,25], we call the equality between two expressions of B and the equality
between two expressions of A in (8) reference–representation biduality. In [26], the identity
(8) was used to motivate a family of Fenchel–Young losses in the context of regularized
prediction in machine learning. Last but not least, the Bregman divergence satisfies the
generalized Pythagorean theorem: given points P, Q, and R, we have the equality:

Bφ(θQ, θP) + Bφ(θR, θQ) = Bφ(θR, θP)

if and only if the∇-geodesic between Q and R and the∇∗-geodesic between Q and P meet
g-orthogonally at Q. As we will see in Section 4, all the properties above have natural
generalizations under our λ-framework. We stress that the dually flat geometry depends
crucially on classical convex (or Legendre) duality, as seen from (4) and (8).
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2.3. Exponential and Mixture Families

The dually flat Hessian geometry arises naturally in the exponential and mixture families
of probability densities. Given a reference measure µ on a state space X , an exponential
family is a parameterized probability density p(e)(·|θ) of the form:

p(e)(ζ|θ) = eθ·F(ζ)−φ(θ), (9)

where θ = (θ1, . . . , θd) ∈ Θ ⊆ Rd and F(ζ) = (F1(ζ), . . . , Fd(ζ)) is a vector of sufficient
statistics. In (9), the cumulant generating function φ, defined by:

φ(θ) = log
∫

eθ·Fdµ,

enforces the normalization
∫

p(e)dµ = 1. The exponential family generalizes the Boltzmann–
Gibbs distribution in statistical physics, where Z(θ) = eφ(θ) is called the partition function.

The information geometry of the exponential family begins with the observation that
φ is convex. Then, φ defines a Bregman divergence Bφ giving rise to a dually flat structure.
It can be shown that the Bregman divergence is a KL-divergence:

Bφ(θ, θ′) = H[p(e)(·|θ′)||p(e)(·|θ)].

The induced Riemannian metric g, the Fisher–Rao metric given by (in matrix components
gij), becomes a Hessian metric D2φ:

gij(θ) =
∫ (

∂

∂θi log p(e)(ζ|θ)
)(

∂

∂θ j log p(e)(ζ|θ)
)

p(e)(ζ|θ)dµ =
∂2

∂θi∂θ j φ(θ).

Equivalently, g(θ) is the covariance matrix of the sufficient statistics F:

gij(θ) =
∫

p(e)(ζ|θ)
(

Fi(ζ)−
∫

p(e)(ζ|θ)Fi(ζ)

)(
Fj(ζ)−

∫
p(e)(ζ|θ)Fj(ζ)

)
dµ.

Furthermore, the dual coordinate η = Dφ(θ) is the expectation coordinates given by:

η =
∫

p(e)(ζ|θ)F(ζ)dµ,

and the dual potential function φ∗ is, as a function of η, the negative Shannon entropy:

φ∗(η) = −H[p(e)(·|θ)] =
∫

p(e)(ζ|θ) log p(e)(ζ|θ)dµ.

A theoretical justification for the exponential family is that it maximizes the Shannon
entropy under the constraints of its expected value of the vector of random functions F(·).

The mixture family is another probability family that is very useful in both theory
and applications. Let P0(ζ), P1(ζ), . . . , Pd(ζ) be a set of affinely independent probability
densities with respect to the same dominating measure µ. Given mixture parameters ηi > 0
for i = 0, . . . , d with ∑d

i=0 ηi = 1, the mixture family p(m)(·|η) is defined by:

p(m)(ζ|η) =
d

∑
i=0

ηiPi(ζ) = P0(ζ) +
d

∑
i=1

ηi(Pi(ζ)− P0(ζ)),

where (η1, . . . , ηd) may be taken as the independent parameters. It can be shown that the
negative Shannon entropy:

ψ(η) = −H[p(m)(·|η)] =
∫

p(m)(ζ|η) log p(m)(ζ|η)dµ
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of a mixture family is convex in η. Using ψ as the potential function, we have:

Bψ(η, η′) = H[p(m)(·|η)||p(m)(·||η′)],

which is again a KL-divergence and induces a dually flat geometry. In summary, the
exponential and mixture families are both dually flat when the geometry is induced by the
KL-divergence.

For completeness, we note that the convex conjugate of ψ(η) is:

ψ∗(θ) = −
∫

P0(ζ) log p(m)(ζ|η) dµ,

with conjugate parameters θ = Dψ given by:

θi =
∫
(Pi(ζ)− P0(ζ)) log p(m)(ζ|η) dµ.

2.4. Deforming exp and log

The exponential function used in the exponential family:

p(e)(ζ|θ) = exp{θ · F(ζ)− φ(θ)} = eθ·F(ζ)

Z(θ)

allows the cumulant generating function φ(θ) (also called the potential function) and
the partition function Z(θ) to be linked by the simple relation φ = log Z. The equiv-
alence of using φ as subtractive normalization and Z as divisive normalization of the
same exponential family

∫
p(e)(ζ|θ)dµ = 1 is due to the elementary, but crucial property

exp(x + y) = exp(x) exp(y) of the exponential function. Using a functional form other
than exp (exponential function) or log (logarithm function) is referred to as deformation in
information geometric (statistical and information theoretic) contexts, and the resulting
probability families are called “deformed” families. Typically, this is performed by regard-
ing log, or equivalently exp, as special cases of some parametric class of functions that
include them as special members.

More generally, the exponential/logarithmic function can be considered within a
non-parametric function space that includes exp or log as a special member. Several
approaches can be found in the literature, including the φ-deformed exponential approach
by Naudts [5,27,28], the conjugate (ρ, τ)-embedding approach by the first author [8,25,29],
and the U-model by Eguchi [7,30]. The φ-model and U-model are both one-function models,
while the (ρ, τ)-model uses two free functions. It eventually became clear in the 2018 paper
[6] by Naudts and the first author that (i) the φ- and U-model turned out to be equivalent;
(ii) they are special cases of the (ρ, τ)-model upon a particular fixing of the “gauge freedom”;
(iii) the corresponding (ρ, τ)-geometry of the manifold of the φ-exponential family can
have different appearances (gauges freedom), such as a Hessian geometry (under one
type of gauge selection) and a conformal Hessian geometry (under another type of gauge
selection). The work [6] unified the intermediary results in [10,11,31] and provided a
general deformation framework that preserves the rigid interlocking of: (i) the functional
form of entropy, cross-entropy, and relative entropy (divergence); (ii) the functional form of
the deformed probability family with the corresponding normalization and potential and
the duality between the natural and expectation parameterizations; (iii) the expressions
of the Riemannian metric (Fisher–Rao metric in general and Hessian metric in particular)
and of the conjugate connections. Some of these concepts have their correspondence in
nonparametric probability families as well [32–34].

Although the (ρ, τ)-model may admit a conformal Hessian metric (more rigorously
stated: the φ-exponential family with the (ρ, τ)-metric under a certain gauge will lead
to conformal Hessian geometry), the dual connections are not projectively flat (as the
geometry studied by [12]). As a result, while the connections are not flat (torsion-free, but
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not curvature-free), they are not in general of the constant-curvature-type either. Therefore
they are “too general” and do not generate the space of constant curvatures.

2.5. Highlights of λ-Deformation

Here enters λ-deformation as a middle ground [17]. The λ-deformation theory ab-
sorbs the q-deformation model of Tsallis and the F(±α) model of Wong [12] in deforming
the exponential family and unifies the subtractive and divisive normalization—this is
an occasion where subtractive and divisive normalizations are still linked by a simple
reparameterization of the probability family.

Let us introduce some notations. Consider the following deformed logarithm and
exponential functions (note the slight difference to the logq notation used by Tsallis, in the
way how the subscript indicates the deformation parameter):

logλ(t) =
1
λ

(
tλ − 1

)
, expλ(t) = (1 + λt)1/λ.

More precisely, we define expλ : R→ [0, ∞] (where λ ∈ R, λ 6= 0) by:

expλ(t) = [1 + λ t]1/λ
+ ,

where [a]+ = max{a, 0}. In our analysis, we assumed implicitly that 1 + λt > 0, which is
shown to hold for λ-duality, so the subscript + can be omitted. Furthermore, d

dt expλ(t) =
[expλ(t)]

1−λ, so expλ(·) is convex if and only if λ < 1. For this reason, we restricted λ to
this range as in [9,28]. Below, we also took log t = −∞ whenever t ≤ 0. Note that our
notation differs slightly from Tsallis’ indexing of the deformed logarithm and exponential
functions; see Section 5.

Next, we construct another pair of inverse functions κλ, γλ by:

κλ = log ◦ expλ, γλ = logλ ◦ exp,

where ◦ denotes function composition. Explicitly, they are:

κλ(t) =
1
λ

log(1 + λt), γλ(t) =
1
λ

(
eλt − 1

)
. (10)

This suite of four functions, namely expλ, logλ as an inverse pair and κλ, γλ as another in-
verse pair, is called λ-deformation and used in the discussions of λ-convexity, λ-conjugation,
and λ-duality. Regular exponential and logarithmic functions are recovered when λ→ 0,
whence both κλ and γλ reduce to the identity function.

Using these four functions, Wong and Zhang [17] developed the λ-deformation frame-
work to solve the problem of relating the exponential family under subtractive normaliza-
tion:

p(λ)(ζ|θ) = expλ(θ · F(ζ)− φλ(θ))

to that under divisive normalization:

p(λ)(ζ|ϑ) = expλ(ϑ · F(ζ))e
−ϕλ(ϑ).

There, the same λ-deformed exponential family can be expressed by two parameterizations
θ and ϑ linked through:

θ = ϑe−λϕλ(ϑ) ⇐⇒ ϑ =
θ

1− λφλ(θ)
,

while the normalization functions φλ and ϕλ (with different domains) are linked through:

φλ(θ) = γ−λ(ϕλ(ϑ)) ⇐⇒ ϕλ(ϑ) = κ−λ(φλ(θ)) .
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The λ-deformation framework led to a unified way of looking at the Tsallis entropy (related
to the subtractive denormalization) and Rényi entropy (related to the divisive normaliza-
tion), as well as generating new insights into the distinction between the exponential and
mixture families through the lens of deformation theory. To understand this deformation
better, we describe the underlying mathematical framework of λ-deformation.

3. Deforming the Legendre Duality: λ-Duality

In this section, we describe the λ-duality and a its link to the standard Legendre du-
ality. We start by defining the notions of λ-conjugate and λ-convexity/λ-concavity, then
draw a parallel to the regular Legendre duality. We proceed to establish a formal correspon-
dence between the λ-duality and classical convex duality, including the associated notions
of the λ-gradient, λ-logarithmic divergence, etc. Some of the derivations are illustrative,
yet heuristic—a rigorous analysis in the spirit of Rockafellar [35] is yet to be performed in
future research.

3.1. Legendre Duality and Bregman Divergence Reviewed

Recall from (4) that the convex conjugate of a function f on Rd is defined by:

f ∗(u) = sup
x
(x · u− f (x)), u ∈ Rd. (11)

It can be proven that:

(i) f ∗ is convex;
(ii) (( f ∗)∗)∗ = f ∗;
(iii) ( f ∗)∗ = f if f is convex and lower semicontinuous.

When f is further differentiable, then the Legendre transformation:

u = D f (x),

which can be motivated by the first-order condition in (11), defines a “dual variable” u,
satisfying the Fenchel identity:

f (x) + f ∗(u) = x · u.

We have x = D f ∗(u), provided the second derivative or D2 f is positive definite. The
function f also defines a Bregman divergence B f given by:

B f (x, x′) = f (x)− f (x′)−D f (x′) · (x− x′) ≥ 0. (12)

The Bregman divergence satisfies the reference–representation biduality [24,25] in the sense that:

B f (x, x′) = B f ∗(u′, u)

where u = D f (x), u′ = D f (x′). Note that when f is convex and differentiable, the non-
negativity of the Bregman divergence encodes the fact that for any x, x′:

f (x)− f (x′) ≥ D f (x′) · (x− x′).

3.2. λ-Deformation of Legendre Duality

The main idea behind the λ-deformation of the Legendre duality (“λ-duality”) is to
replace the term x · u in (11) by a monotone transformation of x · u. Given a parameter
λ ∈ R \ {0}, later revealed to be the curvature parameter of the information geometric
characterization, we replace the term x · u by:

κλ(x · u) = 1
λ

log(1 + λx · u), (13)
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where κλ(t) and its inverse γλ(t) are given by (10). With this in mind we give the following
definition.

Definition 1 (λ-conjugation). Let Ω, Ω′ ⊂ Rd. Given a function f : Ω → R, we define its
λ-conjugate f (λ) by:

f (λ)(u) = sup
x∈Ω

(κλ(x · u)− f (x)), u ∈ Ω′. (14)

Generalized convex dualities have been heavily used in optimal transport theory [36,37]
to characterize the optimal transport plans; in this context, it is called the c-duality where c
is the cost function of the transport problem. A major novelty of our framework is that the
functional form of κλ (and of γλ) leads to explicit formulas, which are not available in the
general case. We remark that this is closely related to the fact that the associated information
geometry has constant curvature λ.

It turns out that the λ-conjugation defined by (14) corresponds to an appropriately
generalized notion of convexity or concavity, through the aid of the function γλ given
by (10). Henceforth, we let λ ∈ R \ {0} be a fixed constant.

Definition 2 (λ-exponential convexity and concavity). Let Ω ⊂ Rd be an open convex set.
A function f : Ω → R is said to be λ-exponentially convex (“λ-convex”), or λ-exponentially
concave (“λ-concave”), if:

Gλ, f (x) = (γλ ◦ f )(x) =
1
λ

(
eλ f (x) − 1

)
is convex, or concave, on Ω. When f is C2, we have equivalently that f is λ-convex, or λ-concave,
if the Hessian of Gλ, f ≡ γλ ◦ f is positive definite, or negative definite.

Note that the additive term −1/λ in the above definition of Gλ, f (x) = 1
λ (e

λ f (x) − 1) is
not necessary; it is included so that limλ→0 Gλ, f (x) = f (x), meaning that in the limiting
case of zero-convexity is just ordinary convexity.

It is easily shown that, for λ > 0 a fixed positive number,

(i) f is λ-convex if and only if − f is (−λ)-concave;
(ii) f is λ-concave if and only if − f is (−λ)-convex.

Proposition 1. Given any f : Ω → R, we define variable x̃, which has range Ω̃ ⊂ Rd, and
function g : Ω̃→ R by:

x̃ = x e−λ f (x) = x (1− λG−λ, f (x)), (15)

g(x̃) =
1
−λ

(
e−λ f (x) − 1

)
= γ−λ( f (x)) = G−λ, f (x). (16)

Then, the convex (Legendre) conjugate g∗ of the function g:

g∗(u) = sup
x̃∈Ω̃

(x̃ · u− g(x̃))

is related to the λ-conjugate f (λ) of the function f via:

g∗(u) =
1
λ

(
eλ f (λ)(u) − 1

)
= γλ( f (λ)(u)) = G

λ, f (λ)(u) . (17)
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Proof. We first prove the following identities:

(1 + λx · u)e−λ f (x) = e−λ f (x) + λ e−λ f (x)x · u
= (1− λ g(x̃)) + λ x̃ · u
= 1 + λ (x̃ · u− g(x̃))

where, going from the first to the second line, we used (15) and the fact:

1− λg(x̃) = e−λ f (x),

which is a re-write of the definition of g given by (16).
With the above identity, we can proceed to prove this proposition. For u ∈ Ω′, we have:

f (λ)(u) = sup
x∈Ω

(
1
λ

log(1 + λ(x · u))− f (x)
)

= sup
x̃∈Ω̃

1
λ

log(1 + λ (x̃ · u− g(x̃)))

=
1
λ

log

(
1 + λ sup

x̃∈Ω̃
(x̃ · u− g(x̃))

)

=
1
λ

log(1 + λg∗(u))

= κλ(g∗(u)).

Recasting the above relation yields (17).

Recall that from convex analysis, g∗ is always a convex function regardless of whether g
is convex (by the property of Legendre conjugation). The expression of g∗(u) = γλ( f (λ)(u))
in (17) therefore implies that f (λ) is λ-convex, by the definition of λ-convexity.

Corollary 1. For any f : Ω → R, its λ-conjugate f (λ)(u) as defined by (14) is a λ-convex
function of u on Ω′ (note Ω′ may not necessarily be convex).

Proof. We can also give a direct proof (essentially reversing the steps of the proof of
Proposition 1).

g∗(u) = sup
x̃∈Ω̃

(x̃ · u− g(x̃))

= sup
x∈Ω

(
e−λ f (x)(x · u)− 1

−λ

(
e−λ f (x) − 1

))
= sup

x∈Ω

1
λ

(
(1 + λx · u)e−λ f (x)

)
− 1

λ

=
1
λ

(
sup
x∈Ω

e log(1+λx·u)−λ f (x) − 1

)

=
1
λ

(
e supx∈Ω(log(1+λx·u)−λ f (x)) − 1

)
=

1
λ

(
eλ f (λ)(u) − 1

)
= γλ( f (λ)(u)).
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Corollary 1 is the extension of the claim that for any f , the standard Legendre conjugate
f ∗ as given by (11) is always a convex function. Because of this, we can prove, in analogy
to the standard Legendre conjugation ∗, the following relations:

(i) (( f (λ))(λ))(λ) = f (λ) for any f .
(ii) ( f (λ))(λ) = f if f is λ-convex.

3.3. Relations Between the λ-Duality and Legendre Duality

We proceed to establish a formal relationship between the λ-duality and the ordinary
Legendre duality, by relating the λ-conjugation of a λ-convex function f , denoted by f (λ),
to the standard Legendre conjugation of a function (denoted by ∗).

We continue the analysis performed in Proposition 1. Taking λ-conjugation for a
second time,

( f (λ))(λ)(x) = sup
u∈Ω′

1
λ
(log(1 + λ(x · u)))− f (λ)(u)

= sup
ũ∈Ω′

1
λ
(log(1 + λ (x · ũ− g̃(ũ))))

=
1
λ

log

(
1 + λ sup

ũ∈Ω′
(x · ũ− g̃(ũ))

)

=
1
λ

log(1 + λg̃∗(x))

= κλ(g̃∗(x)).

Here, the variable ũ is defined by:

ũ = u e−λ f (λ)(u),

and the function g̃ by:
g̃(ũ) = γ−λ( f (λ)(u)) = G−λ, f (λ)(u). (18)

In the event when f is λ-convex, then ( f (λ))λ = f . Therefore:

g̃∗(x) = γλ( f (x)) = Gλ, f (x).

Therefore, g̃(ũ) = (Gλ, f )
∗(ũ). That is, the function g̃ is just the (regular) Legendre conju-

gation ∗ of the function Gλ, f (x). In ũ parameterization, the g̃ function has the expression
of (18) with ũ and u related by (20). This parallels the fact that g(x̃) = (G

λ, f (λ)
)∗(x̃), and in

x̃ parameterization, the g function has the expression of (16) with x̃ and x related by (19).
Summarizing the above, we have:

Theorem 1 (Connecting λ-duality to Legendre duality). Let f be a λ-convex function and f (λ)

be its λ-conjugate. Denote two functions g and g̃:

g(x̃) = G−λ, f (x) = γ−λ( f (x)),

g̃(ũ) = G−λ, f (λ)(u) = γ−λ( f (λ)(u)),

where the two variables x̃ and ũ are given by:

x̃ = x e−λ f (x) ⇐⇒ x =
x̃

1− λg(x̃)
, (19)

ũ = u e−λ f (λ)(u) ⇐⇒ u =
ũ

1− λg̃(ũ)
. (20)
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Then, the following statements are equivalent:

(i) The (x, u) variables satisfy the λ-duality of a pair of λ-convex functions ( f , f (λ)):

κλ(x · u) = f (x) + f (λ)(u); (21)

(ii) The (x̃, u) variables satisfy the Legendre duality of a pair of convex functions (g, g∗):

x̃ · u = g(x̃) + g∗(u) (22)

with:
g∗(u) = G

λ, f (λ)(u) = γλ( f (λ)(u));

(iii) The (x, ũ) variables satisfy the Legendre duality of a pair of convex functions (g̃, g̃∗):

x · ũ = g̃∗(x) + g̃(ũ) (23)

with:
g̃∗(x) = Gλ, f (x) = γλ( f (x)).

Proof. To prove the equivalence of (21) and (22), we re-write the latter as:

e−λ f (x)x · u = γ−λ( f (x)) + γλ( f (λ)(u)) =
1
λ

(
eλ f (λ)(u) − e−λ f (x)

)
,

where we inserted the following relations:

g(x̃) = γ−λ( f (x)), g∗(u) = γλ( f (λ)(u))

and replaced x̃ by x using (19). Multiplying eλ f (x) on both sides, we obtain:

x · u =
1
λ

(
eλ( f (λ)(u)+ f (x)) − 1

)
= γλ( f (λ)(u) + f (x)). (24)

Noting (γλ)
−1 = κλ verifies (21).

To prove the equivalence of (21) and (23), we rely on an analogous identity:

(1 + λx · u)e−λ f (λ)(u) = 1 + λ (x · ũ− g̃(ũ)),

where:
ũ = u e−λ f (λ)(u), g̃(ũ) = γ−λ( f (λ)(u)).

We have, after multiplying eλ f (λ)(u) on both sides of (24),

x · ue−λ f (λ)(u) =
1
λ

(
eλ f (x) − e−λ f (λ)(u)

)
= γλ( f (x)) + γ−λ( f (λ)(u)) = g̃∗(x) + g̃(ũ),

where the last step used:

g̃∗(x) = γλ(( f (λ))(λ)(x)) , g̃(ũ) = γ−λ( f (λ)(u)).

Noting ( f (λ))(λ) = f due to f assumed to be λ-convex, then (23) follows.

We see that the functions γλ and γ−λ serve as link functions from the ( f , f (λ))-pair of
the λ-deformed Legendre conjugation to the (g, g∗)-pair and the (g̃, g̃∗)-pair of the regular
Legendre conjugation.

4. λ-Logarithmic Divergence and Its Dualistic Geometry

In this section, we study the λ-deformation of the Bregman (canonical) divergence
function and the resulting dualistic geometry (Riemannian metric and dual connections),
which correspond to the λ-duality. This involves first establishing the λ-deformation to the
gradient operation (so-called λ-gradient), which then leads to the so-called λ-logarithmic
divergence function as deformation to the Bregman divergence. Finally, we show that
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the resulting Riemannian metric is a conformal Hessian metric, while the resulting dual
connections are projectively flat (with constant curvature). The conformal and projective
factor is parameterized by λ, which gives the curvature of the constant curvature space.

4.1. λ-Gradient

Definition 3 (λ-gradient). For x ∈ Ω, define the λ-gradient D(λ) f by:

D(λ) f (x) =
1

1− λD f (x) · xD f (x). (25)

The work of [17] (Theorem 2.2) showed the above formula for deforming the gradient
of a function motivated by the λ-duality setting. For mathematical convenience, it is proven
under some regularity conditions; a full generalization along the lines of [35] is a natural
direction for further research.

Theorem 2 (λ-gradient for λ-duality). Let λ 6= 0, and let f be a λ-exponentially convex function
that is C2 on some open convex set Ω ⊂ Rd, such that (a) D2Gλ, f is strictly positive definite and
(b) 1− λD f (x) · x > 0 on Ω. Then we have

(i) D(λ) f is a C1-diffeomorphism from Ω to its range Ω′.
(ii) Denote u = D(λ) f (x). We have 1 + λx · u > 0, and the following identity holds:

f (x) + f (λ)(u) =
1
λ

log(1 + λx · u) ≡ κλ(x · u).

(iii) Furthermore, x = D(λ) f (λ)(u).

Note that the λ-gradient D(λ) f differs from the regular gradient D f by a scalar multi-
plication. The duality between x and u under the λ-duality is mediated by a dual variable
u = D(λ) f (x), which plays an important role in what follows.

Let:

(a) u = D(λ) f (x) denote the λ-conjugate variable corresponding to x with respect to f (x);
(b) û = Dg(x̃) be the Legendre conjugate variable corresponding to x̃ with respect to g(x̃);
(c) x = D(λ) f (λ)(u) denote the λ-conjugate variable corresponding to u with respect to

f (λ)(u);
(d) x̂ = Dg̃(ũ) be the Legendre conjugate variable corresponding to ũ with respect to g̃(ũ).

Is there a simple relationship between them? The following proposition says u(x) = û(x̃),
where x̃ and x are linked by (19), and x(u) = x̂(ũ), where ũ and u are linked by (20).

Proposition 2. We have:

u = D
(λ)
x f (x) = Dx̃g(x̃) , x = D

(λ)
u f (λ)(u) = Dũ g̃(ũ)

Here, we add the subscript to D to emphasize the argument with respect to which the derivative
is taken.

Proof. We use matrix notations where the gradient is regarded as a column vector. Apply-
ing the multivariate chain rule to (17), we have:

(Dx̃g(x̃))> = e−λ f (x)(Dx f (x))>
∂x
∂x̃

(x̃),

where ∂x
∂x̃ (x̃) is the Jacobian of the transformation x̃ 7→ x and (·)> denotes the transpose,

For two vectors x and y, their outer product is denoted by x y>, which is a rank-one square
matrix with the (i, j)-entry xiyj.
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From (15), we have:

∂x̃
∂x

(x) = e−λ f (x)
(

I− λ x (Dx f (x))>
)

.

Since 1− λDx f (x) · x > 0 by assumption, we can invert the Jacobian by the Sherman–
Morrison formula (see [12], Proposition 4) to obtain:

∂x
∂x̃

(x̃) = eλ f (x)

(
I +

λ x (Dx f (x))>

1− λDx f (x) · x

)
.

Plugging this into the above, we have:

(Dx̃g(x̃))> =
(Dx f (x))>

1− λDx f (x) · x .

Using (25) to relate D
(λ)
x f (x) to Dx f (x), the first relation involving Dx̃g(x̃) is proven. The

proof of the second relation in this proposition is analogous.

Just as ordinary convexity leads to the notion of Bregman divergence (12), the notion
of λ-exponential convexity leads to a generalization that we call the λ-logarithmic divergence.
Henceforth, we let f : Ω → R be a λ-exponentially convex function on an open convex
domain Ω ⊂ Rd, and we assumed that the regularity conditions in Theorem 2 hold.

4.2. λ-Logarithmic Divergence

By the definition of the λ-convexity, we have that Gλ, f (x) = γλ( f (x)) is convex on Ω.
By the ordinary convexity of Gλ, f , we have:

Gλ, f (x)− Gλ, f (x′) ≥ DGλ, f (x′) · (x− x′), x, x′ ∈ Ω.

In terms of f , we have, after some manipulations,

γλ( f (x)− f (x′)) ≥ D f (x′) · (x− x′).

Since γλ is increasing, we have:

f (x)− f (x′) ≥ (γλ)
−1(D f (x′) · (x− x′)

)
= κλ

(
D f (x′) · (x− x′)

)
.

This motivates the following definition.

Definition 4 (λ-logarithmic divergence). We define the λ-logarithmic divergence of f by:

Lλ, f (x, x′) = f (x)− f (x′)− κλ

(
D f (x′) · (x− x′)

)
= f (x)− f (x′)− 1

λ
log(1 + λD f (x′) · (x− x′)), x, x′ ∈ Ω.

(26)

See Figure 1 for a graphical illustration. We note that the logarithmic correction in (26)
corresponds to a logarithmic first-order approximation, based at x′, which is possible due
to the λ-exponential convexity of f . We also note that when λ > 0, it is possible that
Lλ, f (x, x′) = ∞. Nevertheless, Lλ, f (x, x′) is finite when x and x′ are sufficiently close.
Formally, letting λ→ 0 in (26) recovers the Bregman divergence.

4.3. λ-Logarithmic Divergence in Different Forms

We now prove a lemma about the relationship of the variables x, u and gradients
or λ-gradients of f or f (λ). We assumed, for convenience, that 1 + λx · u > 0 for all
x ∈ Ω, u ∈ Ω′.



Entropy 2022, 24, 193 15 of 26

f

Lλ, f (x, x′)

x′ x

f

Lλ, f (x, x′)

x′ x

Figure 1. Illustration of the λ-logarithmic divergence. Top: λ = −1 and f (x) =
√

x(10− x). Bottom:
λ = 1 and f (x) = 2 log x. In both cases, x′ = 4 and x = 8, and we plot the function on the interval
(2, 9). Note that the first-order logarithmic approximation (dashed grey curve) supports the graph of
f from below.

Lemma 1. Given u = D
(λ)
x f (x) or equivalently x = D

(λ)
u f (λ)(u), for arbitrary x′, u′ (such that

the expressions are well defined), we have the following identities:

κλ(u · x′)− κλ(u · x) = κλ(u · (x′ − x) (Πλ)
−1), (27)

κλ(u′ · x)− κλ(u · x) = κλ((u′ − u) · x (Πλ)
−1). (28)

where Πλ is a multiplicative factor (function of x or u) given by:

Πλ ≡ 1 + λx · u =
1

1− λD f (x) · x =
1

1− λD f (λ)(u) · u
.

Proof. Since u = D
(λ)
x f (x), substituting (25), we have:

u · x =
D f (x) · x

1− λD f (x) · x

and:
1 + λ u · x =

1
1− λD f (x) · x

so:

1 + λ u · x′ = 1 + λD f (x) · (x′ − x)
1− λD f (x) · x = (1 + λu · x)(1 + λD f (x) · (x′ − x)).

Taking the logarithm and rearranging, we obtain (27).
On the other hand, because:

x = D
(λ)
u f (λ)(u) =

D f (λ)(u)
1− λD f (λ)(u) · u

,

we also have:
1 + λx · u =

1
1− λD f (λ)(u) · u

.

The proof of (28) is similar.

In this above lemma, x′ and u′ are arbitrary; it is interesting that a modified form
of “linearity” holds even though κλ is itself nonlinear. As a consequence, we have an
alternative expression for Lλ, f (x, x′).



Entropy 2022, 24, 193 16 of 26

Proposition 3. Lλ, f (x, x′) defined by (26) can also be written as:

Lλ, f (x, x′) = f (x)− f (x′)− κλ(x · u′) + κλ(x′ · u′).

where u′ = D(λ) f (x′).

Of course, we may express the λ-logarithmic divergence using the conjugate variables
u, u′ as well. Indeed, we have the analogous reference–representation biduality (see [24,25])
that is characteristic of Bregman divergence and canonical divergence for dually flat spaces,
that is (8). See [38] for the reference–representation biduality of a general c-divergence (which
includes both the Bregman and logarithmic divergences) based on optimal transport.

Theorem 3. The λ-logarithmic divergence satisfies the reference–representation biduality, namely:

Lλ, f (λ)(u
′, u) = Lλ, f (x, x′),

where u = D(λ) f (x) and u′ = D(λ) f (x′). Moreover, define the λ-deformed canonical divergence
Aλ, f by:

Aλ, f (x, u′) = f (x) + f (λ)(u′)− 1
λ

log(1 + λx · u′) = Aλ, f (λ)(u
′, x).

We have:
Lλ, f (x, x′) = Aλ, f (x, u′) = Aλ, f (λ)(u

′, x) = Lλ, f (λ)(u
′, u).

Proposition 3 also allows us to derive our next theorem (Theorem 4) linking λ-
logarithmic divergence and Bregman divergence (also see [19] for a discussion of conformal
divergence in the affine immersion setting).

Theorem 4. The canonical forms of the λ-logarithmic divergence Aλ, f and Aλ, f (λ) are related to
the canonical forms of the Bregman divergence Ag∗ and Ag̃ via a conformal transformation and the
non-linear link function κ−λ:

Aλ, f (λ)(u
′, x) = κ−λ

(
e−λ f (λ)(u′)Ag∗(u′, x̃)

)
,

= Aλ, f (x, u′) = κ−λ

(
e−λ f (x)Ag̃∗(x, ũ′)

)
.

Proof.

Aλ, f (λ)(u
′, x) = f (λ)(u′) + f (x)− 1

λ log(1 + λu′ · x)
= f (λ)(u′)− 1

λ log
(
(1 + λu′ · x)e−λ f (x)

)
= 1

λ log(1 + λg∗(u′))− 1
λ log

(
e−λ f (x) + λu′ · (xe−λ f (x))

)
= 1

λ log(1 + λg∗(u′))− 1
λ log(1− λg(x̃) + λu′ · x̃)

= − 1
λ log

(
1+λ(u′ ·x̃−g(x̃))

1+λg∗(u′)

)
= − 1

λ log
(

1 + λ
u′ ·x̃−g(x̃)−g∗(u′)

1+λg∗(u′)

)
= − 1

λ log
(

1− λ
Ag∗ (u

′ ,x̃)
1+λg∗(u′)

)
= − 1

λ log
(

1− λ
(

e−λ f (λ)(u′) Ag∗(u′, x̃)
))

= κ−λ

(
e−λ f (λ)(u′) Ag∗(u′, x̃)

)
.



Entropy 2022, 24, 193 17 of 26

The proof of the second line of Theorem 4 is similar. We have Aλ, f (λ)(u
′, x) = Aλ, f (x, u′)

from Theorem 3.

4.4. Dualistic Geometry of λ-Logarithmic Divergence

Regard x ∈ Ω as the primal (global) coordinate system of a manifold M. As de-
scribed in Section 2.1, we may use the λ-logarithmic divergence Lλ, f of f to construct a
dualistic structure (M, g,∇,∇∗). In this subsection, we provide explicit expressions of the
corresponding coefficients and state some key geometric consequences.

We begin with the Riemannian metric.

Theorem 5. The Riemannian metric g induced from Lλ, f (x, x′) is given in primal coordinate x by:

g(x) = D2 f (x) + λ(D f (x))(D f (x))> = e−λ f (x)D2Gλ, f (x). (29)

Proof. According to (2), we perform direct differentiation of (26):

gij(x) =
∂2

∂xi∂xj Lλ, f (x, x′)
∣∣∣∣
x=x′

and obtain the expression of (29).

By symmetry, under the dual coordinate system u = D(λ) f (x), we have:

g(u) = D2 f (λ)(u) + λ(D f (λ)(u))(D f (λ)(u))>.

From the first equality in (29), we see that g is a rank-one correction of the Hessian matrix
D2 f (x). From the second equality, we see that g is in fact a conformal Hessian metric, i.e., it
has the form g(x) = e−λ f (x)g0(x), where g0(x) = D2Gλ, f (x) is the Hessian metric induced

by the convex function Gλ, f (x) = 1
λ (e

λ f (x) − 1). This conclusion is entirely anticipated
from Theorem 4.

To compute the Christoffel symbols of the primal and dual connections, we need an
expression of the inverse of the Riemannian metric g(x) as a matrix. This is provided by
the following proposition.

Proposition 4. The metric g can be expressed as:

g(x) =
1

Πλ(x)

(
Id −

λ

Πλ(x)
ux>

)
∂u
∂x

(x), (30)

where ∂u
∂x is the Jacobian matrix of the coordinate transformation x 7→ u and Id is the d× d identity

matrix with Kronecker δij as its entries. Here:

Πλ(x) = 1 + λx · u =
1

1− λD f (x) · x

and Πλ(x) > 0 for x ∈ Ω and u = D(λ) f (x), due to Part (ii) of Theorem 2.
Moreover, the inverse of g(x) can be expressed as:

(g(x))−1 = Πλ(x)
∂x
∂u

(u)(Id + λux>). (31)

Proof. Using the λ-logarithmic divergence represented as the generalized canonical diver-
gence Aλ, f (26), we apply (2) to obtain:
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gij(x) = − ∂2

∂xi∂x′j
Lλ, f (x, x′)

∣∣∣∣
x=x′

= − ∂2

∂xi∂x′j

{
f (x) + f (λ)(u′)− 1

λ
log(1 + λx · u′)

}∣∣∣∣
x=x′

=
1

Πλ(x)

{
∂ui

∂xj −
λ

Πλ(x)
ui

d

∑
k=1

xk ∂uk

∂xj

}
.

Expressing the above expression using matrix notations gives (30). Formula (31) follows by
inverting (30) using the Sherman–Morrison formula.

Under the dualistic structure induced by a λ-logarithmic divergence, the primal and
dual coordinate vector fields are no longer biorthogonal in the sense of (7). Nevertheless,
we have the following generalization. Again, we write Πλ(x) = 1 + λx · u.

Corollary 2. The inner product of the coordinate vector fields ∂
∂xi and ∂

∂uj is given by a λ-deformed
“biorthogonality” relation:

g

(
∂

∂xi ,
∂

∂uj

)
=

1
Πλ(x)

δij −
λ

Πλ(x)2 xjui.

Proof. Write ∂
∂uj = ∑d

m=1
∂xm

∂uj
∂

∂xm . Then:

g

(
∂

∂xi ,
∂

∂uj

)
=

d

∑
m=1

∂xm

∂uj g

(
∂

∂xi ,
∂

∂xm

)
.

Simplifying the expression using (30) gives the result. For details, see ([12], Proposi-
tion 8).

Theorem 6. The Christoffel symbols of the primal connection ∇ are given by:

Γij,k(x) = − λ

Πλ(x)2

(
uj ∂ui

∂xk + ui ∂uj

∂xk

)
+

2λ2

Πλ(x)3

d

∑
`=1

uiujx`
∂u`

∂xk ,

where Πλ(x) = 1 + λx · u as in Proposition 4. Furthermore, let Γk
ij = ∑d

`=1 Γij,`g`k be the
Christoffel symbol of the second kind, then:

Γk
ij(x) =

−λ

Πλ(x)

(
uiδk

j + ujδk
i

)
= −λ

(
∂ f
∂xi (x)δk

j +
∂ f
∂xj (x)δk

i

)
, (32)

where δ is the Kronecker delta.
Similarly, under the dual coordinate system u, the Christoffel symbol (of the second kind) of

the dual connection ∇∗ is given by:

Γ∗kij (u) = −λ

(
∂ f (λ)

∂ui (u)δk
j +

∂ f (λ)

∂uj (u)δk
i

)
. (33)

Proof. This is a straightforward computation using (3) and Proposition 4. The details,
which are a minor modification of the proof of ([12], Proposition 5), are omitted.

Although the curvatures of ∇ and ∇∗ are nonzero, it can be shown that ∇ and ∇∗
are both projectively flat, i.e., each of them is projectively equivalent to a flat connection.
Specifically, any ∇-geodesic (resp. ∇∗-geodesic) is a time-reparameterized straight line
under the x (resp. u) coordinate system.

Theorem 7. The sectional curvatures of ∇ and ∇∗ with respect to g are both equal to λ.
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Proof. See ([12], Theorem 15).

Using the dual projective flatness and Corollary 2, Reference ([12], Theorem 16)
showed that the λ-logarithmic divergence satisfies a generalized Pythagorean theorem,
which generalizes the property of Bregman divergence outlined in Section 2.2.

Theorem 8 (Generalized Pythagorean theorem). Let P, Q, R ∈ M. Then:

Lλ, f (xQ, xP) + Lλ, f (xR, xQ) = Lλ, f (xR, xP)

if and only if the ∇-geodesic between Q and R and the ∇∗-geodesic between Q and P meet g-
orthogonally at Q.

To summarize, the dually flat geometry becomes a dually projectively flat geometry
with constant sectional curvature λ, and the Hessian metric becomes a conformal Hessian
metric. Nevertheless, the primal and dual geodesics are still straight lines (up to time
reparametrizations), and the generalized Pythagorean theorem holds.

We say that the above λ-deformation framework is “canonical” because the statis-
tical manifold (M, g,∇,∇∗), with a conformal Hessian metric gij given by (29) and a
pair of dual projectively flat affine connections Γk

ij, Γ∗kij given by (32) and (33), is the only
statistical structure with constant curvature ([12], Theorem 15). Moreover, given such a
statistical manifold, one can construct locally a λ-logarithmic divergence, which induces
the given geometry.

5. Linking λ-Deformation to Rényi Entropy and Divergence
5.1. Relation Between Tsallis’ and Rényi’s Deformation Expressions

Recall that Tsallis [39], in the context of statistical physics, introduced the general-
ized entropy:

HTsallis
λ [p] =

∫
p logλ

(
1
p

)
dµ =

1
λ

(∫
(p(ζ))λ − 1

)
dµ;

note that we use λ here in place of q = 1− λ as in [40].
Tsallis entropy is related to Rényi entropy [41], defined as:

HRényi
λ [p] :=

1
λ

log
(∫

p1−λ(ζ) dµ

)
,

through a monotonic transformation:

HTsallis
λ [p] =

1
λ

(
eλHRényi

λ [p] − 1
)

.

In our current notation,

HTsallis
λ [p] = γλ

(
HRényi

λ [p]
)
⇐⇒ HRényi

λ [p] = κλ

(
HTsallis

λ [p]
)

.

Rényi divergence (with Rényi index 1− λ) is defined by:

HRényi
λ [p||p′] = −1

λ
log

∫
(p(ζ))1−λ(p′(ζ))λdµ.

Rényi divergence is additive: given two product measures p1 ⊗ p2 and p′1 ⊗ p′2, we have:

HRényi
λ [p1 ⊗ p2||p′1 ⊗ p′2] = HRényi

λ [p1||p′1] + HRényi
λ [p2||p′2].

Because Tsallis entropy is not additive, this has been used as an argument for favoring
Rényi entropy as a physical concept over Tsallis entropy; see [28] (Section 9.3) and [42].
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5.2. λ-Exponential Family

Under the λ-deformation, there is an intrinsic link between the subtractive and divisive
normalizations of the λ-deformed exponential family. Starting with the observation:

eκλ(t) = (1 + λt)1/λ = expλ(t),

we investigate the identity:

(1 + λϑ · F(ζ))1/λ e−ϕλ(ϑ) = (1 + λ(θ · F(ζ)− φλ(θ)))
1/λ.

Taking the λ-th power and equating both sides, we obtain the conditions for the above
identity to hold:

θ = ϑe−λϕλ(ϑ) ⇐⇒ ϑ =
θ

1− λφλ(θ)
,

φλ(θ) =
1
−λ

(e−λϕλ(ϑ) − 1) ⇐⇒ ϕλ(ϑ) = −
1
λ

log(1− λφλ(θ)).

This fact led us to define a λ-exponential family that can be normalized both subtrac-
tively and divisively: the former denoted by p(ζ|θ) and the latter denoted by p(ζ|ϑ).

Proposition 5 (Reparameterization equivalence). Let λ 6= 0. With respect to a given reference
measure µ and a fixed vector of random functions F(ζ) = (F1(ζ), . . . , Fd(ζ)), the λ-exponential
family is given by p(λ)(ζ|θ) under subtractive normalization and by p(λ)(ζ|ϑ) under divisive
normalization; they are reparametrizations of each other:

p(λ)(ζ|θ) = expλ(θ · F(ζ)− φλ(θ)) = expλ(ϑ · F(ζ))e
−ϕλ(ϑ) = p(λ)(ζ|ϑ). (34)

Here, the function φλ(θ) is called subtractive λ-potential and used for subtractive nor-
malization, while ϕλ(ϑ) is called divisive λ-potential and used for divisive normalization.
Note that φλ and ϕλ may not have same domains. They satisfy:

φλ(θ) = γ−λ(ϕλ(ϑ)) ⇐⇒ ϕλ(ϑ) = κ−λ(φλ(θ)) ,

where:
κ−λ(t) = −

1
λ

log(1− λt) , γ−λ(t) =
1
λ

(
1− e−λt

)
.

Note again that we use ϑ for the divisive normalization setting and distinguish it from θ
for the subtractive normalization setting. For later convenience, we also note:

e−λϕλ(ϑ) = 1− λφλ(θ).

5.2.1. Under Subtractive Normalization

The deformed exponential family takes the form:

p(ζ|θ) = expλ(θ · F(ζ)− φλ(θ)) (35)

where θ · F(ζ) = ∑d
i=1 θiFi(ζ), and the subtractive λ-potential φλ(θ) is specified by the

normalization:
1 =

∫
p(ζ|θ) dµ =

∫
expλ(θ · F(ζ)− φλ(θ)) dµ.

This leads to:
∂φλ

∂θi =
∫

p̃(ζ|θ)Fi(ζ) dµ

with the escort transformation given by:

p̃(ζ|θ) = (p(ζ|θ))1−λ∫
(p(ζ|θ))1−λ dµ

. (36)
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Clearly, when λ → 0, we recover the regular exponential family (9). It was Tsallis who
introduced the q-exponential family, where q = 1− λ.

5.2.2. Under Divisive Normalization

To deform the exponential family through divisive normalization, we use a smooth
monotone function κλ(·) and define a parametric probability family, which takes the form:

log p(ζ|ϑ) = κλ(ϑ · F(ζ))− ϕλ(ϑ).

Note that we use the symbol ϑ to distinguish it from the parameter θ in the subtractive
case. Here:

ϕλ(ϑ) = log
∫

eκλ(ϑ·F(ζ)) dµ

is the divisive normalization function, and it was assumed that:∫
eκλ(ϑ·F(ζ))dµ < ∞

in the domain of ϑ (the natural parameter set). It is possible that the support of the density
depends on the parameter ϑ, as in the case of the q-exponential family; see [17]. To avoid
technicalities, we assumed that the support of p(ζ|ϑ) is independent of ϑ.

Writing out κλ(), the resulting family is:

p(ζ|ϑ) = (1 + λϑ · F(ζ))1/λ e−ϕλ(ϑ), (37)

where the divisive λ-potential ϕλ(ϑ) is given by:

ϕλ(ϑ) = log
∫
(1 + λ ϑ · F(ζ))1/λdµ (38)

is finite on the parameter set. This family unifies the F (±α)-families introduced in [12].

5.3. λ-Mixture Family

We next define a mixture-type family dual to the λ-exponential family, in an analogous
way that an exponential family is dual to the mixture family. The form of the family is
justified by its compatibility with the λ-duality.

Definition 5 (λ-mixture family). Let λ 6= 0, 1 be given. The λ-mixture family with respect to a
fixed set of densities P0(ζ), P1(ζ), . . . , Pd(ζ) is defined by:

p(λ)(ζ|η) = 1
Zλ(η)

(
d

∑
i=0

ηi P̃i(ζ)

)1/(1−λ)

, (39)

where η = (η1, · · · , ηd) is the mixture parameter satisfying 0 ≤ ηi ≤ 1 and η0 = 1−∑d
i=1 ηi > 0.

Here, P̃i, i = 0, 1, · · · , d denotes the escort transformation, as given by (36), of the given Pi’s:

P̃i(ζ) =
(Pi(ζ))

1−λ∫
(Pi(ζ))1−λ dµ

,

where the denominator is assumed to exist, and Zλ(η) represents the integral:

Zλ(η) =
∫ ( d

∑
i=0

ηi P̃i(ζ)

)1/(1−λ)

dµ,

which is assumed to converge for all η and to be differentiable under the integral sign.
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Denote:
Ci =

∫
(Pi(ζ))

1−λdµ

and:
η̃i =

1
hλ(η)

ηi
Ci

where:

hλ(η) =
d

∑
i=0

ηi
Ci

.

Then, 0 ≤ η̃i ≤ 1 and ∑d
i=0 η̃i = 1. We can express p(λ) now in η̃:

p(λ) =
1

Zλ(η)

(
d

∑
i=0

ηi P̃i(ζ)

)1/(1−λ)

=
hλ(η)

Zλ(η)

(
d

∑
i=0

η̃i(Pi(ζ))
1−λ

)1/(1−λ)

= elog hλ(η)−log Zλ(η)

((
1−

d

∑
i=1

η̃i

)
(P0(ζ))

1−λ +
d

∑
i=1

η̃i (Pi(ζ))
1−λ

)1/(1−λ)

= elog hλ(η)−log Zλ(η)

(
1 +

d

∑
i=1

η̃i
(Pi(ζ))

1−λ − (P0(ζ))
1−λ

(P0(ζ))1−λ

)1/(1−λ)

P0(ζ).

Setting:

Fi(ζ) =
1

1− λ

((
Pi(ζ)

P0(ζ)

)1−λ

− 1

)
,

with dν = P0(ζ)dµ, the density of the λ-mixture family p(λ) with respect to the new measure
ν now has the form:

p(λ)(ζ|η̃) = (1 + (1− λ) η̃ · F(ζ))1/(1−λ)e−ψ1−λ(η̃),

where ψ1−λ(η̃) = log Zλ(η)− log hλ(η). Thus, we showed the following:

Proposition 6 (Relation between λ-exponential and λ-mixture families). Suppose λ 6= 0, 1.
A λ-mixture family with pure densities:

P(ζ) = {P0(ζ), P1(ζ), · · · , Pd(ζ)}

becomes a λ-exponential family with the vector of random functions:

F(ζ) = {F1(ζ), · · · , Fd(ζ)}

after a transformation of the dominating measure dµ→ dν = P0(ζ)dµ and the random variables
P(ζ)→ F(ζ):

Fi(ζ) =
1

1− λ

((
Pi(ζ)

P0(ζ)

)1−λ

− 1

)
= log1−λ

(
Pi(ζ)

P0(ζ)

)
,

and a reparameterization η → η̃:

η̃i =
1

hλCi
ηi ⇐⇒ ηi = η̃i(hλCi)

with:

hλ =
d

∑
i=0

ηi
Ci

=
d

∑
i=0

η̃iCi.
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5.4. Potential Functions as Rényi Entropies

We now show that our λ-duality framework is naturally compatible with the λ-
exponential and λ-mixture families, with Rényi entropy and Rényi divergence replacing
Shannon entropy and Kullback–Leibler divergence. In what follows, we assume λ < 1.

Proposition 7 (For the λ-exponential family). With respect to the λ-exponential family defined
by (37) with divisive potential function ϕλ given by (38), we have:

(i) ϕλ(ϑ) is λ-convex. Moreover, 1− λDϕλ(ϑ) · θ > 0.
(ii) The λ-conjugate variable η = D(λ)ϕλ(ϑ) = Dφλ(θ) is the the escort expectation:

η =

∫
(p(ζ|θ))1−λ F(ζ) dµ∫

(p(ζ|θ))1−λ dµ
=
∫

p̃(ζ|θ) F(ζ) dµ.

(iii) The λ-conjugate function ψλ(η) with respect to ϕλ(ϑ) is given by:

ψλ(η) = −HRényi
λ [p(·|ϑ)].

(iv) The λ-logarithmic divergence is the Rényi divergence:

Lλ,ϕλ
(ϑ, ϑ′) = HRényi

λ [p(·|ϑ′)||p(·|ϑ)].

Proposition 8 (For the λ-mixture family). With respect to the λ-mixture family given by (39)
with its potential function ψλ(η) given by:

ψλ(η) =
1− λ

λ
log

∫ ( d

∑
i=0

ηi P̃i

)1/(1−λ)

dµ =
1− λ

λ
log Zλ(η),

we have:

(i) The potential function ψλ(η) is a λ-convex function of η.
(ii) The potential function ψλ(η) is given by:

ψλ(η) = −HRényi
λ [p(·|η)].

(iii) The λ-logarithmic divergence is the Rényi divergence:

Lλ,ψλ
(η, η′) = HRényi

λ [p(·|η)||p(·|η′)].

The proofs of the above Proposition 7 (about the λ-exponential family) and Proposi-
tion 8 (about the λ-mixture family) can be found in [17].

6. Summary and Conclusions

Our paper summarizes a canonical approach to deforming exponential and mixture
families and the associated dually flat Hessian geometry. The λ-exponential family we
introduced has two parameterizations (35) and (37):

p(λ)(ζ|·) = expλ(ϑ · F(ζ))e
−ϕλ(ϑ) = expλ(θ · F(ζ)− φλ(θ)).

The two expressions reflect subtractive and divisive normalizations—a typical example of
the former is the q-exponential family with associated Tsallis entropy, whereas an example
of the latter is the F (±α)-family and the associated Rényi entropy. These two versions
of deformation to an exponential family are two faces of the same coin; furthermore,
the λ-exponential family is also linked to the λ-mixture family, when λ 6= 0, 1, via a
reparameterization of the random functions F(ζ) above.
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The coincidence of these two parameterizations of the deformed family is associated
with the λ-duality, which is the main focus of our exposition. The λ-duality is a “defor-
mation” (see Table 1) of the usual Legendre duality reviewed in Section 3.1. In a nutshell,
instead of convex functions, we worked with λ-convex functions f such that 1

λ (e
λ f − 1)

is convex, for a fixed λ 6= 0. Furthermore, instead of the convex conjugate, we used the
λ-conjugate given by:

f (λ)(u) = sup
x

(
1
λ

log(1 + λx · u)− f (x)
)

.

The expression of the λ-duality:

κλ(x · u) = f (x) + f (λ)(u),

turns out to be a re-write of the Legendre duality between x̃ and u:

x̃ · u = g(x̃) + g∗(u) , with x̃ = xe−λ f (x);

and a re-write of the Legendre duality between x and ũ:

x · ũ = g̃∗(x) + g̃(ũ) , with ũ = ue−λ f (λ)(u).

Therefore, λ-duality is in essence the Legendre duality with a λ-dependent rescaling of
the variables:

x̃ = x e−λ f (x) ⇐⇒ x =
x̃

1− λg(x̃)

and:
ũ = u e−λ f (λ)(u) ⇐⇒ u =

ũ
1− λg̃(ũ)

.

The two pairs of convex functions g, g∗ and g̃, g̃∗ are linked with the pair of λ-convex
functions f , f (λ) via:

g(x̃) = G−λ, f (x) = γ−λ( f (x)) = (γ−λ ◦ f )(x);

g∗(u) = G
λ, f (λ)(u) = γλ( f (λ)(u)) = (γλ ◦ f (λ))(u);

g̃(ũ) = G−λ, f (λ)(u) = γ−λ( f (λ)(u)) = (γ−λ ◦ f (λ))(u);

g̃∗(x) = Gλ, f (x) = γλ( f (x)) = (γλ ◦ f )(x).

The λ-duality leads to nontrivial mathematical questions, e.g., a differential calculus in
the spirit of Rockafellar and analogous to functions of the Legendre type. Some of the
derivations in the current paper were heuristic, and a complete and rigorous development
is left for future research.

Coming back to the probability families, we first verified that the subtractive potential
φλ(θ) is convex in θ and the divisive potential ϕλ(ϑ) is λ-convex in ϑ. Subtractive nor-
malization using φλ(θ) is associated with the regular Legendre duality, whereas divisive
normalization using ϕλ(ϑ) is associated with the λ-duality. This gives an interpretation of
the distinctiveness of Rényi entropy (used in the latter) from Tsallis entropy (used in the
former) based on their intimate connection to the λ-duality (for λ 6= 0) or to the Legendre
duality. As λ is the parameter that controls the curvature in the Riemannian geometry of
these probability families (see [12]), our framework provides a simple parametric deforma-
tion from the dually flat geometry (of the exponential model) to the dually projectively flat
geometry (of the λ-exponential model). We expect that this framework will generate new
insights in the applications of the q-exponential family and related concepts in statistical
physics and information science.
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Table 1. Generalization of objects from the Hessian (dually flat) geometry to the λ-deformed (dually
projectively flat) geometry.

Objects Conventional (λ = 0) λ-Deformed

transformation Legendre λ-Legendre

conjugation supx(x · u− f (x)) supx(κλ(x · u)− f (x))

potentials convex λ-convex

associated divergence Bregman λ-logarithmic

Riemannian metric Hessian conformal Hessian

affine connections dually flat dually projectively flat

curvature of connections 0 constant λ 6= 0

biorthogonal coordinates (x, u) (x̃, u) or (x, ũ)

probability family exponential λ-exponential

probability family mixture λ-mixture

associated divergence Kullback–Leibler Rényi

associated entropy Shannon Rényi/Tsallis
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