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Abstract: In this paper, we propose a novel and generic family of multiple importance sampling
estimators. We first revisit the celebrated balance heuristic estimator, a widely used Monte Carlo
technique for the approximation of intractable integrals. Then, we establish a generalized framework
for the combination of samples simulated from multiple proposals. Our approach is based on
considering as free parameters both the sampling rates and the combination coefficients, which
are the same in the balance heuristics estimator. Thus our novel framework contains the balance
heuristic as a particular case. We study the optimal choice of the free parameters in such a way that
the variance of the resulting estimator is minimized. A theoretical variance study shows the optimal
solution is always better than the balance heuristic estimator (except in degenerate cases where both
are the same). We also give sufficient conditions on the parameter values for the new generalized
estimator to be better than the balance heuristic estimator, and one necessary and sufficient condition
related to χ2 divergence. Using five numerical examples, we first show the gap in the efficiency of
both new and classical balance heuristic estimators, for equal sampling and for several state of the art
sampling rates. Then, for these five examples, we find the variances for some notable selection of
parameters showing that, for the important case of equal count of samples, our new estimator with
an optimal selection of parameters outperforms the classical balance heuristic. Finally, new heuristics
are introduced that exploit the theoretical findings.

Keywords: Monte Carlo; importance sampling; balance heuristic; variance reduction; chi-square
divergence; Kullback–Leibler divergence; cross entropy

1. Introduction

Multiple importance sampling (MIS) is a Monte Carlo technique widely used in
the literature of signal processing, computational statistics, and computer graphics for
approximating complicated integrals. In its basic configuration, it works by drawing
random samples from several proposal distributions (also called techniques) and weighting
them appropriately in such a way that an estimator built with the pairs of weighted samples
is consistent. Since the publication of [1], the celebrated balance heuristic estimator has been
extensively used in the Monte Carlo literature, with an unprecedented success in the
computer graphics industry (Eric Veach has been awarded with several prizes because of
his contributions in the MIS literature, where the balance heuristic is arguably the most
relevant one). In the balance heuristic method, different samples are simulated from each
proposal and the traditional IS weight is assigned to each of them. Unlike the standard IS
estimator, all the weighted samples are combined with an extra weighting, in such a way the
resulting estimator typically shows a reduced variance. Its superiority in terms of variance
with regard to other traditional combination schemes has been recently shown in [2], where
a framework is established for sampling and weighting in MIS under equal number of
samples per technique. The balance heuristic, also called the deterministic mixture [3], has
been widely used in the literature of MIS. Further efficient variance reduction techniques

Entropy 2022, 24, 191. https://doi.org/10.3390/e24020191 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24020191
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-2164-6858
https://doi.org/10.3390/e24020191
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24020191?type=check_update&version=1


Entropy 2022, 24, 191 2 of 26

are proposed in [4–6] also in the context of MIS, still with equal counts from each technique.
Provably better estimators [7] and heuristically better ones [8,9] have been presented that
use a different count of samples than equal count for all techniques. In [10], it has been
shown the relationship of a better count of samples with generalized weighted means. The
balance heuristic is also present in most of successful adaptive IS (AIS) methods, see [11–15],
in particular in the case where all techniques are used to simulate the same number of
samples. Recently, MIS has returned to the main focus in computer graphics in [16], where
it is shown that allowing weights to be negative, the reduction over balance heuristics of the
resulting MIS estimator can be higher than the one predicted by Veach bounds [17]; in [18],
where one of the sampling techniques is optimized to decrease the overall variance of the
resulting MIS estimator; in [19], where the weights are made proportional to the quotients
of second moments divided by the variances of the independent techniques; in [20], where
MIS is generalized to uncountably infinite sets of techniques.

Interestingly, the balance heuristic has two properties in the assigned weights. First,
all techniques appear at the denominator of the weight of a specific technique. Second,
they appear in a form of a mixture, with coefficients proportional to the number of sam-
ples simulated from each technique. In this paper, we relax this constraint providing a
generalized weighting/combining family of estimators that has the balance heuristic as a
particular case. First, we show that it is possible to use a specific set of coefficients to decide
the amount of samples per technique, and a different set of coefficients to be applied as the
importance weight. Second, we study four different cases fixing some of these coefficients
(sampling and/or weighting), and we give the optimal solution for the rest of coefficients in
such a way the variance of the MIS estimator is minimized. Note that, the novel estimator
always outperforms the balance heuristic under the optimal choice of those coefficients. In
five numerical examples we show that, under an adequate choice of parameters, the novel
estimator outperforms the celebrated balance heuristic.

The rest of the paper is structured as follows. Section 2 revisits the balance heuristic
estimator. In Section 3, we propose the new family of estimators that generalizes the balance
heuristic. We address five cases of special interest, depending on which parameters are free
and the number of samples simulated from each technique. We then, in Section 4, discuss
the different singular points in the variances of the estimators considered. In Section 5, we
give a necessary and sufficient condition, in terms of χ2 divergence (and its approximation
as a Kullback–Leibler divergence), for the variance of the new estimator to be better than
the one of balance heuristics. Finally, we conclude the paper with five numerical examples
in Section 6, propose some heuristics, and give some conclusions in Section 7.

2. Balance Heuristic Estimator

The goal in IS is usually the estimation of the value of integral µ =
∫

f (x)dx. In MIS,
ni samples, {Xi,j}

ni
j=1, are simulated from a set of available probability density functions

(pdfs), {pi}n
i=1. The MIS estimator introduced by Veach and Guibas [1] is given by

Z =
n

∑
i=1

1
ni

ni

∑
j=1

wi(Xi,j)
f (Xi,j)

pi(Xi,j)
, (1)

where wi(x) is a weight function associated to the i-th proposal that fulfills both following
conditions. First, the weights must sum up to one in all points of the domain where the
value of the function is different from zero, i.e., ∑n

i=1 wi(x) = 1, ∀x where f (x) 6= 0, Second,
for all x where pi(x) = 0, then wi(x) = 0. In this paper, we consider only weighting
functions that yield Z unbiased.

The balance heuristic estimator is a particular case of Equation (1) where the weight
function is given by

wi(x) =
ni pi(x)

∑n
k=1 nk pk(x)

, (2)
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which can be written too as

wi(x) =
αi pi(x)

∑n
k=1 αk pk(x)

, (3)

where ni = αi N. In this case, the estimator in Equation (1) becomes the balance heuristic or
deterministic mixture estimator given by

F =
n

∑
i=1

1
ni

ni

∑
j=1

αi f (Xi,j)

∑n
k=1 αk pk(Xi,j)

(4)

=
1
N

n

∑
i=1

ni

∑
j=1

f (Xi,j)

∑n
k=1 αk pk(Xi,j)

. (5)

2.1. Interpretation of F and General Notation of the Paper

Note that F is also called deterministic mixture scheme [3] or multi-sample MIS
estimator [7,17], as opposed to the case where all independent and identically distributed
(i.i.d.) samples are from the mixture ψα = ∑n

k=1 αk pk(x). The latter alternative is called the
randomized balance heuristic or one-sample MIS estimator, and the estimator is denoted by F .
This alternative is a subtle variation of F that simply modifies the sampling by simulating
the N total samples i.i.d. from the mixture ψα (instead of deterministically choosing the
number of samples per proposal). Then, the estimator is the exact same expression of
Equation (4). This randomized version F allows also for a re-interpretation of the deter-
ministic balance heuristic, F, that can be seen as a mixture sampling (note that the mixture
is present in the denominator of all importance weights) with variance reduction using
stratified sampling (see Appendix 1 of [2] for a detailed discussion). In the randomized
version, ni is then a random variable with expected value αi N, for all i. In summary, in this
paper we refer as deterministic mixture estimator the cases where the number of samples per
technique is deterministic, e.g., F, and random mixture estimator when there is i.i.d. sampling
from the mixture (and hence ni is a random variable), e.g., F . We represent the randomized
estimators with calligraphic letters. All estimators, unless the opposite is clearly stated, are
deterministic mixture estimators.

Finally, we denote estimators with the superindex1 when they are versions of a specific
estimator but with a number of samples normalized to 1, e.g., F1 is the normalized version
of F. In other words, even if the estimators require that all the numbers of samples per
technique are ni ∈ R, we use these normalized estimators to denote the variance normalized
to 1 sample, which simplifies the comparison across estimators (for N total samples, the
variance of the estimator would be just the variance of F1 divided by N).

In Table 1 we show the naming convention used in this paper.

Table 1. Naming convention for the multiple importance sampling estimators in this paper. We drop
the superindex1 from primary estimators when not strictly necessary.

Z Generic deterministic (multi-sample) MIS estimator
Z1 Generic deterministic (multi-sample) MIS estimator normalized to one sample
Z Generic randomized (one-sample) MIS estimator
Z1 Generic randomized (one-sample) MIS estimator, for number of samples equal to 1
F Balance heuristic multi-sample MIS estimator
F1 Balance heuristic multi-sample MIS estimator normalized to one sample
F Balance heuristic one-sample MIS estimator
F1 Balance heuristic one-sample MIS estimator, for number of samples equal to 1
G Generalized balance heuristic multi-sample MIS estimator
G1 Generalized balance heuristic multi-sample MIS estimator normalized to one sample
G Generalized balance heuristic one-sample MIS estimator
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2.2. Rationale

In Theorems 9.2 and 9.4 of [17], the variances of Z1 and its randomized version Z1 are
given, i.e., the version where instead of deterministically selecting ni, all the samples are
directly simulated from ∑n

k=1 αk pk(x). By subtracting their values we have

V[Z1]−V[Z1] = ∑
i

αiµ
′2
i − µ2, (6)

where (we use here a notation to be consistent with notation in [7])

µ′ i =
1
αi

∫
wi(x) f (x)dx, (7)

and thus

∑
i

αiµ
′
i = µ. (8)

This result generalizes several particular cases derived in [7] and [2], in the context of a
variance analysis of MIS estimators. From Equation (6) (see Appendix A) we have that

V[Z1] ≤ V[Z1], (9)

and equality only happens (apart from the case when both variances V[Z1], V[Z1] are zero)
when for all i all µ′i are equal. One example is given by taking in Equation (7) for all i,
wi(x) = wi constant and αi = wi. We also show in Appendix A that, for the particular case
when αi = 1/n and f (x) ≥ 0, the upper bound for improvement of deterministic versus
non-deterministic estimator is given by

V[Z1]−V[Z1] ≤ (n− 1)µ2, (10)

where the bound would be approached when there is an index k such that for all i 6= k,
µ′k >> µ′i. In Theorem 9.4 of [17], it is shown that the optimal weighting functions wi(x)
for Z (i.e., those that minimize their variance V[Z ]), are the balance heuristic weights,
Equation (3); therefore, the optimal case is Z ≡ F , where F is the random mixture
estimator. This is, for any estimator Z , when using the same distribution of samples, also
taking into account Equation (9) (see also [7]), it always holds that

V[F] ≤ V[F ] ≤ V[Z ]. (11)

Further, in Theorem 9.2 of [17], it is proved that the estimator that optimizes the second
moment of Z1 estimator, this is, V[Z1] + ∑i αiµ

′2
i , is the balance heuristic estimator. Thus,

it seems clear that for improvement we have to look for a deterministic estimator, which
should be a generalization of balance heuristic mixture estimator F. This is presented in the
next section.

2.3. Realistic Applications
2.3.1. Global Illumination

The rendering equation [21] tells us that the radiance Lout(x, ωout) exiting point x in
direction ωout is given by

Lout(x, ωout) = Le(x, ωout) +
∫

Ω
Lin(x, ωin)ρ(x, ωin, ωout) cos θdωin, (12)

where Le(x, ωout) is the emitted radiance, Lin(x, ωin) is the incoming radiance at x from
direction ωin, with the integral extended to the hemisphere Ω above x, θ is the angle of
the normal at x with ωin, and ρ is the bidirectional reflectance distribution function, which
gives the fraction of luminance incoming from ωin and scattered in the direction ωout. To
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approximate the integral in (12), multiple importance sampling is applied with pdfs that
sample, respectively, the incoming radiance and the bidirectional reflectance.

2.3.2. Bayesian Inference

Multiple importance sampling (MIS) is often applied in Bayesian inference [22]. In
this context, the posterior distribution is usually intractable, and computing its moments
analytically is impossible; therefore, approximate methods are required. MIS is particu-
larly well suited for cases when the posterior distribution is multimodal or needs to be
approximated by a mixture of densities [2].

Typically, a set of observations, y ∈ Rdy , are available. The inference task consists
in estimating probabilistically some hidden parameters and/or latent variables x ∈ Rdy ,
which are connected to the observations through a statistical model. The relation between
observations and unknown parameters is encoded in the likelihood, `(y|x), and the prior
knowledge on x is described through the prior distribution p0(x). Through the Bayes’ rule,
we can obtain the posterior distribution of the unknowns as

π̃(x|y) = `(y|x)p0(x)
Z(y)

, (13)

where Z(y) =
∫
`(y|x)p0(x)dx is the marginal likelihood.

In this scenario, we can be interested in computing a moment h(x) of the posterior,
which is an expectation (hence an integral) of the following form:

µ = Eπ̃ [h(x)] =
∫

h(x)π̃(x|y)dx, (14)

where h : Rdx → R. In connection with the notation of this paper, f (x) = h(x)π̃(x|y). In
the context of Bayesian inference, there are several ways to select the techniques, {pi(x)}n

i=1.
For instance, they can be deterministically set a priori, e.g., as Laplace approximations
at different points [23]. Alternatively, they can be adapted over iterations via iterative
stochastic mechanisms [24]. The latter technique is called adaptive importance sampling
(AIS) and its literature is vast (see [15] for a recent review).

3. Generalized Multiple Importance Sampling Balance Heuristic Estimator

In classic balance heuristic, both the number of samples {ni = αi N}n
i=1 and the weights

of the mixture of pdfs, {αi}n
i=1, are given by the same set of parameters. Let us consider

now the estimator of Equation (4), where we relax the dependence between the number of
samples ni, and the associated coefficient αi, i.e., now ni = βi N, βi > 0, ∑n

i=1 βi = 1, where
in general αi 6= βi (otherwise, we recover F). We now define the estimator

G =
n

∑
i=1

αi
ni

ni

∑
j=1

f (Xi,j)

∑n
k=1 αk pk(Xi,j)

(15)

=
1
N

n

∑
i=1

αi
βi

ni

∑
j=1

f (Xi,j)

∑n
k=1 αk pk(Xi,j)

. (16)

Note that G is a particular case of Z, with weights wi =
αi pi(x)

∑n
k=1 αk pk(Xi,j)

in Equation (1). Note

also that the balance heuristic F is a particular case of G, i.e., in general we do not impose
the restriction of αi =

ni
N . Although the allocation of samples will be different for F and G,

we remark that both estimators require the same number of simulations and evaluations.
Finally, we note that a close examination of (16) allows us to re-interpret the importance
weight associated to each sample. The mixture parametrized with {ni = αi N}n

i=1 appears
in its denominator, but since this mixture does not reflect the sampling procedure (the true
mixture proposal in sampling is the one parametrized by {ni = βi N}n

i=1), the importance
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weight of a sample simulated from the technique βi, is corrected by the factor αi/βi in order
to account for this mismatch.

Estimator G can be rewritten as G = ∑n
i=1 αiGi, where

Gi =
1
ni

ni

∑
j=1

f (Xi,j))

∑n
k=1 αk pk(Xi,j))

. (17)

Note also that G depends of two sets of parameters, {αi}n
i=1and{βi}n

i=1. In the particular
case where βi = αi, ∀i, the estimator G becomes F. Let us consider the case with ni = 1.
Then,

G′i =
f (x)

∑n
k=1 αk pk(x)

, (18)

with expectation

E[G′i ] =
∫ f (x)pi(x)

∑n
k=1 αk pk(x)

dx ≡ µ′i, (19)

and variance

σ′
2
i =

∫ f 2(x)pi(x)
(∑n

k=1 αk pk(x))2 dx− (µ′i)
2. (20)

Observe that E[Gi] = E[G′i ] = µ′i, and V[Gi] =
1
ni

V[G′i ] =
1
ni

σ′2i .

Theorem 1. For any set of weights {αi}n
i=1, such as ∑n

i=1 αi = 1 and any set of weights {βi}n
i=1,

such as ∑n
i=1 βi = 1, G is an unbiased estimator of µ.

Proof. The estimator G is unbiased, since

E[G] =
n

∑
i=1

αiE[Gi] =
n

∑
i=1

αiµ
′
i = ∑

i
αi

∫ f (x)pi(x)
∑n

k=1 αk pk(x)
dx (21)

=
∫ f (x)∑n

i=1 αi pi(x)
∑n

k=1 αk pk(x)
dx (22)

=
∫

f (x)dx ≡ µ.

The variance of G is given by

V[G] = V

[
n

∑
i=1

αiGi

]
=

n

∑
i=1

α2
i V[Gi] =

n

∑
i=1

α2
i σ′2i
ni

. (23)

For the sake of the theoretical analysis, we define G1, a normalized version of G with
N = 1 (see Section 2.1), with variance

V[G1] =
n

∑
i=1

α2
i σ′2i
βi

. (24)

Next we study four special cases of estimator G1.

Remark 1. We could also consider the one-sample estimator G, randomized version of G. However,
G is a particular case of the general estimator Z , and we have seen in Section 2.2 that the optimal
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case for Z is when Z ≡ F , thus it only makes sense to consider the extension G of the multi-sample
estimator F.

Remark 2. Grittmann et al. estimator [19], can be interpreted as a G estimator where αi ∝ βi
m2

i
vi

=

βi
vi+µ2

vi
, where vi is the variance of i independent technique and m2

i = vi + µ2 the second moment,

vi =
∫ f (x)2

pi(x)
dx. (25)

3.1. Case 1: αi = βi, ∀i

In this particular case, the estimator G reverts to F. The variance is

V[F1] =
n

∑
i=1

αiσ
′2
i , (26)

by simple substitution in Equation (24). We aim at finding the optimal {α∗i }n
i=1 such the

variance of Equation (26) is minimized.

Theorem 2. The optimal estimator F∗ in terms of variance is achieved when ∀j ∈ {1, . . . , n}, the
following values are equal

σ′
2
j + 2µ′j

2 − 2
n

∑
i=1

α∗i µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 α∗k pk(x))2 dx. (27)

See Appendix B for a proof.
Compare Equation (27) with the condition for optimal F ∗, which is [9] that the follow-

ing expression is equal ∀j ∈ {1, . . . , n},

σ′
2
j + µ′j

2. (28)

The optimal {α∗i }n
i=1 solutions are in general different for F, Equation (27), and for F ∗,

Equation (28), although observe that, when for {α∗i }n
i=1 all i the µ′i are equal, then the

optimality condition Equation (27) implies that ∀i ∈ {1, . . . , n} the σ′2i are equal too, and
thus the optimal solutions for F andF are the same, in concordance with being V[F] = V[F ]
for this special case, see Section 2.2 and Appendix A.

Another interesting result regarding the µ′i values is the following theorem,

Theorem 3. If V[F(F )] = 0 then for all i, µ′i = µ.

Proof. As V[F] ≤ V[F(F )] then V[F] = ∑n
i αiσ

′
i
2 = 0, and thus for all i, σ′i = 0; however,

V[F(F )] = 0 is obviously a local (and global) minimum for V[F(F )] (a convex function)
and thus from Equation (28) for all i, σ′2i + µ′i

2 are equal and hence the result. Alternatively,
we know that V[F] = V[F(F )] ⇐⇒ for all i, all µ′i = µ.

3.2. Case 2: Fixed {αi}n
i=1

Consider now that {αi}n
i=1 are fixed, and hence also {σ′2i }n

i=1, are fixed. Applying

Cauchy–Schwartz inequality to sequences {
√

βi}n
i=1 and { αiσ

′
i√

βi
}n

i=1 we obtain

(
n

∑
i=1

αiσ
′
i

)2

≤
(

n

∑
i=1

βi

)(
n

∑
i=1

α2
i σ′2i
βi

)
. (29)

As the left term is fixed, equality in Equation (29) will give the minimum of right term,
being this term V[G1] as ∑n

i=1 βi = 1; however, equality can only happen when the right
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term sequences are proportional, this is, for all i,
√

βi ∝ αiσ
′
i√

βi
, and thus the optimal {βi}n

i=1

are given by

β∗i ∝ αiσ
′
i , i = 1, ...n, (30)

and the optimal (minimum) variance is

V[G1∗] =

(
n

∑
i=1

αiσ
′
i

)2

. (31)

Theorem 4. Given an estimator F with {αi}n
i=1 values, we can always find a better estimator G

by sampling as β∗i ∝ αiσ
′
i , which is strictly better whenever not all σ′ i are equal.

Proof. Observe that, by applying Cauchy–Schwartz inequality to the sequences {√αi}n
i=1

and {√αiσ
′
i}n

i=1, (
n

∑
i=1

αiσ
′
i

)2

≤
(

n

∑
i=1

αi

)(
n

∑
i=1

αiσ
′2
i

)
, (32)

but the left-hand side of inequality is V[G1∗], and as ∑n
i=1 αi = 1, the right-hand side is

V[F1]. Hence, for the optimal values {β∗i }n
i=1 as in Equation (30), the estimator G∗ always

outperforms the estimator F (When comparing estimators F and G, we consider, unless
explicitly stated, the same set of {αi}n

i=1 values).
Equality in Equation (32) only happens when for all i,

√
αi ∝
√

αiσ
′
i, i.e., when all σ′ i

are equal. In that case we have for all i β∗i = αi, and we revert to the F estimator.

Remark 3. From the inequality
(

∑n
i=1

1
n σ′2i

)
≤ n

(
∑n

i=1
1
n σ′i

)2
, the maximum possible accelera-

tion by using the optimal β∗i values when for all i, αi = 1/n, is equal to n (as observed in [7]). This
acceleration would be approached when there is an index k such that for all i 6= k, σ′k >> σ′i . In
general, the more different the σ′i are, the higher the acceleration.

A particular case of Theorem 4 is when αi =
1
n , ∀i, where V[G1] becomes

V[G1] =
1
n2

n

∑
i=1

σ′2i
βi

. (33)

This case was introduced in Section 4 of [7]. It was shown that this estimator is provably
better than F with αi = 1/n, ∀i when

β∗i ∝ σ′i , i = 1, . . . , n, (34)

which is the optimal case of Equation (33). Examples showing the improvement obtained
were also given in [7].

Optimal Efficiency

Let us now take into account that the cost of each sampling technique can be different,
as it is usually considered in the literature [25]. Let us denote the cost of sampling technique
i as ci. The inverse of efficiency for the estimator G is given by

E−1
G =

(
n

∑
i=1

βici

)(
n

∑
i=1

α2
i σ′2i
βi

)
. (35)
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Note that this quantity represents the total cost multiplied by the variance of the estima-
tor. Using Cauchy–Schwartz inequality with the sequences {

√
βici}n

i=1 and { αiσ
′
i√

βi
}n

i=1,

we obtain (
n

∑
i=1

αiσ
′
i
√

ci

)2

≤
(

n

∑
i=1

βici

)(
n

∑
i=1

α2
i σ′2i
βi

)
. (36)

The optimal sampling rates (for maximizing the efficiency) are those that yield Equation (36)
as an equality, which happens when β∗i ∝ αiσ

′
i√

ci
. Observe that, using again the Cauchy–

Schwartz theorem, with sequences {√αici}n
i=1 and {√αiσ

′
i}n

i=1, we obtain(
n

∑
i=1

αiσ
′
i
√

ci

)2

≤
(

n

∑
i=1

αici

)(
n

∑
i=1

αiσ
′2
i

)
, (37)

where the left-hand side is E−1
G with the optimal sampling rates, and the right-hand side is

E−1
F . Note that equality only happens when for all i,

√
αici =

√
αiσ
′
i, i.e., ci ∝ σ′2i , where we

have β∗i = αi and we revert to the F estimator. This is summarized in the following theorem.

Theorem 5. Given an estimator F with {αi}n
i=1 values, and sampling costs {ci}n

i=1, we can always

find a strictly more efficient estimator G∗ when for all i, β∗i ∝ αi
σ′i√

ci
, and not all ci ∝ σ′2i .

3.3. Case 3: Fixed {βi}n
i=1

Theorem 6. Consider now a fixed set {βi}n
i=1. The optimal set {α∗i }n

i=1 can be found using
Lagrange multipliers with target function

Λ({αi}n
i=1, λ) =

n

∑
i=1

α2
i σ′2i
βi

+ λ

(
n

∑
i=1

αi − 1

)
.

Observe that the σ′2i values depend on the {αi}n
i=1 values. The optimal values are those that obey,

for all j, the following expression

α∗j σ′2j

β j
=

n

∑
i=1

α∗2i
βi
×(∫ f 2(x)pi(x)pj(x)

(∑n
k=1 α∗k pk(x))3 dx− µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 α∗k pk(x))2 dx

)
. (38)

Proof. The derivation can be found in the Appendix C.

Note that in the general case, the optimal α∗i 6= βi.
Moreover, aside from the optimal values {α∗j }n

j=1, we can find cases where V[G1] ≤
V[F1]. Given {βi}n

i=1, from Theorem 4 we have that if there exist {αi}n
i=1 such that βi ∝

αiσ
′
i , i = 1, ...n, then V[G1] ≤ V[F1]. From Theorem 5, we have that if there exist {αi}n

i=1

such that βi ∝ αi
σ′i√

ci
, ∀i = 1, ...n, then the estimator G1 is more efficient than estimator F1.

Observe that from Equation (38), a necessary and sufficient condition for the optimal
solution α∗i to be such that α∗i = βi for all i is that Equation (39) holds (see Appendix C),

µ′j
2
=

n

∑
i=1

αiµ
′
i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx, (39)

which is satisfied when for all i, µ′i = µ. In this particular case, µ′i = µ, G ≡ F, and
V[G] = V[F] = V[F ]. In other words, when choosing a sampling rate of {βi} = {α?i },
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where {α?i } are such that for all i, µ′i = µ, the optimal {αi} parameters for G estimator are
precisely {α?i }. That is, we can not improve the F({α?i }) estimator with the G estimator
with a suitable selection of {βi} parameters. Observe that it is similar to the case studied in
Section 3.2 for the {αi} that make all σ′ i equal.

Equation (39) might have additional solutions to the one (if exists) that makes all µ′i
equal, in this case V[G] = V[F] too but V[F] 6= V[F ].

3.4. Case 4: βi = 1/n, ∀i

In the case when for all i, βi = 1/n, the variance becomes

V[G1] =
n

∑
i=1

α2
i σ′2i

1/n
= n

n

∑
i=1

α2
i σ′

2
i . (40)

Note that this is a usual case in the MIS literature strategies [2,4–6] and the adaptive IS
(AIS) literature [11–15,24], since all the techniques have the same number of counts. By
setting in Equation (38) for all i, βi = 1/n, and if we can optimize {αj}n

j=1, we can find the
minimum variance values {α∗j }n

j=1. Thus the minimum variance V[G∗] corresponds, if the
solution exists, to the values {α∗j }n

j=1 that satisfy

α∗j σ′
2
j =

n

∑
i=1

α∗2i (41)

×
(∫ f 2(x)pi(x)pj(x)

(∑n
k=1 α∗k pk(x))3 dx− µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 α∗k pk(x))2 dx

)
.

The corresponding variance V[G∗] will be less or equal than the variance of V[G] for all
{αj}n

j=1, and in particular for αi = 1/n, where G converts into F as βi = αi = 1/n, the
classic balance heuristic estimator, thus V[G∗({α∗i }, {βi = 1/n})] ≤ V[F({αi = 1/n})].
Observe that in general {α∗i 6= 1/n}, because substituting {α∗i = 1/n} in Equation (41) the
resulting equation Equation (39) is not satisfied in general.

Comparing V[G1({αi}, {βi})], V[G1({αi}, {βi = 1/n})] and V[F1({αi})]
Let us see first when V[G1({αi}, {βi})] ≤ V[G1({αi}, {βi = 1/n}))] and viceversa.

Theorem 7. If the sequences {βi}, {
α2

i σ′2i
βi
} are comonotonic, i.e., βi ≤ β j =⇒ α2

i σ′2i
βi
≤

α2
j σ′2j
β j

,
then

V[G1({αi}, {βi})] ≤ V[G1({αi}, {βi = 1/n})]. (42)

Proof. Applying Theorem 9, Corollary 5 from [26],

n

∑
i=1

1
n

(
α2

i σ′2i
βi

)
≤

n

∑
i=1

βi

(
α2

i σ′2i
βi

)
, (43)

obtaining the inequality in Equation (42). See also [10,27].

Observe that equality in Equation (43) happens when for all i, βi ∝ α2
i σ′2i .

In the same way we can proof the inverse case as follows,
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Theorem 8. If the sequences {βi} and { α2
i σ′2i
βi
} are countermonotonic, i.e., βi ≤ β j =⇒ α2

i σ′2i
βi
≥

α2
j σ′2j
β j

, then

V[G1({αi}, {βi})] ≥ V[G1({αi}, {βi = 1/n}))]. (44)

The proof implies for countermonotonicity a change of sign in the inequality in
Theorem 9, Corollary 5 from [26].

Let us compare now V[G1({αi}, {βi = 1/n})] and V[F1({αi})].

Theorem 9. If the sequences {αi}, {αiσ
′2
i } are countermonotonic, i.e., αi ≤ αj =⇒ αiσ

′2
i ≥

αjσ
′2
j , then

V[G1({αi}, {βi = 1/n})] ≤ V[F1({αi})]. (45)

Proof. The proof is as above, making use of Theorem 9, Corollary 5 from [26],

n

∑
i=1

1
n
(αiσ

′2
i ) ≥

n

∑
i=1

αi(αiσ
′2
i ), (46)

obtaining the inequality in Equation (45).

Observe that equality in Equation (46) happens when for all i, αi ∝ 1/σ′2i . In the same
way we can prove the reverse case of Theorem 9.

Theorem 10. If the sequences {αi}, {αiσ
′2
i } are comonotonic, i.e., αi ≤ αj =⇒ αiσ

′2
i ≤ αjσ

′2
j ,

then

V[G1({αi}, {βi = 1/n})] ≥ V[F1({αi})]. (47)

As a direct consequence of Theorems 9 and 10 we have the following corollary:

Corollary 1. When αi ∝ 1/σ′2+ε
i , if−2 ≤ ε ≤ 0 then V[G1({αi}, {βi = 1/n})] ≤ V[F1({αi})]

holds, and if ε ≥ 0 then V[G1({αi}, {βi = 1/n})] ≥ V[F1({αi})] holds.

By setting ε = −1 in Corollary 2, the products αiσ
′
i are equal for all i, which is

equivalent to saying that αiσ
′
i ∝ 1/n = βi. Observe that this corresponds to the optimal

solution {β∗j } given by Equation (30). Observe now that the inequality for this optimal

solution, V[G1] ≤ V[F1], can be obtained by successive application of Theorems 7 and 9.

Theorem 11. If the sequences {αi}, {αiσ
′2
i } are countermonotonic, and the sequences {βi}, {

α2
i σ′2i
βi
}

are comonotonic, then

V[G1({αi}, {βi})] ≤ V[F1({αi})]. (48)

Proof. The result is obtained by successive application of Theorems 7 and 9.

Theorem 12. If the sequences {αi}, {αiσ
′2
i } are comonotonic, and the sequences {βi}, {

α2
i σ′2i
βi
} are

countermonotonic, then

V[G1({αi}, {βi})] ≥ V[F1({αi})]. (49)

As a direct consequence of Theorems 11 and 12 we have the following corollary:
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Corollary 2. When αi ∝ 1/σ′2+ε
i and βi ∝ (αiσ

′
i)

γ, if −2 ≤ ε ≤ 0 and 0 < γ ≤ 2 then
V[G1({αi}, {βi})] ≤ V[F1({αi})] holds, and if ε ≥ 0 and γ > 2 then V[G1({αi}, {βi})] ≥
V[F1({αi})] holds.

For example, take αi ∝ 1/σ′2i , and βi ∝ αiσ
′
i ∝ 1/σ′ i, then V[G1({αi}, {βi})] ≤

V[F1({αi})].
Finally, observe that we do not have a sufficient condition for V[F1({αi})] ≤ V[F1({αi =

1/n})], only there are heuristics [7,9,10,28].

3.5. Case 5: General Case

Let us consider the global optimum for G estimator, this is, without imposing any
constraint to the parameters {αi}, {βi}. For this we should optimize the lagrangian function

Λ({αi}n
i=1, {βi}n

i=1, λ1, λ2) =
n

∑
i=1

α2
i σ′2i
βi

+ λ1

(
n

∑
i=1

αi − 1

)
+ λ2

(
n

∑
i=1

βi − 1

)
.

Differentiating with respect to αi,

∂Λ({αi}n
i=1, {βi}n

i=1, λ1, λ2)

∂αj

= 0,

we obtain Equation (38).
Differentiating with respect to βi,

∂Λ({αi}n
i=1, {βi}n

i=1, λ1, λ2)

∂β j

= 0,

we obtain Equation (30). Thus, the optimal parameters {α?i }n
i=1 and {β?

i }n
i=1 will solve for

Equations (38) and (30) simultaneously.
Let us consider now the {α†

i }n
i=1, if they exist, such that for all i, σ′i are equal. Then,

for Equation (30) to hold for {α†
i }n

i=1, we have that β†
i = α†

i for all i = 1, . . . , n. From
Equation (38), taking {β†

i }n
i=1 = {α†

i }n
i=1, Equation (39) has to hold for all α†

i .
Furthermore, the holding of Equation (39), together with the hypothesis that for all

j, σ′2j are equal, allows Equation (27) to hold, and then {α†
i }n

i=1 is an optimum for F too,
V[F] = V[G]. If in addition, if {α†

i } are such that they make all {µ′}n
j=1 equal, then they

would be optimal for F too, V[F ] = V[F] = V[G].

4. Singular Solutions

The variance of F can be written as [7]

V[F ] =
n

∑
i=1

αi(σ
′2
i + µ′

2
i − µ2) =

n

∑
i=1

αiσ
′2
i +

n

∑
i=1

αiµ
′2
i − µ2. (50)

=
n

∑
i=1

αi(σ
′2
i + µ′

2
i )− µ2.

The optimal parameters {αi}n
i=1 happen when for all i, σ′2i + µ′2i equal, which gives a local

minimum for V[F ] (in this case a global minimum too, as V[F ] is convex). Observe that
this makes, in the third inequality, all terms factored by {αi} equal, and also corresponds to
equality in the Cauchy–Schwartz inequality(

n

∑
i=1

αi

√
(σ′2i + µ′2i )

)2

≤
(

n

∑
i=1

αi

)(
n

∑
i=1

αi(σ
′2
i + µ′

2
i )

)
, (51)

with equality only when, for all i, σ′2i + µ′2i are equal.
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If there exist {α?i }n
i=1 values such that for all i, µ′i = µ and all σ′ i are equal, these values

correspond to the global optimum V[F ?] = V[F?] = V[G?], and F? ≡ G?, but F? 6≡ F ?.
Suppose there exist {α?i }n

i=1 such that for all i, µ′i = µ, then we can not improve the F
estimator with a G estimator with a suitable selection of {βi}n

i=1 parameters, because the
optimal {αi} parameters for the G estimator when {βi}n

i=1 = {α?i }n
i=1 are precisely {α?i }.

This is, the optimal of V[G({αi}n
i=1, {βi}n

i=1 = {α?i }n
i=1)] is for {αi}n

i=1 = {α?i }n
i=1.

Let us see now V[F]:

V[F] =
n

∑
i=1

αiσ
′2
i .

Suppose there exist {α?i }n
i=1 such that all σ′i are equal, then we can not improve the F estima-

tor with a suitable selection of {βi}n
i=1 parameters for the G estimator, because the optimal

{β?
i }n

i=1 are such that {β?
i }n

i=1 = {α?i }n
i=1. This is, the optimal of V[G({α?i }n

i=1, {βi}n
i=1)] is

for {βi}n
i=1 = {α?i }n

i=1. Observe that by Cauchy–Schwartz(
n

∑
i=1

αiσ
′
i

)2

≤
(

n

∑
i=1

αi

)(
n

∑
i=1

αiσ
′2
i

)
, (52)

with equality only when, for all i, all the σ′2i are equal. Observe thus that both the solutions
for µ′i equal and for σ′2i equal are singular solutions for G, where it reverts to F.

Let us consider now V[G]:

V[G] =
n

∑
i=1

α2
i

βi
σ′

2
i =

n

∑
i=1

αi

(
αi
βi

σ′
2
i

)
=

n

∑
i=1

βi

(
α2

i
β2

i
σ′

2
i

)
. (53)

In the second equality in Equation (53), the solution for all i, αi
βi

σ′2i equal, or βi ∝ αiσ
′
i
2,

makes V[G] = V[F], because then for all i, αiσ
′2
i = Kβi, and substituting in the expressions

for V[G], V[F] we have V[G] = V[F] = K, but G 6≡ F. By Cauchy–Schwartz, n

∑
i=1

√
α3

i σ′2i
βi

2

≤
(

n

∑
i=1

αi

)(
n

∑
i=1

α2
i

βi
σ′

2
i

)
, (54)

with equality only when, for all i, αi
βi

σ′2i are equal.

In the third equality in Equation (53), the solution for all i, α2
i

β2
i
σ′2i , equal, or βi ∝

αiσ
′
i , gives the optimal solution for V[G] when {αi} are fixed, Equation (30). By Cauchy–

Schwartz, (
n

∑
i=1

αiσ
′
i

)2

≤
(

n

∑
i=1

βi

)(
n

∑
i=1

α2
i

βi
σ′

2
i

)
, (55)

with equality only when, for all i, α2
i

β2
i
σ′2i are equal.

We summarize in Table 2 the different possibilities.
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Table 2. Singular parameter values. {α?i }
n
i=1, {β?i }

n
i=1 are solutions of the equations in first column

and same row.

for all i, σ′i
2 + µ′2i equal V[F ({α?i })] global minimum

for all i, σ′i
2 equal and µ′ i equal

V[F ({α?i })] = V[F({α?i })] = V[G({α?i }, {βi} = {α?i })] global minimum, F ≡ G, but
F 6≡ F

for all i, µ′i equal V[F ({α?i })] = V[F({α?i })]; optimal of V[G({αi}, {βi} = {α?i })] is for {αi} = {α?i }
for all i, σ′i equal optimal of V[G({α?i }, {βi})] is for {βi} = {α?i }, F ≡ G
for all i, αi

βi
σ′2i equal, or βi ∝ αiσ

′
i
2 V[G({α?i }, {β

?
i })] = V[F({α?i })]

for all i, α2
i

β2
i
σ′2i , equal, or βi ∝ αiσ

′
i optimal of V[G({αi}, {βi})] when {αi} are fixed, ∀{αi}, V[G({αi}, {β?i })] ≤ V[F({αi})]

5. Relationship with χ2 Divergence: A Necessary and Sufficient Condition for
V [G] ≤ V [F]

The variance of an importance sampling estimator can be written in terms of a χ2

divergence if f (x) ≥ 0 [29,30]. As the F estimator can be seen as an importance sampling
estimator with pdf p(x) = ∑n

i pi(x), its variance can be written as

V[F ] =
∫ f (x)2

∑n
i αi pi(x)

dx− µ2 (56)

= µ2
∫ f (x)2

µ2

∑n
i αi pi(x)

dx− 2µ2
∫ f (x)

µ
dx + µ2

∫ ( n

∑
i

αi pi(x)

)
dx

= µ2
∫ (

f (x)
µ − (∑n

i αi pi(x))
)2

∑n
i αi pi(x)

dx

= µ2χ2

(
f (x)

µ
,

n

∑
i

αi pi(x)

)
.

Observe that from the χ2 expression in Equation (56) it is clear that V[F ] = 0 ⇐⇒ f (x) ∝
∑n

i αi pi(x) except possibly in a zero measure set. As a consequence, for all i µ′i = µ, and
thus V[F] = V[F ] = 0. As V[F] ≤ V[F ], we have the result

V[F] = 0 ⇐⇒ V[F ] = 0. (57)

A possible generalization of Equation (56) to the G estimator, the randomized version of G,
is given in Appendix D.

Although neither V[F] nor V[G] can be written as in Equation (56), we can still relate
them to χ2 divergence. In general, ∑n

i αkσ′k > 0. Note that, if ∑n
k αkσ′k = 0, then, for all k,

σ′k = 0 and V[F] = V[G] = 0. Thus both V[G], V[F] = 0 or both V[G], V[F] > 0. Let us
denote K = ∑n

k=1 αkσ′k. Then,
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V[G] =
n

∑
i=1

α2
i σ′2i
βi

(58)

= K2
n

∑
i=1

α2
i σ′2i
K2

βi
+ K2

n

∑
i=1

βi − K2 + K2
n

∑
i=1

2
αiσ
′
i

K
− K2

n

∑
i=1

2
αiσ
′
i

K

= K2

 n

∑
i=1

α2
i σ′2i
K2 − 2 αiσ

′
i

K βi + β2
i

βi

− K2 + K2
n

∑
i=1

2
αiσ
′
i

K

= K2

 n

∑
i=1

α2
i σ′2i
K2 − 2 αiσ

′
i

K βi + β2
i

βi

+ K2

= K2

(
n

∑
i=1

( αiσ
′
i

K − βi)
2

βi
+ 1

)

=

(
n

∑
k=1

αkσ′k

)2(
χ2
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {βi}
)
+ 1
)

.

For {βi ∝ αiσ
′}n

i=1 the χ2 divergence value is zero, and V[G] = (∑n
k=1 αkσ′k)

2. This is the
optimal of V[G] when the {αi}n

i=1 are fixed, as seen in Section 3.2.
Substituting {βi = αi}n

i=1 in Equation (58) we obtain

V[F] =

(
n

∑
k=1

αkσ′k

)2(
χ2
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {αi}
)
+ 1
)

. (59)

As we have taken ∑n
k=1 αkσ′k > 0, we can divide first and last terms of Equations (58)

and (59),

V[G] = V[F]
χ2
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {βi}
)
+ 1

χ2
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {αi}
)
+ 1

. (60)

Hence the following theorem,

Theorem 13. If V[G], V[F] > 0, then

V[G] ≤ V[F] ⇐⇒ χ2
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {βi}
)
≤ χ2

(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {αi}
)

.

Observe that Theorem 13 does not impose any a priori condition on the {αi}, {βi} pa-
rameters and generalizes Theorem 12. In the same way we can generalize
Theorems 7–11 with the following corollaries,

Corollary 3. If V[G], V[G({βi = 1/n})] > 0, then

V[G] ≤ V[G({βi = 1/n}]) ⇐⇒ χ2
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {βi}
)
≤ χ2

(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {1/n}
)

.

Corollary 4. If V[G({βi = 1/n})], V[F] > 0, then

V[G({βi = 1/n})] ≤ V[F] ⇐⇒ χ2
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {1/n}
)
≤ χ2

(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {αi}
)

.
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Remark 4. Observe that, using the second order χ2 approximation of KL (Kullback–Leibler)
distance between two distributions X1, X2, χ2(X1, X2) ≈ 2KL(X1, X2) [31], Theorem 13 can be
written as

V[G] ≤ V[F] ⇐⇒ KL
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {βi}
)
≤ KL

(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {αi}
)

⇐⇒ CE
(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {βi}
)
≤ CE

(
{ αiσ

′
i

∑n
k=1 αkσ′k

}, {αi}
)

,

where cross entropy CE(X1, X2) = H(X1) + KL(X1, X2), and H stands for entropy.

The same approximation can be used for Corollaries 3 and 4.

6. Numerical Examples
6.1. Efficiency Comparison between F and G Estimators

We compare the efficiencies for the F estimator and the optimal G estimator defined
in Theorem 5 with five examples. Table 3 shows the inverse of the efficiencies, E−1

F =

V[F] · Cost[F] and E−1
G = V[G] · Cost[G], i.e., the product of variance and cost for the F

estimator and for the optimal G estimator, for these possible sets of {αk}n
k=1: (i) equal count

of samples, {αk = 1/n}; (ii) count of samples inversely proportional to the variances of
the independent techniques times the cost of sampling the technique, {αk ∝ 1

ckvk
} [8,9];

and the three balance heuristic estimators defined in [28], which are (iii) count of samples
inversely proportional to the second moments of the independent techniques times the
cost of sampling the technique, {αk ∝ 1

ckm2
k
}; (iv) count of samples proportional to σk,eq =

σ′k({αi=1/n}n
i=1)

n , and inversely proportional to the square root of the cost, {αk ∝
σk,eq√

ck
}; and

(v) {αk ∝
Mk,eq√

ck
} where Mk,eq =

√∫ f 2(x)pk(x)
(∑i pi(x))2 .

Below, we describe the five examples. From the results in Table 3, we can see:

• As expected, Theorems 4 and 5 hold for all the cases.
• Examples 1–4 show a general gain in efficiency, around 20%.
• Example 5 with equal costs shows a gain in efficiency from 2% to around 20%.
• Example 5 with different costs shows big gains in efficiency, in particular for equal

count of sampling the efficiency is doubled.

We see in all our examples an increase in efficiency when the estimator G is used in-
stead of the estimator F, showing in some cases, as in Example 5, a 50% improvement.
Theorems 4 and 5 ensure that estimator G is always better than estimator F if the optimal
{βi} values are used; however, for equal costs (i.e., comparing only variances), the amount
of improvement strongly depends on the example considered, from very small o negligible
(see first three rows of Table 4 for the first four examples) to an important one (compare
Table 3 for Example 5 with equal costs with the first three rows of Table 4 for Example 5).
The values are computed for the results in Tables 3 and 4 by using numerical approxima-
tions obtained with Mathematica software. It would also be possible to select them in an
adaptive and iterative way. We defer the investigation of these adaptive schemes for a
future work.

6.1.1. Example 1

Suppose we want to solve the integral

µ =
∫ π

3
2π

x
(

x2 − x
π

)
sin(x)dx ≈ 10.29 (61)
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by MIS sampling on functions x, (x2 − x
π ), and sin(x), respectively. We first find the

normalization constants:
∫ π

3
2π

xdx = 4.82082,
∫ π

3
2π
(x2 − x

π )dx = 8.76463,
∫ π

3
2π

sin(x)dx =

1.88816. The costs for sampling the techniques are (1; 6.24; 3.28).

6.1.2. Example 2

Let us solve the integral

µ =
∫ π

3
2π

(
x2 − x

π

)
sin2(x)dx ≈ 3.60 (62)

using the same functions x, (x2 − x
π ), and sin(x) as before.

6.1.3. Example 3

As the third example, let us solve the integral

µ =
∫ π

3
2π

x +
(

x2 − x
π

)
+ sin(x)dx ≈ 15.47 (63)

using the same functions as before. The optimal α values for this example, with zero
variance, are 1

4.82082+8.76463+1.88816 (4.82082, 8.76463, 1.88816).

6.1.4. Example 4

As the fourth example, consider the integral of the sum of the three pdfs

µ =
∫ π

3
2π

30
x

4.82082
+ 30

(
x2 − x

π

)
8.76463

+ 40
sin(x)

1.88816
dx (64)

≈ 100.

In this case we know again the optimal (zero variance) α values: (0.3, 0.3, 0.4). The difference
with the previous example is that this case should be most favorable to equal count
of samples.

6.1.5. Example 5

As the last example, consider solving the following integral

µ =
∫ π/2

0.01

(√
x + sin x

)
dx ≈ 2.31175. (65)

by MIS sampling on functions 2− x, and sin2(x).

6.2. Variances of Examples 1–5 for Some Notable Cases

In Table 4 we present some notable cases for the variance of Examples 1–5. Observe
that here we do not consider the cost of sampling. The values are computed for the results
in Table 4 with Mathematica software. We have

• In first, second and third row we present the optimal values of V[F ] ≥ V[F] ≥ V[G],
respectively. In the first example those values are equal up to the fourth decimal
position. In the second example they are equal up to the second decimal position, in
the third and fourth examples they are equal, and in the fifth example the gain of V[G]
with respect to V[F] is more than 30%.

• In the fourth row we present the values of V[F(1/n)], which are compared against
several strategies and heuristics in the following rows

• The values in the fifth row for V[G], that correspond to Equation (30) (or the left-hand
side of Equation (37) with all costs equal to 1), although being better than the values
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for V[F] in the fourth row, as expected, do not give any significant improvement. As
we have seen in Table 3 the improvements for this case come rather from efficiency.

• The values in the sixth row for V[G], that correspond to the solution of Equation (40),
this is, the optimal {αi} for {βi = 1/n}, are smaller than the variances of V[F] for equal
sampling rate, fourth row, and much smaller in some of the examples, with variances
equal (as in Examples 3 and 4), or less, as in Example 5, than the optimal V[F].

• Although in general there is no {αi} solution for all µ′i equal, for instance the numerical
approximation obtained in Example 1 is µ′1 = 10.2624, µ′2 = µ′3 = 10.2876, the
variances obtained, in the seventh row of Table 4, are for all the examples very near to
the optimal value of V[F]. Observe that if these {α?i } = arg ∀i, µ′i equal values exist,
then they are the optimal {αi} values for V[G(βi = α?i )], i.e., for the sampling rates
{βi = α?i } the G estimator can not improve on the F estimator.

• In row 8 we show the G estimator corresponding αiσ
′
i ≈ equal, with βi = 1/n. It

improves on F(1/n) for all examples except the third one, where it scores closely,
beating estimators in rows 9 and 10 except for Example 3. It is indeed a theoretical
estimator as there is no easy way to solve this equation. However, it can be approxi-
mated by the heuristic in line 11, see below. Observe that if {α?i } are the solutions of
for all i, αiσ

′
i equal, then the optimal {βi} for G({α?i }, {βi}) are {βi = 1/n}.

• The results in row 9 correspond to the estimator defined in [19], αi ∝ m2
i /vi, where

m2
i = vi + µ2 are the second moments of the independent techniques, and βi = 1/n.

The results are slightly better than F(1/n) for Examples 1 and 2, much better for
Example 3, much worse for Example 4 and slightly worse for Example 5. Observe that
the mi, vi values can be easily approximated using a first batch of samples in a Monte
Carlo integration, as it was already performed in [7,9,10].

• In row 10 we introduce the estimator corresponding to αi ∝ 1/vi, and βi = 1/n, which
gives better results than F(1/n) for Examples 1 and 2, much better for Example 3,
worse for Example 5, and much worse for Example 4. This estimator improves on
the one in [19] except for Example 4. Observe that these αi weights correspond to the
optimal weights in the linear combination of estimators when the sampling rates (βi)
are fixed, Equation (13) of [9].

• In row 11 we approximate the estimator in row 8 by using {σ′i,1/n}, which corresponds
to {αi = 1/n}, to approximate {σ′i }. Observe that {σ′i,1/n} values can be easily
obtained with a first batch of samples in a Monte Carlo integration. In all cases, except
in Example 3, we improve on F(1/n). The big error on Example 4 of the estimator in
lines 9 and 10 is controlled.

• In row 12 we modulate the estimator in row 11 with the µ′i values. Observe that now
for all the examples the variance is less than for F(1/n).

• The results in row 13 show that, even if F({αi}) ≤ F({1/n}), we can not guarantee
that G({αi}, {βi = 1/n}) ≤ F({1/n}).
From the results in Table 4 row 6, we can conclude that there can be room for improve-

ment on F(1/n) estimator using a G estimator, with a suitable selection of αi parameters.
Heuristics as in rows 9 and 10 can give much improvement in some cases at the cost of
no improvement at all and even a huge variance in other cases, thus they are not robust
heuristics. More sophisticated heuristics as in rows 11 and 12, based on the theoretically
justified heuristic in row 8, show a robust behavior.

A very promising estimator is the one in row 7, for all i all µ′i equal (to µ), in all five
examples the variance is very near the optimal V[F]. Observe that this estimator has a
strong theoretical justification, derived from the study of G estimator. The {αi} parameters
that approximate for all i, µ′i = µ could be obtained in an adaptive way; however, a practical
way to obtain this estimator should be devised.
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Table 3. We show the metric E−1
F = V[F] · Cost[F] and E−1

G = V[G] · Cost[G], i.e., the inverse of
efficiency or product of variance and cost for the F estimator and for the optimal G estimator, using
for both the same {αk} values. The optimal efficiencies of G estimator, for each set of {αk} values,
are computed using the left-hand side of Equation (37), while the efficiencies of F estimator use the
right-hand side of Equation (37). We consider for the five numerical examples using an equal count
of samples, count inversely proportional to the variances of independent estimators [8,9], and for the
three estimators defined in [28]. The sampling costs are (1, 6.24, 3.28). In Example 5, we present the
case with equal costs (1, 1), and different costs (1, 5).

Ex. 1 Ex. 2 Ex. 3 Ex. 4
Ex. 5 Ex. 5

costs = (1,1) costs = (1,1) costs = (1,5) costs = (1,5)

Estimator F G F G F G F G F G F G

αk ∝ 1
n 102.26 89.40 17.24 15.44 37.47 31.80 98.68 83.78 0.28 0.23 0.83 0.40

αk ∝ 1
ck vk

[8] 49.53 41.29 9.28 8.10 4.03 3.85 300.12 294.85 0.31 0.26 2.76 2.33

αk ∝ 1
ck m2

k
[28] 54.36 46.2 9.82 8.49 3.12 2.49 534.37 449.33 0.20 0.15 1.51 1.00

αk ∝
σk,eq√ck

[28] 81.43 69.88 13.54 11.67 28.68 23.17 91.01 73.54 1.00 0.98 2.90 2.50

αk ∝
Mk,eq√ck

[28] 79.73 67.77 13.08 11.35 25.74 20.76 31.77 25.90 0.29 0.24 2.72 2.28

Table 4. Variances of Examples 1–5 for some notable cases. The variables µ′ i,1/n, σ′ i,1/n correspond
to {αi =

1
n}. The variables m2

i , vi are the second moment and variance of independent technique i,
vi = m2

i − µ2.

Estimator Example 1 Example 2 Example 3 Example 4 Example 5

1 Optimalα V[F ] 22.7122 4.1949 0 0 0.0910
2 OptimalαV[F] 22.7122 4.1944 0 0 0.0903
3 Optimalα,βV[G] 22.7122 4.1932 0 0 0.0601
4 V[F(αi = 1/n)] 29.1634 4.9175 10.6877 28.1431 0.2771
5 OptimalβV[G(αi = 1/n)] 29.0908 4.9069 10.6125 27.9412 0.2264
6 OptimalαV[G(βi = 1/n)] 27.1603 4.7265 0 0 0.0653
7 V[F(αi = arg ∀i, µ′i ≈ µ)] 22.8216 4.1980 0 0 0.0926
8 V[G(αi = arg ∀i, αiσ

′
i ≈ equal, βi = 1/n)] 28.4089 4.8313 12.4705 11.2072 0.0734

9 V[G(αi ∝
m2

i
vi

, βi = 1/n)], [19] 28.0224 4.8513 3.7955 172.192 0.2832
10 V[G(αi ∝ 1

vi
, βi = 1/n)] 27.4126 4.7897 0.5466 1256.48 0.2943

11 V[G(αi ∝ 1
σ′i,1/n

, βi = 1/n)] 28.3977 4.8291 11.95 13.7926 0.0724

12 V[G(αi ∝
µ′ i,1/n
σ′ i,1/n

, βi = 1/n))] 27.4426 4.7373 7.8615 6.7895 0.1112

13 V[G(αi = arg ∀i, µ′i ≈ µ, βi = 1/n)] 41.8791 8.8798 0.0014 0 0.0739

7. Conclusions

In this paper, we have proposed a multiple importance sampling estimator that
combines samples simulated from different techniques. The novel estimator generalizes the
Monte Carlo balance heuristic estimator, widely used in the literature of signal processing,
computational statistics, and computer graphics. In particular, this estimator relaxes the
connection between the coefficients that select the number of samples per proposal, and
the samples that appear in the mixture of techniques at the denominator of the importance
weight. This flexibility shows a relevant improvement in terms of variance in the combined
estimator with regard to the balance heuristic estimator (which is included as a particular
case in the novel estimator). We have studied the optimal choice of the free coefficients in
such a way that the variance of the resulting estimator is minimized. In addition, numerical
results have shown that the significant gap in terms of variance between both estimators
justifies the use of the novel estimator whenever possible. In the particular, but much
used case, of equal sampling, our new estimator shows a big potential for improvement.
Future work may include the application of this variance-reduction technique in the context
of adaptive importance sampling [15] or within MCMC-based methods that include re-
weighting [32].
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Appendix A. Difference between the Variances of Deterministic and Randomized
Multiple Importance Sampling Estimators

Proof of Equation (9). The difference between the variances of the deterministic multiple
importance sampling estimator, Z, and the randomized one, Z , is given by [17] (we
normalize here to one sample)

V[Z1]−V[Z1] = ∑
i

αiµ
′2
i − µ2 (A1)

= ∑
i

αiµ
′2
i −

(
∑

i
αiµ
′
i

)2

,

which is positive, as by Cauchy-Schwartz(
∑

i
αiµ
′
i

)2

≤
(

∑
i

αi

)(
∑

i
αiµ
′2
i

)
, (A2)

and equality only happens (apart from the case when both V[Z1], V[Z1] are zero) when for
all i, αi ∝ αiµ

′2
i , i.e., all µ′ i are equal.

Proof of Equation (10). Observe that if f (x) ≥ 0 then for all i µ′i ≥ 0, and we have(
∑

i
µ′ i

)2

≥∑
i

µ′
2
i , (A3)

and thus

µ2 =

(
∑

i

1
n

µ′ i

)2

≥ 1
n

(
∑

i

1
n

µ′
2
i

)
, (A4)

where equality would be approached when there is an index k such that for all i 6= k,
µ′k >> µ′i. Thus when αi = 1/n,

V[Z1]−V[Z1] ≤ (n− 1)µ2. (A5)

In general, the more different the µ′i are, the higher the difference between the variances.
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Appendix B. Proof of Theorem 2: Optimal Variance of F

Proof. The {αi}n
i=1 values for the optimal variance of F estimator can be obtained using

Lagrange multipliers with the target function

Λ({αi}n
i=1, λ) =

n

∑
i=1

αiσ
′2
i + λ

(
n

∑
i=1

αi = 1

)
.

Taking partial derivatives with respect to αj,

∂Λ({αi}n
i=1, λ)

∂αj

=
∂
(

∑n
i=1 αiσ

′2
i

)
∂αj

+
∂(λ(∑n

i=1 αi − 1))
∂αj

(A6)

=
n

∑
i=1

∂
(

αiσ
′2
i

)
∂αj

+ λ = 0.

The partial derivatives are equal to

∂
(

αiσ
′2
i

)
∂αj

= χi(j)σ′2j + αi

∂
(

σ′2i

)
∂αj

, (A7)

where χi(j) is the characteristic function, χi(j) = 1 if i = j and 0 if i 6= j.

∂
(

σ′2i

)
∂αj

=
∂
(∫ f 2(x)pi(x)

(∑n
k=1 αk pk(x))2 dx− (µ′i)

2
)

∂αj

(A8)

=
∂
(∫ f 2(x)pi(x)

(∑n
k=1 αk pk(x))2 dx

)
∂αj

− 2µ′i
∂µ′i
∂αj

= −2
∫ f 2(x)pi(x)pj(x)

(∑n
k=1 αk pk(x))3 dx− 2µ′i

∂µ′i
∂αj

.

Since we can write

∂µ′i
∂αj

=
∂
(∫ f (x)pi(x)

∑n
k=1 αk pk(x)

dx
)

∂αj

(A9)

= −
∫ f (x)pi(x)pj(x)

(∑n
k=1 αk pk(x))2 dx,

thus Equation (A8) reads

∂
(

σ′2i

)
∂αj

= −2
∫ f 2(x)pi(x)pj(x)

(∑n
k=1 αk pk(x))3 dx (A10)

+ 2µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx.
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Then,

λ = −
n

∑
i=1

∂
(

αiσ
′2
i

)
∂αj

= −σ′
2
j + 2

n

∑
i=1

αi × (A11)(∫ f 2(x)pi(x)pj(x)
(∑n

k=1 αk pk(x))3 dx− µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx

)

= −σ′
2
j + 2

∫ f 2(x)pj(x)(∑n
i=1 αi pi(x))

(∑n
k=1 αk pk(x))3 dx

− 2
n

∑
i=1

αiµ
′
i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx

= −σ′
2
j + 2(σ′2j + µ′j

2
)− 2

n

∑
i=1

αiµ
′
i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx

= σ′
2
j + 2µ′j

2 − 2
n

∑
i=1

αiµ
′
i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx

This is, for all j, the following values have to be equal

σ′
2
j + 2µ′j

2 − 2
n

∑
i=1

αiµ
′
i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx (A12)

Multiplying by αj and adding over all j in Equation (A11),

λ =
n

∑
j=1

αjλ =
n

∑
j=1

αjσ
′2
j + 2

n

∑
j=1

αjµ
′
j
2 (A13)

− 2
n

∑
i=1

αiµ
′
i

∫ f (x)pi(x)(∑n
j=1 αj pj(x))

(∑n
k=1 αk pk(x))2 dx

=
n

∑
j=1

αjσ
′2
j + 2

n

∑
j=1

αjµ
′
j
2 − 2

n

∑
i=1

αiµ
′
i
2

=
n

∑
j=1

αjσ
′2
j

which is the optimal variance of estimator F. Equation (A12) becomes, for all j

n

∑
j=1

αjσ
′2
j = σ′

2
j + 2µ′j

2 − 2
n

∑
i=1

αiµ
′
i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx. (A14)

Observe that all derivatives in (A6) are negative for the optimal {α?i } values and equal

to −∑n
j=1 α?j σ

′?2
j .

Appendix C. Derivation of Case 3

Proof of Theorem 6. We have to optimize the target function

Λ({αi}n
i=1, λ) =

n

∑
i=1

α2
i σ′2i
βi

+ λ

(
n

∑
i=1

αi − 1

)
.
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Taking partial derivatives with respect to αi, as the βi values are constant,

∂Λ({αi}n
i=1, λ)

∂αj

=
n

∑
i=1

1
βi

∂
(

α2
i σ′2i

)
∂αj

+ λ = 0. (A15)

The partial derivatives are equal to

∂
(

α2
i σ′2i

)
∂αj

= 2αjχi(j)σ′2j + α2
i

∂
(

σ′2i

)
∂αj

, (A16)

where χi(j) is the characteristic function. Using the result in Equation (A10), we obtain

n

∑
i=1

1
βi

∂
(

α2
i σ′2i

)
∂αj

= 2
αjσ
′2
j

β j
− 2

n

∑
i=1

α2
i

βi
(A17)

×
(∫ f 2(x)pi(x)pj(x)

(∑n
k=1 αk pk(x))3 dx− µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 αk pk(x))2 dx

)
= −λ.

In Equation (A17), we multiply by αj, and add over all indexes j, obtaining

λ = −2
n

∑
j=1

α2
j σ′2j

β j
+ 2

n

∑
i=1

α2
i

βi

×
( ∫ f 2(x)pi(x)(∑n

j=1 αj pj(x))

(∑n
k=1 αk pk(x))3 dx

− µ′i

∫ f (x)pi(x)(∑n
j=1 αj pj(x))

(∑n
k=1 αk pk(x))2 dx

)
= −2

n

∑
j=1

α2
j σ′2j

β j
+ 2

n

∑
i=1

α2
i

βi

×
(∫ f 2(x)pi(x)

(∑n
k=1 αk pk(x))2 dx− µ′i

∫ f (x)pi(x)
(∑n

k=1 αk pk(x))
dx
)

= −2
n

∑
j=1

α2
j σ′2j

β j
+ 2

n

∑
i=1

α2
i σ′2i
βi

= 0. (A18)

We remind that ∑n
j=1 αj = 1 which disappears in the left-hand side and the second term of

the right-hand side equation.
From Equation (A17), the optimal {α?j }n

j=1 obey

α?j σ′2j

β j
=

n

∑
i=1

α?2
i

βi
(A19)

×
(∫ f 2(x)pi(x)pj(x)

(∑n
k=1 α?k pk(x))3 dx− µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 α?k pk(x))2 dx

)
.
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Proof of Equation (39). For the optimal solution to be, for all i, α?i = βi then

σ′
2
j =

∫ f 2(x)
(
∑n

i=1 α?i pi(x)
)

pj(x)
(∑n

k=1 α?k pk(x))3 dx

−
n

∑
i=1

α?i µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 α?k pk(x))2 dx

= σ′
2
j + µ′

2
j −

n

∑
i=1

α?i µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 α?k pk(x))2 dx,

and thus the following equation has to hold for all j

µ′
2
j =

n

∑
i=1

α?i µ′i

∫ f (x)pi(x)pj(x)
(∑n

k=1 α?k pk(x))2 dx. (A20)

Appendix D. An Alternative Perspective Based on the χ2 Divergence

Let us define ψα = ∑n
k=1 αk pk(x) and ψβ = ∑n

k=1 βpk(x). Further, let us define Z f β
α
=

ψβ[
f (x)

ψα(x)
]. We also recall that the χ2 divergence between the pdf f̃ (x) = f (x)

µ and ψ, is

given by

χ2( f̃ , ψ) =
∫ (

f̃ (x)− ψ(x)
)2

ψ(x)
dx. (A21)

Since in the randomized generalized balance heuristic estimator, G, all samples are
simulated i.i.d. from αβ, the variance can be expressed as

Vψβ
[G] = 1

N2

n

∑
i=1

α2
i

β2
i

ni

∑
j=1

Vψβ
[

f (Xi,j)

ψα(Xi,j)
] (A22)

=
1
N

n

∑
i=1

α2
i

βi
Vψβ

[
f (X)

ψα(X)
] (A23)

=
1
N

n

∑
i=1

α2
i

βi
Eψβ

[

(
f (X)

ψα(X)
− Z f β

α

)2

] (A24)

=
1
N

n

∑
i=1

α2
i

βi

∫ ( f (x)
ψα(x)

− Z f β
α

)2

ψβ(x)dx (A25)

=
1
N

n

∑
i=1

α2
i

βi

∫ (
f (x)− Z f β

α
ψα(x)

)2

ψα(x)
ψβ(x)
ψα(x)

dx (A26)

=
1
N

n

∑
i=1

α2
i

βi

∫ (
µ f̃ (x)− Z f β

α
ψα(x)

)2

ψα(x)
ψβ(x)
ψα(x)

dx, (A27)

where the integral can be seen as a modified χ2 divergence with two differences: (a) the
normalizing constant Z f β

α
is modified with regard to µ when ψα 6= ψβ, and (b) there is the

ratio
ψβ

ψα
that appears multiplying (evoking an importance weight between the denominator

we have used, ψα, and the proposal used to simulate, ψβ). Note that, when ψα = ψβ,
Z f β

α
= µ, the ratio of mixtures is equal to one, and Vψβ

[G] = 1
N µ2χ2( f , ψβ).
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