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Abstract: Our agent-based model of opinion dynamics concerns the current vast divisions in modern
societies. It examines the process of social polarization, understood here as the partition of a com-
munity into two opposing groups with contradictory opinions. Our goal is to measure how mutual
animosities between parties may lead to their radicalization. We apply a double-clique topology
with both positive and negative ties to the model of binary opinions. Individuals are subject to social
pressure; they conform to the opinions of their own clique (positive links) and oppose those from the
other one (negative links). There is also a chance of acting independently, which alters the system’s
behavior in various ways, depending on its magnitude. The results, obtained with both Monte-Carlo
simulations and the mean-field approach, lead to two main conclusions: in such a system, there
exists a critical quantity of negative relations that are needed for polarization to occur, and (rather
surprisingly) independent actions actually support the process, unless their frequency is too high, in
which case the system falls into total disorder.

Keywords: opinion dynamics; social polarization; agent-based model; Monte-Carlo simulation

1. Introduction

Polarization is a frequently used concept in social and political science as well as
economics, but its definition may differ between domains. Within this paper, we will follow
the one given by DiMaggio et al. and assume that polarization refers to a situation in
which a group of people is divided into two opposing cliques with contrasting positions
on a given issue [1]. This type of polarization is sometimes called bi-polarization [2] to
distinguish it from the group polarization phenomenon, i.e., the tendency for a group to
make more extreme decisions than the initial inclination of its members [3,4].

Recent observers point to a growing polarization of modern societies [5]. This seems to
be a defining feature of many public domains and was identified in the World Economic Fo-
rum’s 2017 Global Risk Report as one of the top threats to the global order [6]. Consequently,
it is gaining increasing attention from researchers working at the intersection of many fields,
including social and political science, economics, mathematics and statistical physics.

High and increasing levels of polarization are attributed to a variety of sources, includ-
ing the isolating effects of social media or news outlets focusing more on outraged rants
than reasoned debates. Although significant progress has been observed in our under-
standing of polarization mechanisms in recent years, our knowledge remains sketchy and
there is still a lot of room for improvement. Each new insight into polarization is important,
because it is known to have a huge impact on societies. This leads to social tension and
conflicts, and may result in the segregation of societies [1].

Interestingly, not all debates have the potential to polarize societies. From the ob-
servations, it follows that, in order to drive people to extreme and opposing opinions,
the topic of a discussion has to be perceived as important and emotionally charged by all
participants. That is why polarizing topics comprise controversial issues such as abortion
rights, homosexuality, public funding for the arts, gun control, global warming, vaccination
and, last but not least, politics [7–12].
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Starting with Eli Pariser’s book [13], social media sites are increasingly blamed for
intensifying (political) polarization. The artificial intelligence algorithms used by sites
such as Facebook, Twitter or Google to profile the users create so-called “echo chambers”
(or “filter bubbles”), which separate people from the information that disagrees with their
viewpoints. The idea behind these algorithms was to let the people stay in their comfort
zones. An unexpected side effect of this approach is an unconscious confirmation bias,
because people are mainly confronted with information that reinforces their beliefs and
opinions. The bias may contribute to overconfidence in personal beliefs and can maintain
or strengthen them in the face of contrary evidence, which leads to polarization [5].

Several possible mechanisms leading to a stable bi-polar distribution of opinions
within a simulation have been already proposed. There is, for instance, a series of pa-
pers showing that opinion homophily may support opinion plurality, including polariza-
tion [14–17]. This type of homophily is understood as a relationship between a similarity
in peoples’ views and an increased likeliness of their interaction. This was usually imple-
mented as a bounded confidence, i.e., threshold mechanisms that switch off influence in
case the discrepancy in opinion is too big. Long-range ties (bridges between clusters) in a
social network may also foster polarization if homophily and assimilation at the microlevel
are combined with some negative influence, e.g., xenophobia [18,19]. From social balance
theories, it follows that a mixture of positive and negative ties is needed for polarization
to emerge and prevail [20–22]. In the argument-communication model, agents with a
similar attitude mutually reinforce that attitude by the exchange of supportive arguments,
which, in some circumstances, also leads to polarization [2]. Both the majority model [23]
and the Ising model [24] in a segmented network only support the initial polarization in
the presence of conforming relations if the density of connections between the segments
remains low. Finally inflexibility, understood here as an internal opinion that encodes
how many encounters with different-minded agents are needed for an agent to change its
external opinion, has been shown to polarize a population in the sense that two opposing
camps of increasingly inflexible supporters may emerge [25–27].

Recently, we proposed a simple polarization model based on the q-voter model with
both conformity and anticonformity [21,22]. We considered the model of a double-clique
social network, because it mimics the echo chambers that are observed on social media
platforms as well as the interactions between their members. We found that if the number of
inter-clique connections stays below a critical value, a consensus between two antagonistic
cliques is possible. Thus, in light of these results, the artificial intelligence algorithms
producing echo chambers on many platforms may have a positive impact in terms of
polarization, because they reduce exposure to different opinions. In this paper, we are
going to extend our model with independence to make the spectrum of possible responses
to social influence more realistic from the social science perspective [28–30].

The paper is organized as follows. In the next section, we provide a detailed descrip-
tion of the models and methods used to analyze them. Then, we present the results. Finally,
in Section 4, we discuss the results and draw some conclusions.

2. Models and Methods
2.1. Modelling Framework

The basic assumptions of our model have been already extensively discussed in
Refs. [21,22]. Therefore, we start this section with only a short overview of its major
premises:

• A binary opinion model with a single trait.
• q-voter model with conformity and anti-conformity as the general modeling framework.
• Double clique topology as the underlying social network.
• Conformity between agents within a clique and anti-conformity in the interactions

between the cliques.

All of the above assumptions can be justified by recent findings in the opinion dy-
namics community. For instance, the analysis of many social networks revealed that
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the polarization of opinions within those networks may be correlated with their segmen-
tation [31–33]. Hence, we assumed that the network is already modular and took the
double-clique topology [34] as its model. Choosing a binary model with a single trait is
rooted in the observation that, in many situations, people’s opinions may be interpreted
as simple “yes/no” (i.e., binary) answers [35]. Moreover, social networks are often charac-
terized by a semantic unicity, i.e., the opinions and interactions of network members are
restricted to a single topic [36].

The q-voter model is one of the extensively studied models of binary opinions.
Within the original formulation [37], the dynamics is given by the following update rule:

1. Pick a target agent at random.
2. Choose randomly q neighbors of the target (possibility of repetition).
3. If all the q neighbors are in the same state, the target changes its state accordingly.
4. Otherwise, the target changes its state with probability ε.

The unanimity rule embedded in the model is in line with a number of social experi-
ments [38–40]. Please note that, in our studies, we only consider ε = 0, following the setup
in the previous papers [21,22].

Conformity, understood as the act of matching opinions to the group norm, is the
only social force in the original q-voter model. However, it is relatively easy to extend
it, with other possible responses, to social influences such as independence and/or anti-
conformity [30,41–48]. The first one is simply unwillingness to yield to group pressure
and introduces noise to the system; the latter means a deliberate challenging of the group
position. In Refs. [21,22], we used anticonformity to mimic negative ties between agents
belonging to two opposite cliques, in agreement with the social balance theories [20]. It
should be noted that the double-clique topology, with conformity inside a clique and anti-
conformity between the cliques, resembles, to some extent, the controversial echo chambers
generated by social platforms [13].

2.2. Independence of Agents

In Refs. [21,22], we have shown, both theoretically and by means of Monte Carlo
simulations, that a system consisting of two connected antagonistic cliques undergoes
a phase transition as the number of cross-links between the cliques changes. Below the
critical point (i.e., loosely connected cliques), the intra-clique conformity takes over and
consensus in the entire system is possible as an asymptotic state. Above the critical point,
the system ends up in a polarized state, with the cliques having opposite opinions and a
local consensus between them. This was a surprising result, because it actually defies the
criticism of echo chambers that was started by Pariser [13]. Since the algorithms generating
the echo chambers reduce the exposure time to different-minded people, in light of our
findings, they should lower the polarization level between antagonistic groups, instead of
enhancing it.

However, one of the drawbacks of the model presented in Refs. [21,22] was the lack
of independence in the behavior of agents. This concept has been already considered
in a series of models [30,41,49–52]. It actually implies the failure of an attempted social
influence, because an independent individual makes decisions independently of the group
norm. From the perspective of social science, it falls (together with anticonformity) into
the category of non-conformal behaviors [28,29,53]. From a physical point of view, it plays
the role of social temperature that induces an order–disorder transition [41,54,55]. Thus, it
would be interesting to check how the introduction of independence into our model will
change the behavior of the entire system, and if our findings still hold in the extended
version of the model.

We will introduce the independence to the model in a situation-oriented manner [44,46].
In a given time step, a target of influence will behave independently with probability h
or will become a conformist with probability 1− h (Figure 1). Thus, an additional control
parameter h will be used to simulate the impact of the situational factors on the behavior of
agents. Within this approach, every agent may change his behavior from step to step, and
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sometimes act independently, and sometimes like a conformist (see Section 2.4 for detailed,
updated rules of the model).

h

Independence Conformity

1-h

1/2
 

1/2
 

mixed
opinions

Figure 1. Schematic representation of the opinion update of a single agent that was initially in
the up state. With probability h, the agent acts independently and changes opinion randomly.
With complementary probability 1− p, the agent is subject to social influence.

2.3. Quenched and Annealed Disorder Models

In Ref. [22], two versions of the model were considered. In the quenched disorder one,
two cliques of size N are connected with L× N2 cross-links. The parameter L is simply the
fraction of the existing cross-links; N2 is their maximum number. Once the links between
cliques are chosen randomly, they remain fixed—the resulting network does not change in
time during the evolution of the system.

Instead of working with the fixed-cross links, in the annealed version of the model, we
assume that every agent from one clique is connected with probability p with an agent from
the other clique, and with probability 1− p, with an agent from its own clique. Technically,
this approximation is nothing but an average of the quenched disorder model over different
cross-link configurations in the network.

Given the fraction of existing cross-links L, the probability p of choosing one cross-link
out of all possible connections between agents in the double-clique network is given by

p =
LN2

LN2 + 2 N(N−1)
2

' L
L + 1

. (1)

If the number of cross-links is smaller than their maximum number, the agents in
the quenched disorder model differ from each other, because some of them may have
no connections to the other clique, while some others have multiple ones. While it can
be handled with ease within a computer simulation, this feature usually constitutes a
challenge for mathematical modeling due to the necessity of performing a quenched
average over the disorder [56]. The annealed model is easier, in the sense that it allows for
mathematical treatment.

2.4. Updating Rules of the Models

To recap, we consider a set of 2N agents, each of whom may be in one of two possible
states, reflecting an opinion on some given issue: Si = −1 or Si = 1 for i = 1, 2, . . . , 2N. We
put the agents into a double-clique network, which consists of two complete graphs of N
nodes connected with L× N2 cross-links.

We assume that the social response of agents depends on their group identity. Thus,
an agent will strive for agreement within his/her own clique (conformity) and simultane-
ously challenge the opinions of individuals from the other clique (anticonformity). As in
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Ref. [22], we introduce the notion of signals to the q-voter model and slightly alter the
concept of unanimity of the influence group in order to account for the fact that an agent
may act as both a conformist and anticonformist at the same time. A signal is just the
state of the neighbor when coming from the target’s clique, or its inverted state otherwise.
The target of influence only changes its opinion if all members of the influence group emit
the same signal (Figure 2).

We will use Monte Carlo simulations with a random sequential updating scheme as
the main tool to analyze the models. Each Monte Carlo step in a simulation consists of
2× N elementary events, each of which may be divided into the following substeps with
∆t = 1

2N :

1. Pick a target agent at random (uniformly from 2N nodes).
2. Draw a random number form a uniform distribution, r ∼ U(0, 1).
3. If r < h (i.e., with probability h), the agent is independent:

(a) Change its state with probability 1/2. To this end, draw a random number f
from a uniform distribution, f ∼ U(0, 1):

i. if f < 1/2, change the state of the target, i.e., Si(t + ∆t) = −Si(t),
ii. otherwise, do nothing.

(b) Go to step 1.

4. If r > h (i.e., with probability 1− h), the agent is subject to social influence:

(a) Randomly choose a group of q distinct neighbors of the target node:

Quenched model simply look at the actual neighbors of the target (sampling
with replacement).

Annealed model first decide to which clique every member of the influence
group will belong (with probability 1− p to the target’s
clique, with p to the other one), then randomly choose the
member from the appropriate clique.

(b) Convert the states of the group members to signals. Assume that the signals
of the neighbors from target’s clique are equal to their states. Invert the states
when from the other clique.

(c) Calculate the total signal of the influence group by summing up the individual
signals of its members.

(d) If the total signal is equal to ±q (i.e., all group members emit the same signal),
the target changes its opinion accordingly (see Figure 2). Otherwise, nothing
happens.

5. Go to step 1.

2.5. Quantities of Interest

The macroscopic state of an opinion dynamics model is usually described by either
the concentration of agents in state +1 or the average opinion (i.e., magnetization in
physical systems). Noting that the total number of agents in our model is 2N, we obtain
the following formula for the concentration:

c(t) =
N↑(t)

2N
. (2)

Here, N↑(t) stands for the number of agents in state +1. Similarly, the average opinion
is given by

m(t) =
1

2N

2N

∑
i=1

Si =
N↑(t)− N↓(t)

2N
, (3)

where N↓(t) denotes the number of agents in state −1. Both quantities may be used
interchangeably, because

m(t) = 2c(t)− 1. (4)
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Knowing the concentration of the entire system may be not enough to describe it
uniquely in case of the double-clique topology. For instance, the value c(t) = 1/2 may
correspond to no ordering in the system (i.e., a perfect mixture of +1 and −1 states in both
cliques) or to polarization (all agents in state +1 in one clique and in state −1 in the other).
This is why it would be more insightful to calculate the above quantities for single cliques
rather than for the entire system,

cX(t) =
N↑X(t)

N
, X = A, B, (5)

mX(t) =
1
N

N

∑
i=1

SX,i =
N↑X(t)− N↓X(t)

2
.

The interpretation of their values is summarized in Table 1. Moreover, from the above
definition, it follows that cX may be interpreted as the probability of finding an agent in
state 1 within the clique X.

Figure 2. All possible choices of the influence group in the model with q = 4 that lead to an opinion
flip by a target from clique A that was initially in state S = −1. The influence group may contain
members from both cliques. Due to the presence of both positive and negative ties, the concept of
unanimity from the original q-voter model has to be extended to signals, which are then received
by the target of influence. A signal is the state of a member when coming from target’s clique, or its
inverted state otherwise. The target changes its opinion only if all members of the influence group
emit the same signal.

It is also interesting to look at the product mA(t)mB(t) of the clique magnetizations, as
it immediately indicates a consensus (the value of the product equal to 1) and polarization
(−1) for the entire system.

2.6. Transition Probabilities and Dynamical System

The random sequential updating scheme in our model means that, in each time step
∆t = 1/2N, only one agent can change its opinion. Three scenarios are possible: (1) the
total amount of agents in state +1 in a clique may increase by 1 within this step, (2) the
total amount may decrease by 1 or (3) it may remain unchanged.
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Table 1. Interpretation of different values of the concentration cX(t) and the average opinion mX(t)
within a single clique X (see Equation (5) for definitions).

Meaning cX(t) mX(t)

Positive consensus (all agents in clique X in
state +1) cX = 1 mX = 1

Partial positive consensus (majority of agents
in clique X in state +1) 1/2 < cX < 1 0 < mX < 1

No ordering in clique X cX = 1/2 mX = 0

Partial negative consensus (majority of agents
in clique X in state −1) 0 < cX < 1/2 −1 < mX < 0

Negative consensus (all agents in clique X in
state −1) cX = 0 mX = −1

Let us have a look at the first of the above scenarios. The number of agents in state +1
in one clique—say A—can increase by 1 only if:

1. a target from clique A is chosen (probability 1/2),
2. the target is in state −1 (probability 1− cA),
3. it flips due to independence (probability h/2) or follows an influence group emitting

signal +q.

Thus, the transition probability for such an event will be given by

Pr
{

N↑A(t + ∆t) = N↑A(t) + 1
}
=

1
2
(1− cA(t))

(
1
2

h + (1− h)[(1− p)cA(t) + p(1− cB(t))]
q
)

. (6)

One can easily check that the term of the form (u + v)q in the above equation is the
generating function for the probabilities of those compositions of q members of an influence
group that can cause an opinion-switch event (see Figure 2 for more details). Similarly,
the number of agents in state +1 in clique A decreases by 1 if:

1. A target from clique A is chosen (probability 1/2).
2. The target is in state +1 (probability cA).
3. It flips due to independence (probability h/2) or follows an influence group emitting

signal −q.

These conditions lead to the following transition probability:

Pr
{

N↑A(t + ∆t) = N↑A(t)− 1
}
=

1
2

cA(t)
(

1
2

h + (1− h)[(1− p)(1− cA(t)) + pcB(t)]
q
)

. (7)

It is also possible that the number of agents in state +1 remains unchanged in an
elementary time step. The probability of this event is 1 minus the above probabilities of
changes:

Pr
{

N↑A(t + ∆t) = N↑A(t)
}
=

1− Pr
{

N↑A(t + ∆t) = N↑A(t) + 1
}
− Pr

{
N↑A(t + ∆t) = N↑A(t)− 1

}
. (8)

Analogous considerations can be conducted for clique B.
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Given the states of the cliques at time t and the above transition probabilities, the ex-
pectations for the numbers of agents in state +1 at time t + ∆t may be written as

E
(

N↑A(t + ∆t)
)
= N↑A(t) +

1
2
(1− cA(t))

(
1
2

h + h̄[ p̄cA(t) + p(1− cB(t))]
q
)

− 1
2

cA(t)
(

1
2

h + h̄[ p̄(1− cA(t)) + pcB(t)]
q
)

,

E
(

N↑B(t + ∆t)
)
= N↑B(t) +

1
2
(1− cB(t))

(
1
2

h + h̄[ p̄cB(t) + p(1− cA(t))]
q
)

− 1
2

cB(t)
(

1
2

h + h̄[ p̄(1− cB(t)) + pcA(t)]
q
)

, (9)

where the abbreviations p̄ = 1 − p and h̄ = 1 − h have been introduced for the sake
of readibility.

Under the very likely assumption that the random variables cA,B =
N↑A,B

N localize in
the limit N → ∞, after the division of both sides of the equations by N, we obtain

cA(t + ∆t)− cA(t)
∆t

= (1− cA(t))
(

1
2

h + h̄[ p̄cA(t) + p(1− cB(t))]
q
)

−cA(t)
(

1
2

h + h̄[ p̄(1− cA(t)) + pcB(t)]
q
)

,

cB(t + ∆t)− cB(t)
∆t

= (1− cB(t))
(

1
2

h + h̄[ p̄cB(t) + p(1− cA(t))]
q
)

−cB(t)
(

1
2

h + h̄[ p̄(1− cB(t)) + pcA(t)]
q
)

. (10)

In the limit N → ∞, i.e., ∆t = 1
2N → 0, we arrive at the dynamical system representing

the annealed model:

dx
dt

= (1− x)
(

1
2

h + h̄[ p̄x + p(1− y)]q
)
− x
(

1
2

h + h̄[ p̄(1− x) + py]q
)

,

dy
dt

= (1− y)
(

1
2

h + h̄[ p̄y + p(1− x)]q
)
− y
(

1
2

h + h̄[ p̄(1− y) + px]q
)

, (11)

where x and y are the limiting values of concentrations cA and cB, respectively.

3. Results

We will assume that the number of agents in every clique in the quenched model is
N = 100. Although the size of the system may seem very small, it was already shown
in Refs. [21,22] that increasing the size does not qualitatively change the outcome of the
simulations, but it takes substantially longer to finish them.

In our analysis, we considered influence groups of sizes ranging from 2 to 6, with the
upper bound motivated by the conformity experiments by Asch [40]. Qualitatively, the re-
sults were independent of the actual value of q. Thus, we decided to present the results for
q = 4, a value often used in the analysis of the q-voter model and its extensions.

If not stated otherwise, the results of the simulations were averaged over 1000 inde-
pendent runs. In most cases, the asymtotic state was reached quickly, in less than 100 Monte
Carlo steps. We used our own codes written in C++, Python and Matlab.

As for the initial condition, we used the total positive consensus, i.e., all agents in the
state +1. As already pointed out in Ref. [21], this choice may be treated as a result of the
following scenario. Two cliques with a natural tendency to disagree with each other first
evolve independently. They get in touch by chance and establish some cross-links to the
other group after they both reach consensus on a given issue.
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When comparing the two models, quenched and annealed, we present the results with
respect to the fraction of the existing cross-links, L, instead of p, using the relationship from
Equation (1).

3.1. Direction Fields and Stationary Points

The set of Equations (11) is too cumbersome to solve analytically. However, we still can
generate direction fields for the set to graphically trace out solution curves for various initial
values [57]. Results for different independence levels h and two different probabilities of
an inter-clique connection p are shown in Figure 3: the left column contains the plots for
p = 0.1; the right one corresponds to p = 0.2. The values of h are equal to 0.0, 0.1, 0.2 and
0.5 (from top to bottom). Note that the case h = 0 is nothing but our original model with
no independence, which was extensively studied in Ref. [22].

Figure 3. The annealed model: direction fields of the model described by Equation (11) with fixed
points marked with circles for different values of independence h and two values of parameter p, 0.1
(left column) and 0.2 (right column).

From the flows in the state plane, it follows that for p = 0.1 and h = 0, there are five
stationary points (already marked with dots in the plots). Two attractors, P1 = (0, 1) and
P2 = (1, 0), correspond to a polarized state of the system, i.e., all agents in one clique are
in state +1 and in the others are in state −1. There are two other symmetric attractors, C1
and C2, which are very close to the coordinates (0, 0) and (1, 1). Thus, the state of (almost)
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complete consensus is possible in the system as well. The remaining point R is a repeller,
because the system tends to evolve away from it.

To find the exact coordinates of the stationary points, we set x′ and y′ as equal to zero
in Equation (11) and solve the resulting set of equations with respect to x and y,

0 = (1− x)
(

1
2

h + h̄[ p̄x + p(1− y)]q
)
− x
(

1
2

h + h̄[ p̄(1− x) + py]q
)

,

0 = (1− y)
(

1
2

h + h̄[ p̄y + p(1− x)]q
)
− y
(

1
2

h + h̄[ p̄(1− y) + px]q
)

. (12)

For p = 0.1 and h = 0.0, we obtain:

P1 = (0, 1), P2 = (1, 0), (13)

C1 = (0.00015, 0.00015), C2 = (0.99985, 0.99985),

R = (0.5, 0.5).

Introducing a small level of independence (h = 0.1 and 0.2) into the model does
not change the classification of the stationary points for p = 0.1. However, they are now
shifted towards the center of the state plane, meaning that complete polarization and
(almost) complete consensus have changed to partial ones. Although these states are still
characterized by a majority of agents sharing the same opinion, due to the fluctuations
induced by independence there is now always a minority with the opposite opinion. At a
high independence level (h = 0.5), the point R = (0.5, 0.5) becomes an attractor and the
other stationary points disappear.

The situation for p = 0.2 is similar, but the effects induced by the independence h
are stronger. This is why we explicitly see a state with only three fixed points at h = 0.2
(the same state for p = 0.1 would require 0.2 < h < 0.3 and is not shown in Figure 3). We
can see that, in this case, the consensus attractors C1 and C2 have already disappeared.
The polarization ones are still there, but are closer to the center of the plane. The repeller
R = (0.5, 0.5) becomes hyperbolic. With further increases in h, the polarization attractors
will disappear as well and point R will become an attractor (see case h = 0.5).

Compared to the model without independence [21,22], we observe an additional dy-
namical phase transition in the system—for high enough independence levels, it enters the
disordered phase with the vanishing magnetization in every clique, as the asymptotic state.

3.2. Time Evolution of the System

The asymptotic dynamical system for the annealed model, given by Equation (11),
was solved numerically. Results for different values of h, as a function of time and L, are
shown in Figure 4 (right column). As was already concluded from the direction fields
(Figure 3), in the absence of independence (top right plot in Figure 4), a consensus is
observed in both cliques for a low number of cross-links. More connections between the
cliques drive the system towards a polarized state. The picture is different for a low level
of independence in the model (bottom right plot in Figure 4). We still observe a consensus
if the cliques are poorly connected. However, polarization sets in at a much lower number
of cross-links. Moreover, both the consensus and polarization are partial, because, due to
independence, there is always a group of agents that do not go along with the majority.
Increasing the independence level destroys the ordering in the system and the model ends
up in an asymptotic state with no polarization (see Figure 5, right column). This last result
is independent of the number of cross-links between the cliques.
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Figure 4. Comparison between the quenched (left column) and annealed (right column) models:
product of magnetizations mAmB as a function of time and L, for two different independence levels,
h = 0, 0.1.

Figure 5. Comparison between the quenched (left column) and annealed (right column) models:
product of magnetizations mAmB as a function of time and h, for two different fractions of cross-links,
L = 0.3, 0.6.
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Monte Carlo simulations of the quenched version of the model produce a similar
output (see Figures 4 and 5). However, the critical value of L for the dynamical consensus–
polarization phase transition is smaller for the quenched model, in agreement with our
previous findings for models without independence [21,22]. Moreover, in the quenched
model, the inclusion of independence has a much greater impact (see Figure 4, bottom
part).

3.3. Impact of Independence on the System

All results up to this point suggest that there are three effects resulting from the
introduction of independence into the models: (1) final concentrations of agents sharing
the same opinion are diminished, (2) the critical values of L at the consensus–polarization
transition are smaller and (3) an additional dynamical phase transition from the polarized
state to a disordered one occurs in the system.

To elaborate on those findings, let us have a look at Figure 4. The case h = 0 (no
independence) corresponds to the original models from Refs. [21,22]. We see that, for values
smaller than a critical value, L∗, both cliques end up reaching a consensus. In other words,
in this regime, the intra-clique conformity wins with the inter-clique anti-conformity, and
both communities are able to maintain their initial consensus, at least partially. Larger
values of L are needed for the negative ties to take over and push the system into a
polarized state.

The impact of independence is two-fold. First, the final magnetizations have been
pushed away from the values ±1 even in the case L = 0, i.e., the total consensus changed
to a partial one. Since this corresponds to the weakening of the force exerted by conformity,
one would expect that, in this case, fewer cross-links are needed between the cliques to po-
larize the system. Indeed, the critical value of L decreases with an increasing independence
h.

It should be noted that, for each value of h, there is a difference in the critical values
L∗ between the quenched and annealed models. This is mainly a consequence of different
system sizes—while Equation (11), defining the annealed model, was derived for an infinite
system, we used only 200 agents in the simulations of the quenched one. It has been shown
in Ref. [22] that the discrepancy between the models decreases with the increase in the size
of the simulated system. We expect the models to converge for N → ∞, despite the subtle
changes in their dynamics.

To complete this picture, let us investigate how the product of magnetization changes
with both fraction of cross-links L and independence h (Figure 6). At L = 0 (no connection
between the cliques), independence continuously destroys the ordering in both commu-
nities. Finally, above a critical value h∗, the system enters the disordered phase with no
magnetization in the cliques. For L < L∗ and small values of h, the system maintains the
partial consensus, then we observe a transition to the polarized state. The magnetizations in
the now-antagonistic cliques are diminishing with further increases of h. Finally, the system
reaches the disordered phase. At L > L∗, the system is already polarized, even for h = 0.
Increasing h introduces disorder into the cliques. Again, there is no ordering above the
critical value of h.

As already discussed earlier in this section, there are some differences in absolute
values between the annealed and quenched models, but the picture for the annealed case is
qualitatively the same.

It is worth noting that the critical value of h for the polarization–disorder transition
depends little on L (with a more noticeable effect in the annealed model). At the same time,
the critical value of L for the consensus–polarization transition decreases with an increasing
h, unless the value h is too high and disorder becomes the only possible state (see Figure 6).
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Figure 6. Comparison between the quenched (left) and annealed (right) models: final product of
magnetizations mAmB (top) and its projection on the (h, L) plane (bottom). The blue, red and purple
colors correspond to consensus, polarization and disorder, respectively. In both models, we can
observe that the critical value L∗ decreases with an increase in h, while L has only a marginal impact
on h∗.

4. Discussion

The most important message from our previous study was that the consensus between
two antagonistic communities is only possible if they are loosely connected with each other
and the initial state of the system belongs to the basin of attraction of the symmetric fixed-
points of the model [21,22]. The more interactions there are between those communities, the
less probable it is that the entire system will share the same opinion. Instead, anticonformity
takes over and pushes the system towards polarization. Those results were unexpected
in the sense that they, for instance, support the idea of the often-criticized filter bubbles
in social media [5,13]. Since those bubbles separate users from information that disagrees
with their viewpoints, they may help to weaken the problem with polarization. However,
the models that we considered were very simple. For instance, they lacked some typical
answers to social influence [29].

In order to make the models more realistic, in this work, we added independence as a
response to social influence. From our results, it follows that this additional manifestation
of social interactions impacts the system dynamics in at least two ways. Small indepen-
dence levels help anticonformity to take over and polarize the society. More technically
speaking, they lower the critical ratio of cross-links between cliques, which are needed to
arrive at a polarized state. High independence levels destroy any ordering in the system.
Consequently, the opinions of agents are perfectly mixed across the cliques, and neither
consensus nor polarization are observed. Instead, a third phase–a disordered state–appears.

In sum, in the presented setting, low (but present) independence levels seem to
enhance the polarization of the system. Thus, they counteract the effects of the filter
bubbles, which, at least within our models, foster consensus across the cliques. At high
levels, all manifestations of the interplay between conformity and anticonformity are
suppressed by the noise induced due to independence.
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It is worth mentioning that qualitatively similar results (but with a less detailed
stability analysis) were obtained earlier within the majority model [23] and the Ising
model [24] on a double-clique topology, with conformity as the only response to social
influence. Although, in those models, the initial polarized state was found to become
unstable with the increasing number of connections between the cliques (the consensus one
in our case), the dynamics of those models turned out to be very similar to the behavior
presented in this paper. Unique to our model is a more realistic response of agents to social
influence. In fact, we took all types of responses into account, according to the diamond
model by Nail et al. [28,29,53]. Hence, one may expect that what has been observed is
more a general pattern of social behavior than an artifact of a particular choice of the
modeling framework.
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