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Abstract: Inverted exponentiated Rayleigh distribution is a widely used and important continuous
lifetime distribution, which plays a key role in lifetime research. The joint progressively type-II
censoring scheme is an effective method used in the quality evaluation of products from different
assembly lines. In this paper, we study the statistical inference of inverted exponentiated Rayleigh
distribution based on joint progressively type-II censored data. The likelihood function and maximum
likelihood estimates are obtained firstly by adopting Expectation-Maximization algorithm. Then,
we calculate the observed information matrix based on the missing value principle. Bootstrap-p
and Bootstrap-t methods are applied to get confidence intervals. Bayesian approaches under square
loss function and linex loss function are provided respectively to derive the estimates, during which
the importance sampling method is introduced. Finally, the Monte Carlo simulation and real data
analysis are performed for further study.

Keywords: inverted exponentiated Rayleigh distribution; joint progressively type-II censoring scheme;
maximum likelihood estimation; Bayesian inference; Bootstrap methods; Monte Carlo simulation

1. Introduction
1.1. Inverted Exponentiated Rayleigh Distribution

Rayleigh distribution is a special form of the Weibull distribution, which was first pro-
posed by Rayleigh when he studied the problems in the field of acoustics. Ref. [1] discussed
the generalization of the Rayleigh distribution and its application to practical problems.
Ref. [2] introduced Bayesian approaches to study the statistical inference of Rayleigh dis-
tribution. Ref. [3] combined progressively type-II censored data with the Rayleigh model
and studied the estimations of parameters. Rayleigh distribution has only one parameter,
and its applications in practice are limited and not flexible. Many scholars have extended it
to two-parameter distributions. Refs. [4,5] began to study the estimations of generalized
Rayleigh distribution. Ref. [6] extended progressively type-II censoring scheme to gener-
alized Rayleigh distribution. Recently, under non-informative prior, Ref. [7] studied the
estimation of the shape parameter of generalized Rayleigh distribution. Noticing that the
hazard function of generalize Rayleigh distribution is monotone when the shape parameter
is greater than 1

2 but the hazard function of inverted exponentiated Rayleigh distribution
is nonmonotone, which is more realistic in real life, more scientists become interested in
this distribution. Ref. [8] analyzed the estimation of the inverted exponentiated Rayleigh
distribution under progressively first-failure censoring scheme and Ref. [9] further studied
its prediction. Ref. [10] considered inverted exponentiated Rayleigh distribution with
adaptive type-II progressive hybrid censored data. Ref. [11] applied this distribution to
analyzing coating weights of iron sheets data.

A random variable X follows inverted exponentiated Rayleigh distribution (IERD) if
its probability density function (pdf), the cumulative distribution function (cdf) and hazard
function take the forms, respectively, as
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f (x; θ, λ) = 2θλx−3e−
λ
x2 (1− e−

λ
x2 )θ−1, x > 0; θ, λ > 0, (1)

F(x; θ, λ) = 1− (1− e−
λ
x2 )θ , x > 0; θ, λ > 0, (2)

h(x; θ, λ) = 2θλx−3e−
λ
x2 (1− e−

λ
x2 )−1, x > 0; θ, λ > 0, (3)

where θ and λ are the shape and scale parameters respectively, and they are both positive.
Figure 1 shows the pdfs and hazard functions for different θ and λ of the IERD. It is obvious
that both functions are nonmonotone. The IERD can be treated as a useful alternative to
some other lifetime distributions such as Weibull distributions, and it has been applied
in many fields. Specially, it can effectively be utilized to most experiments of electrical or
mechanical devices, patient treatments, and so on.
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Figure 1. Plots of pdf and hazard function of IERD. (a) Pdf of IERD. (b) Hazard function of IERD.

1.2. Joint Progressively Type-II Censoring Scheme

Type-I and type-II censoring schemes have been mostly used. The definition of a type-I
censoring scheme is that the observations are terminated at a fixed time and the failure
times are recorded. The definition of a type-II censoring scheme is that the observations
are terminated until a sufficient and prefixed number of units fail. However, these two
censoring schemes do not work well when the lifetimes of tested units are relatively long.
More censoring schemes have been proposed later, and the popular and attractive ones
are progressive censoring schemes that remove test units every failure time, not just at
the last time. Ref. [12] gave details about the progressive censoring schemes. Progressive
censoring schemes can be classified as progressively type-I and progressively type-II. The
progressively type-I censoring scheme is used in multiple lifetime models, like Refs. [13–15].
Many scholars have studied progressively type-II censoring scheme, too. Ref. [16] began to
apply it to generalized Gamma distribution. Refs. [17,18] discussed different distributions
under progressively type-II censoring scheme.

The censoring schemes mentioned above are all used in one-sample problems. In real
life, we face and need to consider two or more samples from different assembly lines. The
joint progressively type-II censoring scheme is quite useful in comparing the lifetimes of
products from different assembly lines and has received a lot of attention in recent years.
Ref. [19] first introduced the joint progressively type-II censoring scheme to study two
populations from different exponential distributions. Ref. [20] extended it to multiple
exponential populations and provided statistical inference. In the same year, they proposed
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a new two-sample progressively type-II censoring scheme [21] to study two populations
more conveniently. Recently, Ref. [22] discussed the estimation of generalized exponential
distribution based on joint progressively type-II censored data. Ref. [23] estimated the
two unknown parameters of the inverse exponentiated Rayleigh distribution based on
progressive censored data using the pivotal quantity method. In Ref. [24], the reliability of
the stress-strength model was introduced and derived for the probability P(T < X < Z)
of a component strength X relation between two stresses, T and Z, which follows to have
IERD with different unknown shape parameters and common known scale parameter.

The joint progressively type-II censoring (JPC) scheme can be briefly described as
follows. Suppose sample A and sample B are taken from two populations. Sample A
has m units and sample B has n units. The two samples are merged and used for a life
testing experiment. Set k as the amount of failures and let r1, · · · , rk be the numbers of
units withdrawn every time, which satisfy ∑k

i=1(ri + 1) = m + n. At the time of the first
failure w1, r1 units are intentionally withdrawn from the remaining units. r1 units include
s1 units withdrawn from sample A and t1 units withdrawn from sample B. Similarly, at
the time of i-th failure wi (i = 2, 3, · · · , k− 1), ri units are withdrawn from the remaining
m + n− i−∑i−1

l=1 rl units. ri units include si units withdrawn from sample A and ti units
withdrawn from sample B. Here ri is prefixed, and si and ti are random but satisfy si + ti=ri.
The experiment will be finished at the k-th time and we withdraw all the rest of the
surviving units. Besides, we let zi=1 (or 0) if the i-th failure is from sample A (or sample
B). According to the scheme above, we introduce three elements to express the observed
censored sample, ((wi, si, zi), · · · , (wk, sk, zk)). Let k1 = ∑k

i=1 zi be the total number of
failures from sample A, and k2 = ∑k

i=1(1− zi) be the total number of failures from sample
B. Figure 2 below shows the scheme.

A

s1(withdrawn)

w1( f ailure)

s2(withdrawn)

w2( f ailure)

si(withdrawn) m−∑k−1
i=1 si(withdrawn)− k1

wi( f ailure)

B

t1(withdrawn) t2(withdrawn)

wk( f ailure)

ti(withdrawn) n−∑k−1
i=1 ti(withdrawn)− k2

Figure 2. JPC scheme.

In this paper, we make statistical inference and analyze two samples from two-
parameter IERD under joint progressively type-II censoring scheme. The maximum likeli-
hood estimation and Bayesian inference are applied to get point estimations and interval
estimations. Expectation-Maximization (EM) algorithm is used to calculate the maximum
likelihood estimates, which is a three-dimensional optimization problem. Then, the ob-
served information matrix is derived. Bootstrap-p and Bootstrap-t methods are adopted to
compute the confidence intervals. In Bootstrap-t method, the observed information matrix
obtained is essential. When doing Bayesian inference, non-informative prior and infor-
mative prior are provided. With these two Bayesian priors, we obtain Bayesian estimates
based on both square loss function and linex loss function. To get the arithmetic solution,
importance sampling technique is used. Monte Carlo simulation and real data analysis are
performed to compare the performance of different methods.

The rest of the paper is arranged as follows. In Section 2, the EM algorithm is proposed
to derive MLEs. In Section 3, we calculate the observed information matrix based on the
missing value principle. Then, Bootstrap methods are used to obtain confidence intervals in
Section 4. Bayes inference based on non-informative and informative priors is presented in
Section 5. In Section 6, the methods above are compared through Monte Carlo simulation
and data analysis.
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2. Maximum Likelihood Estimators and EM Algorithm

Suppose sample A has m units and their lifetimes independently follow IERD(θ1, λ)
and sample B has n units and their lifetimes independently follow IERD(θ2, λ). According
to the JPC scheme, we have the observed data ((wi, si, zi), · · · , (wk, sk, zk)) for prefixed
r1, · · · , rk. Therefore, the likelihood function without the normalizing constant can be
written as

L(θ1, θ2, λ |data) = ∏
wi∈S

f (wi; θ1, λ) ∏
wj∈T

f (wj; θ2, λ)
k

∏
l=1

(
1− F(wl ; θ1, λ)

)sl
(

1− F(wl ; θ2, λ)
)tl

,

where sl + tl = rl for l = 1, · · · , k, S means the times of failures from sample A and
T means the times of failures from sample B. According to (1) and (2), the likelihood
function becomes

L(θ1, θ2, λ |data) =(2λ)kθk1
1 θk2

2

k

∏
i=1

w−3
i e
− λ

w2
i (1− e

− λ

w2
i )ziθ1+(1−zi)θ2−1

×
k

∏
i=1

(1− e
− λ

w2
i )θ1si (1− e

− λ

w2
i )θ2ti , (4)

where k1 = ∑k
i=1 zi, k2 = ∑k

i=1(1− zi) = k− k1.
If k1 = 0, k2 = k, the function becomes the following form:

L(θ1, θ2, λ |data) = (2θ2λ)k
k

∏
i=1

w−3
i e
− λ

w2
i (1− e

− λ

w2
i )θ2−1

k

∏
i=1

(1− e
− λ

w2
i )θ1si (1− e

− λ

w2
i )θ2ti . (5)

When si = 0, (1 − e
− λ

w2
i )θ1si = 1. When si 6= 0, (1 − e

− λ

w2
i )θ1si is a strictly decreasing

function of θ1 for a fixed λ and it decreases to 0. So when k1 = 0, L(θ1, θ2, λ |data) is a
strictly decreasing function of θ1 for fixed θ2 and λ, which implies that maximum likelihood
estimators (MLEs) do not exist. For k2 = 0, the situation is similar. Thus, we assume that
k1 > 0, k2 > 0 to avoid the trivial cases.

The log-likelihood function can be expressed as

ln L(θ1, θ2, λ |data) =k ln(2λ) + k1 ln θ1 + k2 ln θ2

+
k

∑
i=1

[
−3 ln wi −

λ

w2
i
+
(

ziθ1 + (1− zi)θ2 − 1
)

ln(1− e
− λ

w2
i )

]

+
k

∑
i=1

[
θ1si ln(1− e

− λ

w2
i ) + θ2ti ln(1− e

− λ

w2
i )

]
. (6)

Take the partial derivatives of ln L(θ1, θ2, λ |data), let them equal 0 and the roots of the
equations are the maximum likelihood estimates of (θ1, θ2, λ). It is found that the equations
are non-linear, and it is infeasible to calculate the solutions directly. The New-Raphson
method needs second partial derivatives to inevitably calculate and the computation is
cumbersome.

EM Algorithm

In this subsection, we use the EM algorithm to get MLEs. Ref. [25] proposed the method
to get maximum likelihood from incomplete data and Ref. [26] introduced its applications
in a generalized partial credit model. The observed data are available and the missing data
are the lifetimes of those units withdrawn. Complete data of the experiment consist of the
observed data ((w1, s1, z1), · · · , (wk, sk, zk)) and missing data. At the time of i-th failure, si
units are withdrawn from sample A (i = 1, 2, · · · , k). Assume that the lifetimes of the si units
are (ui1, ui2, · · · , uisi ). Similarly, ti units are withdrawn from sample B. Assume that the life-
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times of the ti units are (vi1, vi2, · · · , viti ). The missing data are ((u11, u12, · · · , u1s1), · · · ,
(uk1, uk2, · · · , uksk

), (v11, v12, · · · , v1t1), · · · , (vk1, vk2, · · · , vktk
)) which can be expressed as

(U1, · · · , Uk, V1, · · · , Vk) = (U, V). The complete data data∗(say) are ((w1, s1, z1), · · · ,
(wk, sk, zk), U, V). The log-likelihood function for the complete data is obtained as

ln Lc(θ1, θ2, λ |data∗) =(m + n) ln(2λ) + m ln θ1 + n ln θ2 − 3
k

∑
i=1

(
si

∑
j=1

ln uij +
ti

∑
l=1

ln vil + lnwi

)

− λ
k

∑
i=1

(
si

∑
j=1

1
u2

ij
+

ti

∑
l=1

1
v2

il
+

1
w2

i

)
+ (θ1 − 1)

k

∑
i=1

si

∑
j=1

ln(1− e
−λ

u2
ij ) (7)

+ (θ2 − 1)
k

∑
i=1

ti

∑
l=1

ln(1− e
−λ

v2
il ) +

k

∑
i=1

(
ziθ1 + (1− zi)θ2 − 1

)
ln(1− e

−λ

w2
i ).

The EM algorithm is divided into two steps. The pseudo log-likelihood function at the
‘E’-step is given by:

lc(θ1, θ2, λ|data∗) =(m + n) ln(2λ) + m ln θ1 + n ln θ2 − 3
k

∑
i=1

[
siE(ln Ui|Ui > wi) + tiE(ln Vi|Vi > wi)

]
− 3

k

∑
i=1

ln wi − λ
k

∑
i=1

[
siE(

1
u2

ij
) + tiE(

1
V2

i
|Vi > wi) +

1
w2

i

]

+ (θ1 − 1)
k

∑
i=1

siE

(
ln(1− e

−λ

U2
i )|Ui > wi

)
+ (θ2 − 1)

k

∑
i=1

tiE

(
ln(1− e

−λ

V2
i )|Vi > wi

)

+
k

∑
i=1

(
ziθ1 + (1− zi)θ2 − 1

)
ln(1− e

−λ

w2
i ). (8)

The conditional pdfs of the Uij and Vil are expressed respectively as (see [27])

fUij |(W1,S1,Z1),··· ,(Wk ,Sk ,Zk)
(uij|(w1, s1, z1), · · · , (wk, sk, zk)) = fUij |Wi

(uij|wi) =
f IERD(uij; θ1, λ)

1− FIERD(wi; θ1, λ)
,

fVil |(W1,S1,Z1),··· ,(Wk ,Sk ,Zk)
(vil |(w1, s1, z1), · · · , (wk, sk, zk)) = fVil |Wi

(vil |wi) =
f IERD(vil ; θ2, λ)

1− FIERD(wi; θ2, λ)
,

for i = 1, · · · , k.
Then, the following formulas are obtained:

E(ln Uij|Uij > wi) =
∫ ∞

wi

2θ1λu−3
ij ln uije

−λ

u2
ij (1− e

−λ

u2
ij )θ1−1

(1− e
−λ

w2
i )θ1

duij,

E(
1

U2
ij
|Uij > wi) =

∫ ∞

wi

2θ1λu−5
ij e

−λ

u2
ij (1− e

−λ

u2
ij )θ1−1

(1− e
−λ

w2
i )θ1

duij,
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E

(
ln(1− e

−λ

U2
ij )|Uij > wi

)
=
∫ ∞

wi

2θ1λu−3
ij ln(1− e

−λ

u2
ij )e

−λ

u2
ij (1− e

−λ

u2
ij )θ1−1

(1− e
−λ

w2
i )θ1

duij.

The expectations related to the functions of Vil are similar and omitted here.
In the ‘M’ step, we calculate the estimates of θ1, θ2 and λ, which maximize the pseudo

log-likelihood function with finite iterations. Take partial derivatives of (8) to get the
expressions of θ1 and θ2 in terms of λ:

θ̂1(λ) = θ1 =
−m

∑k
i=1 siE

(
ln(1− e

−λ

U2
i )|Ui > wi

)
+ ∑k

i=1 zi ln(1− e
−λ

w2
i )

, (9)

θ̂2(λ) = θ2 =
−n

∑k
i=1 tiE

(
ln(1− e

−λ

V2
i )|Vi > wi

)
+ ∑k

i=1(1− zi) ln(1− e
−λ

w2
i )

. (10)

Equation (8) can be rewritten as the function only for λ and the problem turns to
be a one-dimensional optimization problem. At the q-th iteration (q = 1, 2, · · · ), let
(θ

(q)
1 , θ

(q)
2 , λ(q)) be the estimates of (θ1, θ2, λ). Plug (θ

(q−1)
1 , θ

(q−1)
2 ) into (8), maximize the

function and obtain λ(q). For fixed θ
(q−1)
1 , θ

(q−1)
2 and λ(q), θ

(q)
1 and θ

(q)
2 can be derived by

using the formulas below:

θ
(q)
1 =

−m

∑k
i=1 siE(θ

(q−1)
1 ,θ(q−1)

2 ,λ(q))

(
ln(1− e

−λ

U2
i )|Ui > wi

)
+ ∑k

i=1 zi ln(1− e
−λ(q)

w2
i )

, (11)

θ
(q)
2 =

−n

∑k
i=1 tiE(θ

(q−1)
1 ,θ(q−1)

2 ,λ(q))

(
ln(1− e

−λ

V2
i )|Vi > wi

)
+ ∑k

i=1(1− zi) ln(1− e
−λ(q)

w2
i )

. (12)

The iterations are stopped until |λ(p) − λ(p−1)| 6 0.0001, |θ(p)
1 − θ

(p−1)
1 | 6 0.0001,

|θ(p)
2 − θ

(p−1)
2 | 6 0.0001. θ

(p)
1 , θ

(p)
2 , λ(p) are the maximum likelihood estimates of θ1, θ2, λ.

3. Observed Fisher Information Matrix

In this section, the observed information matrix is calculated and will be used in
Section 4. According to the idea of [28], we have

Io(θ1, θ2, λ) = mI1(θ1, θ2, λ) + nI2(θ1, θ2, λ)−
(

k

∑
i=1

si

∑
j=1

Iuij |wi
(θ1, θ2, λ) +

k

∑
i=1

ti

∑
l=1

Ivil |wi
(θ1, θ2, λ)

)
,

and the notations below:
Ic: the observed information matrix of complete data;
I1: the observed information matrix of one unit from sample A;
I2: the observed information matrix of one unit from sample B;
Io: the observed information matrix of observed data;
Im: the observed information matrix of missing data.
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For sample A,

I1 =

I(1)11 0 I(1)13
0 0 0

I(1)31 0 I(1)33


where

I(1)11 = −E( ∂2 ln f IERD(x;θ1,λ)
∂θ2

1
), I(1)13 = I(1)31 = −E( ∂2 ln f IERD(x;θ1,λ)

∂θ1∂λ ), I(1)33 =

−E( ∂2 ln f IERD(x;θ1,λ)
∂λ2 ).

The missing observed matrices can be obtained as follow:

Iuij |wi
(θ1, θ2, λ) =

Iu
11 0 Iu

13
0 0 0

Iu
31 0 Iu

33


where

Iu
11 = −E( ∂2 ln fCPF(x;θ1,λ)

∂θ2
1

), Iu
13 = Iu

31 = −E( ∂2 ln fCPF(x;θ1,λ)
∂θ1∂λ ), Iu

33 = −E( ∂2 ln fCPF(x;θ1,λ)
∂λ2 ).

Here, CPF means the conditional pdf. Expressions of all the expectations related
to θ1 are given in Appendix A. The expressions above related to sample B are similar
and omitted.

After getting the observed information matrix, for every fixed (θ1, θ2, λ), the covariance
matrix of estimators is the inverse matrix of the observed information matrix.

4. Bootstrap Methods

In this section, the Bootstrap methods are introduced to construct confidence intervals.
The algorithms of Bootstrap-p method and Bootstrap-t method are respectively given in
Algorithms 1 and 2.

• Bootstrap-p method:

Algorithm 1 The algorithm of Bootstrap-p method.
Step 1: Generate two random samples, which are from IERD(θ1, λ) and IERD(θ2, λ), respec-
tively, and use the JPC scheme to get the observed data.
Step 2: Calculate the MLEs (say (θ̂1, θ̂2, λ̂)).
Step 3: Use (θ̂1, θ̂2, λ̂) to generate two new samples, respectively.

Step 4: Get new MLEs (θ̂1
(i)

, θ̂2
(i)

, λ̂(i)).
Step 5: Repeat steps 3 and 4 N times.

Step 6: Get the results ((θ̂1
(1)

, θ̂2
(1)

, λ̂(1)), · · · , (θ̂1
(N)

, θ̂2
(N)

, λ̂(N))).

Step 7: Sort (θ̂1
(1)

, · · · , θ̂1
(N)

), (θ̂2
(1)

, · · · , θ̂2
(N)

), (λ̂(1), · · · , λ̂(N)) in ascending order as
(θ̂1(1), · · · , θ̂1(N)), (θ̂2(1), · · · , θ̂2(N)), (λ̂(1), · · · , λ̂(N)).
Step 8: The 100(1− α)% symmetric Bootstrap-p confidence intervals for (θ1, θ2, λ) are[

θ̂1(lb), θ̂1(hb)

]
,
[
θ̂2(lb), θ̂2(hb)

]
and

[
λ̂(lb), λ̂(hb)

]
, (13)

where lb =
[

α
2 N
]
, hb =

[
1−α

2 N
]
. Here [x] means the largest integer not exceeding x.
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• Bootstrap-t method:

Algorithm 2 The algorithm of Bootstrap-t method.
Steps 1 to 5 are the same as those in Algorithm 1.

Step 6: Get the results ((θ̂1
(1)

, θ̂2
(1)

, λ̂(1)), · · · , (θ̂1
(N)

, θ̂2
(N)

, λ̂(N))) and
(Cov(1), Cov(2), · · · , Cov(N)), where Cov(i) is given by

Cov(i) = I−1
o (θ̂1

(i)
, θ̂2

(i)
, λ̂(i)) (14)

where Io is obtained in Section 3.
Step 7: Var(θ̂1

(i)
), Var(θ̂2

(i)
) and Var(λ̂(i)) which are diagonal elements of Cov(i) can be

obtained. Define

T(i)
j =

θ̂j
(i) − θ̂j√

Var(θ̂1
(i)
)

, f or j = 1, 2

and

T(i)
λ =

λ̂(i) − λ̂√
Var(λ̂(i))

.

Step 8: Sort (T(1)
1 , · · · , T(N)

1 ), (T(1)
2 , · · · , T(N)

2 ), (T(1)
λ , · · · , T(N)

λ ) in ascending order as
(T1(1), · · · , T1(N)), (T2(1), · · · , T2(N)), (Tλ(1), · · · , Tλ(N)).
Step 9: The 100(1− α)% Bootstrap-t confidence intervals for (θ1, θ2, λ) are given by[

θ̂j −
√

Var(θ̂j)Tj(hb), θ̂j −
√

Var(θ̂j)Tj(lb)

]
f or j = 1, 2, (15)

and [
λ̂−

√
Var(λ̂)Tλ(hb), λ̂−

√
Var(λ̂)Tλ(lb)

]
. (16)

where lb =
[

α
2 N
]
, hb =

[
1−α

2 N
]
. Here [x] means the largest integer not exceeding x.

5. Bayesian Inference

In this section, we study the Bayesian inference for the three parameters based on
non-informative prior and informative prior. The estimates under symmetric loss function
(square loss function) and asymmetric loss function (linex loss function) are derived.

Notice that all the parameters range from 0 to +∞, so let Gamma distributions be the
prior distributions. Gamma distribution (Ga(α, β)) has the following density:

f (x|α, β) =
βαxα−1e−βx

Γ(α)
, x > 0, α > 0, β > 0, (17)

It is assumed that θ1, θ2 and λ are independent and follow different Gamma dis-
tributions. θ1 ∼ Ga(a1, b1), θ2 ∼ Ga(a2, b2) and λ ∼ Ga(c, d). The hyperparameters
a1, b1, a2, b2, c, d > 0. The priors considered are conjugate.

The joint posterior density is given by
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π(θ1, θ2, λ|data) ∝π(θ1, θ2, λ)L(θ1, θ2, λ|data)

∝θa1+k1−1
1 e

−

b1−∑k
i=1(zi+si) ln(1−e

− λ
w2

i )

θ1

× θa2+k2−1
2 e

−

b2−∑k
i=1(1−zi+ti) ln(1−e

− λ
w2

i )

θ2

× λk+c−1e
−(d+∑k

i=1
1

w2
i
)λ
× 1

∏k
i=1(1− e

− λ

w2
i )

=π(θ1|λ, data)× π(θ2|λ, data)× π(λ|data), (18)

where π(θ1, θ2, λ) means the joint prior density.
Observing that in (18) the first two items are Gamma densities, in fact, we check the

shape and scale parameters and confirm that a1 + k1 > 0, a2 + k2 > 0, b1 − ∑k
i=1(zi +

si) ln(1− e
− λ

w2
i ) > 0 and b2 −∑k

i=1(1− zi + ti) ln(1− e
− λ

w2
i ) > 0.

Some facts are obtained:

π(θ1|λ, data) = Ga

(
a1 + k1, b1 −

k

∑
i=1

(si + zi) ln(1− e
− λ

w2
i )

)
, (19)

π(θ2|λ, data) = Ga

(
a2 + k2, b2 −

k

∑
i=1

(ti + 1− zi) ln(1− e
− λ

w2
i )

)
, (20)

π(λ|data) ∝
λc+k−1e

−(d+∑k
i=1

1
w2

i
)λ

∏k
i=1(1− e

− λ

w2
i )

×
[

b1 −
k

∑
i=1

(si + zi) ln(1− e
− λ

w2
i )

]−(a1+k1)

×
[

b2 −
k

∑
i=1

(ti + 1− zi) ln(1− e
− λ

w2
i )

]−(a2+k2)

, (21)

The distributions of θ1 and θ2 both depend on λ. Generating the random variates of λ
is the key. The well-known log-concave method is considered and discussed first.

ln
(
π(λ|data)

)
can be written as

ln
(
π(λ|data)

)
= ln C + (k + c− 1) ln λ− (d +

k

∑
i=1

1
w2

i
)λ−

k

∑
i=1

ln(1− e
− λ

w2
i )

− (a1 + k1) ln

(
b1 −

k

∑
i=1

(si + zi) ln(1− e
− λ

w2
i )

)

− (a2 + k2) ln

(
b2 −

k

∑
i=1

(ti + 1− zi) ln(1− e
− λ

w2
i )

)
,

where C means the normalization constant of π(λ|data) and the second-order partial
derivative of ln

(
π(λ|data)

)
is given by
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∂2 ln
(
π(λ|data)

)
∂λ2 =

k

∑
i=1

e
− λ

w2
i

w4
i (1− e

− λ

w2
i )2

+
k + c− 1

λ2 + (a1 + k1)


 k

∑
i=1

(si + zi)
e
− λ

w2
i

w2
i (1− e

− λ

w2
i )


2

−
k

∑
i=1

(si + zi)
e
− λ

w2
i

w4
i (1− e

− λ

w2
i )2

×
(

b1 −
k

∑
i=1

(si + zi) ln(1− e
− λ

w2
i )

)


×
[

b1 −
k

∑
i=1

(si + zi) ln(1− e
− λ

w2
i )

]−2

+ (a2 + k2)


 k

∑
i=1

(ti + 1− zi)
e
− λ

w2
i

w2
i (1− e

− λ

w2
i )


2

−
k

∑
i=1

(ti + 1− zi)
e
− λ

w2
i

w4
i (1− e

− λ

w2
i )2

×
(

b2 −
k

∑
i=1

(ti + 1− zi) ln(1− e
− λ

w2
i )

)


×
[

b2 −
k

∑
i=1

(ti + 1− zi) ln(1− e
− λ

w2
i )

]−2

. (22)

It cannot be determined whether (22) is negative or positive. So, log-concave method
is not appropriate here. The importance sampling method [29] is adopted. (21) is rewritten
as below:

π(λ|data) ∝Ga(c + k, d +
k

∑
i=1

1
w2

i
)×

[
b1 −

k

∑
i=1

(si + zi) ln(1− e
− λ

w2
i )

]−(a1+k1)

×
[

b2 −
k

∑
i=1

(ti + 1− zi) ln(1− e
− λ

w2
i )

]−(a2+k2)
(

k

∏
i=1

(1− e
− λ

w2
i )

)−1

. (23)

• Square loss function:

Square loss function is given below:

lS(ĝ(Θ), g(Θ)) = (ĝ(Θ)− g(Θ))2.

where Θ means the parameter vector, g(Θ) means any function of Θ. The Bayesian estimate
of any function of (θ1, θ2, λ), say g(θ1, θ2, λ) under square loss function can be obtained as

ĝ(θ1, θ2, λ) =
∫ ∞

0

∫ ∞

0

∫ ∞

0
g(θ1, θ2, λ)π(θ1, θ2, λ|data)dθ1dθ2dλ. (24)

The following Algorithm 3 can be used in Bayesian estimates under square loss function.
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Algorithm 3 Bayesian estimates under square loss function.

Step 1: Given data (W, S, Z), generate λ from Ga(k + c, d + ∑k
i=1

1
w2

i
).

Step 2: For a given λ, generate θ1 and θ2 based on (19) and (20).
Step 3: Repeat Steps 1 and 2 for M times.
Step 4: For generated (λ(j), θ1(j), θ2(j)), calculate g(λ(j), θ1(j), θ2(j)) and the importance
weight (say weight∗), j = 1, 2, · · · , M.

weight∗(j) =
c(j)

∑M
j=1 c(j)

,

where

c(j) =

[
b1 −∑k

i=1(si + zi) ln(1− e
−

λ(j)
w2

i )

]−(a1+k1)[
b2 −∑k

i=1(ti + 1− zi) ln(1− e
−

λ(j)
w2

i )

]−(a2+k2)

∏k
i=1

(
1− e

−
λ(j)
w2

i

) .

Step 5: The estimate of g(λ, θ1, θ2) can be obtained by

ĝ(λ, θ1, θ2) =
M

∑
j=1

weight∗(j)g(λ(j), θ1(j), θ2(j)).

• Linex loss function:

Linex loss function is given below:

ll(ĝ(Θ), g(Θ)) = eδ
(

ĝ(Θ)−g(Θ)
)
− δ
(

ĝ(Θ)− g(Θ)
)
− 1, δ is a nonzero constant.

The Bayesian estimate of any function of (θ1, θ2, λ), say g(θ1, θ2, λ) under linex loss function
can be obtained as

ĝ(θ1, θ2, λ) = −1
δ

ln
(∫ ∞

0

∫ ∞

0

∫ ∞

0

π(θ1, θ2, λ|data)
eδg(θ1,θ2,λ)

dθ1dθ2dλ

)
. (25)

The following Algorithm 4 can be used in Bayesian estimates under linex loss function.

Algorithm 4 Bayesian estimates under linex loss function.
Steps 1 to 4 are the same as those in Algorithm 3.
Step 5: The estimate of g(λ, θ1, θ2) can be obtained by

ĝ(θ1, θ2, λ) = −1
δ

ln

(
M

∑
i=1

weight∗(j)e
−δg(λ(j),θ1(j),θ2(j))

)
.

To compute 100(1 − α)% symmetric credible intervals of g(λ, θ1, θ2), where α means
the significance level,

(
g(λ(1), θ1(1), θ2(1)), g(λ(2), θ1(2), θ2(2)), · · · , g(λ(M), θ1(M), θ2(M))

)
are

sorted in ascending order as (g(1), g(2), · · · , g(M)) and the corresponding weights are
(weight′(1), weight′(2), · · · , weight′(M)).



Entropy 2022, 24, 171 12 of 24

Define sumc(ρ) = ∑
ρ
l=1 weight′(l) for l = 1, 2, · · · , M. When sumc(ρ−1) < α

2 and

sumc(ρ) > α
2 , record the g(ρ). When sumc(η) < 1 − α

2 and sumc(η+1) > 1 − α
2 , record

the g(η). Then a (1− α)% credible interval of g(λ, θ1, θ2) is

[g(ρ), g(η)]. (26)

6. Simulation and Data Analysis
6.1. Numerical Simulation

In this section, different m, n, k and r1, r2, · · · , rk are taken and simulation results
through the methods mentioned above are displayed. We consider different censoring
schemes. For the rest of the paper, the notation (0(5), 5(5), 0(10)) means that no unit is
withdrawn for the first 5 times, 5 units are withdrawn for 5 times, and no unit is withdrawn
for the last 10 times. For other notations, the meanings are similar.

Let θ1 = 3, θ2 = 2, λ = 2. The average values (AVs) and mean square errors (MSEs) of
MLEs are calculated by repeating the EM algorithm 1000 times. To be more practical, both
the true values and θ0

1 = θ0
2 = λ0 = 7 are set as the initial values in EM algorithm. The

results are given in Tables 1 and 2.

Table 1. AVs and MSEs of MLEs when the true values is set as the initial values.

k n m Scheme θ̂1 θ̂2 λ̂

AV MSE AV MSE AV MSE

20

20 25
(0(9), 25, 0(10)) 2.778 0.960 1.951 0.511 1.866 0.167
(10, 0(18), 15) 2.330 1.168 1.525 0.574 1.606 0.269

(0(5), 5(5), 0(10)) 3.026 1.277 1.835 0.482 1.878 0.161

25 20
(0(9), 25, 0(10)) 2.959 0.778 1.878 0.275 1.896 0.127
(10, 0(18), 15) 2.376 0.991 1.538 0.351 1.602 0.196

(0(5), 5(5), 0(10)) 2.303 0.949 1.470 0.402 1.632 0.177

40 45
(0(9), 65, 0(10)) 2.181 1.552 1.598 0.725 1.561 0.314
(30, 0(18), 35) 2.160 2.219 1.624 1.025 1.435 0.349

(0(5), 13(5), 0(10)) 2.168 1.276 1.684 0.343 1.887 0.225

30

20 25
(0(14), 15, 0(15)) 3.246 1.021 2.538 0.516 2.128 0.116

(5, 0(28), 10) 3.210 0.801 2.057 0.213 2.030 0.075
(0(12), 3(5), 0(13)) 3.117 1.119 2.148 0.290 2.196 0.115

40 45
(0(14), 55, 0(15)) 2.561 0.871 1.553 0.322 1.684 0.129
(27, 0(28), 28) 2.216 1.350 1.512 0.618 1.600 0.277

(0(9), 5(11), 0(10)) 2.679 1.132 1.590 0.402 1.728 0.117

40 40 45
(0(19), 45, 0(20)) 3.076 0.799 1.870 0.252 1.927 0.111
(25, 0(38), 20) 2.769 0.625 1.526 0.307 1.659 0.149

(0(17), 9(5), 0(18)) 2.859 0.672 1.823 0.193 1.871 0.075

In Tables 1 and 2, the estimates of λ get closer to the true value than those of θ1 and
θ2 under the same censoring scheme. The results are acceptable because λ is the same in
two samples. With more information, λ gets better estimates. When considering the same
sample size and failure times (k), there are better results if the withdrawal processes are
executed in the middle rather than at the beginning and end. Besides, Figure 3 shows that a
more dispersed withdrawal scheme, which means withdrawing the units for several times
but not one time, yields better estimates. Comparing censoring schemes (n = 20, m = 25)
with (n = 25, m = 20), the estimates of θ2 are better as n increases. The MSEs of θ̂2
decrease.It is reasonable because if the sample size n increases and more information of
sample B can be utilized, better estimates can be obtained. When keeping n and m fixed and
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increasing k, estimations under these schemes are better. The plots of MSEs were shown
below: (take k = 20, n = 40, m = 45 as an example).

Table 2. AVs and MSEs of MLEs when 7 is set as the initial values.

k n m Scheme θ̂1 θ̂2 λ̂

AV MSE AV MSE AV MSE

20

20 25
(0(9), 25, 0(10)) 2.931 1.261 1.813 0.264 1.844 0.103
(10, 0(18), 15) 2.168 0.967 1.395 0.472 1.588 0.227

(0(5), 5(5), 0(10)) 2.977 1.078 1.821 0.502 1.883 0.146

25 20
(0(9), 25, 0(10)) 2.846 1.098 1.903 0.394 1.868 0.139
(10, 0(18), 15) 2.232 0.938 1.503 0.348 1.637 0.177

(0(5), 5(5), 0(10)) 2.901 1.005 1.919 0.356 1.881 0.120

40 45
(0(9), 65, 0(10)) 1.760 1.706 1.221 0.709 1.526 0.252
(30, 0(18), 35) 1.563 2.156 1.027 0.998 1.427 0.351

(0(5), 13(5), 0(10)) 2.141 1.497 1.467 0.319 1.536 0.284

30

20 25
(0(14), 15, 0(15)) 3.102 0.751 2.234 0.220 1.963 0.066

(5, 0(28), 10) 3.111 0.514 1.999 0.193 1.989 0.069
(0(12), 3(5), 0(13)) 2.902 0.618 2.056 0.147 2.008 0.061

40 45
(0(14), 55, 0(15)) 2.077 0.959 1.458 0.455 1.594 0.194
(27, 0(28), 28) 1.824 1.520 1.243 0.640 1.490 0.286

(0(9), 5(11), 0(10)) 2.279 1.135 1.549 0.303 1.647 0.155

40 40 45
(0(19), 45, 0(20)) 2.03 0.824 1.860 0.237 1.863 0.077
(25, 0(38), 20) 2.335 0.597 1.522 0.301 1.634 0.161

(0(17), 9(5), 0(18)) 2.952 0.536 1.917 0.205 1.933 0.094

The MSEs of different schemes(k=20,n=40,m=45)

scheme

M
S

E
s

(0 (9),65,0 (10)) (30,0 (18),35) (0 (5),13 (5),0 (10))

0
1

2
3 θ1 

θ2 
λ 

θ1  
θ2  
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The MSEs of different schemes(k=20,n=40,m=45)

scheme
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(0 (9),65,0 (10)) (30,0 (18),35) (0 (5),13 (5),0 (10))
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2
3 θ1  
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λ  

Figure 3. The trend of MSEs for different schemes with MLEs method (set k = 20, n = 40, m = 45 as
an example).

The parameters of prior distributions are a1 = 2, b1 = 1, a2 = 1, b2 = 2, c = 3, d = 2
and linex loss constant δ = 2. Then, the Bayes estimates for informative prior under square
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loss function (say ˆθ1S, ˆθ2S, λ̂S) and linex loss function (say ˆθ1L, ˆθ2L, λ̂L) are compared based
on 1000 replications. The results are given in Tables 3 and 4.

Tables 3 and 4 show that MSEs are bigger and AVs are closer to the true value under
linex loss function than the results under square loss function. Bayesian inference performs
better than MLEs in terms of MSEs. However, Bayesian estimators mostly underestimate
the true parameter values and MLEs do not show this pattern. In the schemes with larger
sample sizes, MLEs get better AVs but bigger MSEs than Bayesian estimators. The tables
also reveal that MSEs become small with k increases. As true value increases, the methods
mentioned above all show bigger MSEs, which means that the results are more dispersed.

Table 3. AVs and MSEs of Bayesian estimates for informative prior under square loss function based
on 1000 replications.

k n m Scheme θ̂1S θ̂2S λ̂S

AV MSE AV MSE AV MSE

20

20 25
(0(9), 25, 0(10)) 2.779 0.519 1.712 0.233 1.751 0.250

(10, 0(18), 15) 2.748 0.523 1.643 0.270 1.679 0.314

(0(5), 5(5), 0(10)) 2.712 0.394 1.781 0.207 1.768 0.230

25 20
(0(9), 25, 0(10)) 2.748 0.437 1.671 0.243 1.749 0.251

(10, 0(18), 15) 2.729 0.524 1.696 0.290 1.783 0.311

(0(5), 5(5), 0(10)) 2.817 0.486 1.826 0.172 1.794 0.211

40 45
(0(9), 65, 0(10)) 2.480 1.220 1.566 0.499 1.591 0.399

(30, 0(18), 35) 2.381 1.420 1.518 0.697 1.577 0.546

(0(5), 13(5), 0(10)) 2.614 1.034 1.618 0.463 1.612 0.374

30

20 25
(0(14), 15, 0(15)) 2.831 0.355 1.867 0.168 1.878 0.218

(5, 0(28), 10) 2.769 0.345 1.803 0.171 1.835 0.253

(0(12), 3(5), 0(13)) 2.855 0.334 1.894 0.143 1.873 0.219

40 45
(0(14), 55, 0(15)) 2.421 1.083 1.634 0.406 1.680 0.406

(27, 0(28), 28) 2.334 1.064 1.608 0.435 1.625 0.479

(0(9), 5(11), 0(10)) 2.679 1.070 1.717 0.423 1.741 0.456

40 40 45
(0(19), 45, 0(20)) 2.651 0.830 1.837 0.289 1.705 0.374

(25, 0(38), 20) 2.684 0.654 1.674 0.259 1.693 0.387

(0(17), 9(5), 0(18)) 2.641 0.836 1.830 0.286 1.791 0.390

Next, we compare Bayes estimates for non-informative prior and informative prior. Ac-
cording to [30], let hyperparameters a1 = 0.0001, b1 = 0.0001, a2 = 0.0001, b2 = 0.0001,
c = 0.0001, d = 0.0001. The patterns of different schemes are similar to those mentioned above.
Observing Tables 5 and 6, it is found that if the samples have more units but the failure times
are relatively less, Bayesian estimators with informative priors perform better than those with
non-informative priors. When the failure times are relatively more, in another word, there are
more observed data even the sample sizes are small, and the results with these two methods
have little difference. In addition, the results are closer to the true value under square loss
function. In a word, Bayesian estimation with informative prior under square loss function
performs best among the methods discussed.

Besides the point estimates, Bootstrap-p, Bootstrap-t, and Bayesian methods are used
to obtain the 90% confidence/credible intervals. In Tables 7 and 8, the average lengths (ALs)
and coverage percentages (CPs) are calculated based on 1000 replications. In Bootstrap
methods, boot-time is set as 1000 (N = 1000). Here, IP means under informative prior
density and NIP means under non-informative prior density.
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Table 4. AVs and MSEs of Bayesian estimates for informative prior under linex loss function based
on 1000 replications.

k n m Scheme θ̂1L θ̂2L λ̂L

AV MSE AV MSE AV MSE

20

20 25
(0(9), 25, 0(10)) 2.568 0.754 1.678 0.297 1.616 0.279

(10, 0(18), 15) 2.695 0.842 1.712 0.349 1.647 0.346

(0(5), 5(5), 0(10)) 2.583 0.595 1.689 0.265 1.533 0.259

25 20
(0(9), 25, 0(10)) 2.673 0.636 1.740 0.320 1.612 0.281

(10, 0(18), 15) 2.683 0.762 1.782 0.372 1.647 0.347

(0(5), 5(5), 0(10)) 2.659 0.673 1.685 0.212 1.656 0.243

40 45
(0(9), 65, 0(10)) 2.371 1.425 1.516 0.554 1.580 0.412

(30, 0(18), 35) 2.291 1.825 1.472 0.761 1.566 0.562

(0(5), 13(5), 0(10)) 2.582 1.241 1.662 0.517 1.600 0.388

30

20 25
(0(14), 15, 0(15)) 2.762 0.510 1.843 0.194 1.849 0.242

(5, 0(28), 10) 2.738 0.505 1.889 0.208 1.808 0.278

(0(12), 3(5), 0(13)) 2.797 0.458 1.871 0.163 1.845 0.242

40 45
(0(14), 55, 0(15)) 2.345 1.232 1.598 0.443 1.672 0.415

(27, 0(28), 28) 2.256 1.205 1.568 0.477 1.617 0.490

(0(9), 5(11), 0(10)) 2.412 1.298 1.682 0.459 1.734 0.464

40 40 45
(0(19), 45, 0(20)) 2.582 0.945 1.605 0.317 1.698 0.382

(25, 0(38), 20) 2.504 0.759 1.531 0.290 1.685 0.397

(0(17), 9(5), 0(18)) 2.579 0.941 1.698 0.313 1.685 0.397

Table 5. AVs and MSEs of Bayesian estimates for non-informative prior under square loss function
based on 1000 replications.

k n m Scheme θ̂1NS θ̂2NS λ̂NS

AV MSE AV MSE AV MSE

20

20 25
(0(9), 25, 0(10)) 2.617 0.677 2.060 0.352 1.556 0.252
(10, 0(18), 15) 2.437 0.710 1.908 0.365 1.462 0.340

(0(5), 5(5), 0(10)) 2.756 0.564 2.162 0.458 1.562 0.247

25 20
(0(9), 25, 0(10)) 2.809 0.672 1.992 0.360 1.559 0.256
(10, 0(18), 15) 2.655 0.724 1.833 0.287 1.479 0.325

(0(5), 5(5), 0(10)) 2.986 0.966 2.154 0.343 1.618 0.214

40 45
(0(9), 65, 0(10)) 2.195 1.688 1.421 0.487 1.345 0.461
(30, 0(18), 35) 2.094 1.717 1.337 0.716 1.329 0.621

(0(5), 13(5), 0(10)) 2.265 1.359 1.524 0.492 1.379 0.420

30

20 25
(0(14), 15, 0(15)) 2.792 0.372 2.160 0.283 1.688 0.216

(5, 0(28), 10) 2.716 0.389 2.084 0.270 1.646 0.254
(0(12), 3(5), 0(13)) 2.832 0.386 2.199 0.313 1.789 0.214

40 45
(0(14), 55, 0(15)) 2.333 1.310 1.517 0.355 1.551 0.445
(27, 0(28), 28) 2.326 1.311 1.456 0.419 1.493 0.524

(0(9), 5(11), 0(10)) 2.483 1.374 1.666 0.393 1.611 0.499

40 40 45
(0(19), 45, 0(20)) 2.485 0.972 1.704 0.257 1.683 0.400
(25, 0(38), 20) 2.452 0.713 1.671 0.217 1.680 0.408

(0(17), 9(5), 0(18)) 2.681 0.960 1.806 0.242 1.777 0.409
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Table 6. AVs and MSEs of Bayesian estimates for non-informative prior under linex loss function
based on 1000 replications.

k n m Scheme θ̂1NL θ̂2NL λ̂NL

AV MSE AV MSE AV MSE

20

20 25
(0(9), 25, 0(10)) 2.550 0.902 1.835 0.272 1.523 0.281
(10, 0(18), 15) 2.456 0.998 1.704 0.339 1.432 0.373

(0(5), 5(5), 0(10)) 2.577 0.686 1.903 0.289 1.532 0.273

25 20
(0(9), 25, 0(10)) 2.509 0.776 1.786 0.300 1.527 0.285
(10, 0(18), 15) 2.459 0.932 1.665 0.314 1.547 0.359

(0(5), 5(5), 0(10)) 2.510 0.801 1.950 0.236 1.583 0.239

40 45
(0(9), 65, 0(10)) 2.179 1.925 1.353 0.552 1.334 0.476
(30, 0(18), 35) 2.150 1.962 1.269 0.804 1.316 0.641

(0(5), 13(5), 0(10)) 2.283 1.582 1.442 0.532 1.467 0.435

30

20 25
(0(14), 15, 0(15)) 2.606 0.507 1.990 0.211 1.662 0.236

(5, 0(28), 10) 2.582 0.522 1.930 0.221 1.623 0.275
(0(12), 3(5), 0(13)) 2.764 0.465 2.033 0.215 1.765 0.233

40 45
(0(14), 55, 0(15)) 2.354 1.456 1.570 0.393 1.543 0.455
(27, 0(28), 28) 2.284 1.472 1.502 0.466 1.484 0.536

(0(9), 5(11), 0(10)) 2.416 1.522 1.624 0.434 1.504 0.508

40 40 45
(0(19), 45, 0(20)) 2.418 1.093 1.666 0.283 1.677 0.408
(25, 0(38), 20) 2.371 0.827 1.623 0.243 1.673 0.417

(0(17), 9(5), 0(18)) 2.717 1.074 1.770 0.269 1.771 0.416

Table 7 displays the ALs and CPs of confidence intervals with Bootstrap-p and
Bootstrap-t methods. The contrast between Bootstrap-p and Bootstrap-t indicates that
CPs are similar but ALs of Bootstrap-t are wider than those of Bootstrap-p. Therefore, the
Bootstrap-p method is more appropriate to get the confidence intervals.

Table 8 shows the ALs and CPs of credible intervals under informative prior density
and non-informative prior density. The contrast indicates that ALs of NIP tend to be longer
than those of IP but CPs are less than those of IP. Obviously, IP performs better than NIP.
Besides, for a fixed scheme, θ2 has the best estimates of credible intervals. Figure 4 displays
the contrast of CPs among different methods which also indicates that Bootstrap-p and
Bayes method with informative prior are more suitable for interval estimates. Compared
to Bootstrap methods, Bayesian method yields better results of credible intervals. In the
condition of large k, CPs increase a lot with both the Bayesian method and Bootstrap
methods. When there are sufficient units, choosing the Bayesian method with informative
priors is better.

Table 7. ALs and CPs of 90% confidence intervals with Boostrap-p and Bootstrap-t methods based on
1000 replications.

Scheme Parameter Bootstrap-p Bootstrap-t

AL CP(%) AL CP(%)

k = 20, n = 20, m = 25 θ1 2.721 87.8 3.353 91.8
scheme=(0(9), 25, 0(10)) θ2 1.489 91.9 1.104 88.3

λ 1.313 87.6 1.291 87.5
k = 20, n = 20, m = 25 θ1 1.642 72.5 1.472 73.5
scheme=(10, 0(18), 15) θ2 1.221 81.2 1.741 81.7

λ 0.706 73.2 0.867 72.7
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Table 7. Cont.

Scheme Parameter Bootstrap-p Bootstrap-t

AL CP(%) AL CP(%)

k = 20, n = 20, m = 25 θ1 2.823 75.5 3.407 77.8
scheme=(0(5), 5(5), 0(10)) θ2 1.489 77.1 2.884 78.3

λ 1.313 77.6 0.291 78.1
k = 20, n = 25, m = 20 θ1 2.900 98.8 3.339 93.9
scheme=(0(9), 25, 0(10)) θ2 1.505 93.4 1.199 90.1

λ 1.004 93.2 1.051 95.6
k = 20, n = 25, m = 20 θ1 1.667 74.3 4.027 74.3
scheme=(10, 0(18), 15) θ2 1.221 87.2 2.138 88.9

λ 0.707 75.6 0.685 77.5
k = 20, n = 25, m = 20 θ1 2.629 83.8 2.282 87.3

scheme=(0(5), 5(5), 0(10)) θ2 2.180 74.3 2.627 70.2
λ 1.871 78.9 2.197 84.3

k = 20, n = 40, m = 45 θ1 1.177 72.9 3.268 76.5
scheme=(0(9), 65, 0(10)) θ2 1.016 78.3 0.919 75.5

λ 0.572 73.0 0.888 71.6
k = 20, n = 40, m = 45 θ1 1.003 71.4 1.163 75.9
scheme=(30, 0(18), 35) θ2 0.887 79.5 1.245 84.4

λ 0.493 78.4 2.705 84.2
k = 20, n = 40, m = 45 θ1 1.281 67.1 2.255 78.2

scheme=(0(5), 13(5), 0(10)) θ2 1.132 69.6 2.475 80.4
λ 0.695 70.4 0.670 78.1

k = 30, n = 20, m = 25 θ1 1.500 71.6 1.566 82.9
scheme=(0(14), 15, 0(15)) θ2 1.009 76.2 2.370 86.2

λ 0.621 79.3 0.867 75.5
k = 30, n = 20, m = 25 θ1 0.802 77.1 2.343 80.8
scheme=(5, 0(28), 10) θ2 1.860 78.5 2.328 87.3

λ 1.019 80.5 1.538 89.2
k = 30, n = 20, m = 25 θ1 1.060 84.1 1.813 85.4

scheme=(0(12), 3(5), 0(13)) θ2 1.946 87.2 0.917 80.5
λ 2.237 80.3 0.890 74.2

Table 8. ALs and CPs of 90% symmetric credible intervals based on 1000 replications.

Scheme Parameter IP NIP

AL CP(%) AL CP(%)

k = 20, n = 20, m = 25 θ1 1.111 78.7 1.117 77.5
scheme=(0(9), 25, 0(10)) θ2 0.797 81.8 0.897 79.5

λ 0.370 74.3 0.416 72.7
k = 20, n = 20, m = 25 θ1 1.012 69.2 1.055 63.7
scheme=(10, 0(18), 15) θ2 0.773 79.8 0.864 72.4

λ 0.358 65.0 0.393 60.6
k = 20, n = 20, m = 25 θ1 1.127 87.0 1.211 84.3

scheme=(0(5), 5(5), 0(10)) θ2 0.843 89.2 0.964 87.5
λ 0.359 81.3 0.417 78.1

k = 20, n = 25, m = 20 θ1 1.239 87.7 1.301 87.7
scheme=(0(9), 25, 0(10)) θ2 0.794 88.8 0.850 84.3

λ 0.374 89.3 0.428 82.8
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Table 8. Cont.

Scheme Parameter IP NIP

AL CP(%) AL CP(%)

k = 20, n = 25, m = 20 θ1 1.213 84.5 1.271 78.4
scheme=(10, 0(18), 15) θ2 0.751 87.3 0.806 81.7

λ 0.381 79.7 0.423 71.1
k = 20, n = 25, m = 20 θ1 1.385 87.2 1.472 87.0

scheme=(0(5), 5(5), 0(10)) θ2 0.840 89.2 0.872 83.4
λ 0.388 79.3 0.461 76.8

k = 20, n = 40, m = 45 θ1 0.530 69.1 0.538 60.2
scheme=(0(9), 65, 0(10)) θ2 0.376 72.7 0.427 64.5

λ 0.190 61.3 0.195 60.1
k = 20, n = 40, m = 45 θ1 0.525 70.2 0.544 59.3
scheme=(30, 0(18), 35) θ2 0.393 68.9 0.462 62.8

λ 0.207 63.4 0.227 58.0
k = 20, n = 40, m = 45 θ1 0.556 67.0 0.596 62.7

scheme=(0(5), 13(5), 0(10)) θ2 0.412 68.8 0.439 63.1
λ 0.194 66.5 0.202 63.9

k = 30, n = 20, m = 25 θ1 1.051 91.8 1.115 88.9
scheme=(0(14), 15, 0(15)) θ2 0.781 92.4 0.825 91.2

λ 0.344 84.4 0.389 83.2
k = 30, n = 20, m = 25 θ1 0.943 83.8 1.019 82.5
scheme=(5, 0(28), 10) θ2 0.736 86.0 0.776 81.6

λ 0.320 81.6 0.373 80.9
k = 30, n = 20, m = 25 θ1 0.999 93.2 1.081 90.4

scheme=(0(12), 3(5), 0(13)) θ2 0.766 94.3 0.795 92.0
λ 0.323 85.6 0.377 82.3

The plots of CPs were shown below: (take k = 20, n = 40, m = 45 as an example).

The CPs of different schemes(k=20,n=40,m=45)

scheme
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Figure 4. The trend of CPs for different schemes with four methods (set k = 20, n = 40, m = 45 as
an example).
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6.2. Real Data Analysis

In this part, we analyze one application in the coating weights with two real data sets
and apply the approaches put forward in the sections above. The data sets are from ALAF
(formerly called Aluminium Africa Limited) industry, Tanzania, which contain the coating
weights (mg/m2) by chemical procedure on the top center side (TCS) and by chemical
procedure on the bottom center side (BCS). For each data set, there are 72 observations. The
data were also analyzed by [11]. The data are shown below:

Data set 1: (TCS)
36.8, 47.2, 35.6, 36.7, 55.8, 58.7, 42.3, 37.8, 55.4, 45.2, 31.8, 48.3, 45.3, 48.5, 52.8, 45.4, 49.8,
48.2, 54.5, 50.1, 48.4, 44.2, 41.2, 47.2, 39.1, 40.7, 40.3, 41.2, 30.4, 42.8, 38.9, 34.0, 33.2, 56.8,
52.6, 40.5, 40.6, 45.8, 58.9, 28.7, 37.3, 36.8, 40.2, 58.2, 59.2, 42.8, 46.3, 61.2, 58.4, 38.5, 34.2,
41.3, 42.6, 43.1, 42.3, 54.2, 44.9, 42.8, 47.1, 38.9, 42.8, 29.4, 32.7, 40.1, 33.2, 31.6, 36.2, 33.6,
32.9, 34.5, 33.7, 39.9
Data set 2: (BCS)
45.5, 37.5, 44.3, 43.6, 47.1, 52.9, 53.6, 42.9, 40.6, 34.1, 42.6, 38.9, 35.2, 40.8, 41.8, 49.3, 38.2,
48.2, 44.0, 30.4, 62.3, 39.5, 39.6, 32.8, 48.1, 56.0, 47.9, 39.6, 44.0, 30.9, 36.6, 40.2, 50.3, 34.3,
54.6, 52.7, 44.2, 38.9, 31.5, 39.6, 43.9, 41.8, 42.8, 33.8, 40.2, 41.8, 39.6, 24.8, 28.9, 54.1, 44.1,
52.7, 51.5, 54.2, 53.1, 43.9, 40.8, 55.9, 57.2, 58.9, 40.8, 44.7, 52.4, 43.8, 44.2, 40.7, 44.0, 46.3,
41.9, 43.6, 44.9, 53.6

For convenience, the data sets are divided by 10. First, to verify that IERD is suitable
for the data sets, we fit it for each data set and have Kolmogorov-Smirnov(K-S) distance test.
By calculating the largest difference value of empirical cumulative distribtuion functions
and the fitted distribution functions and comparing that value with the 95% critical value,
we find the data sets can be fitted well. The results are shown in Table 9:

Table 9. The fitting results of the two data sets.

Data Set θ̂ λ̂ K-S Distance 95% Critical Value

data set 1 13.18 53.30 0.0612 0.1603
data set 2 18.22 61.56 0.0871 0.1603

K-S distances are less than 95% critical value, so the IERD fits well for both data sets.
Figure 5 shows the fitness of the data sets separately. Then, the likelihood ratio test is used
to test if the scale parameters can be considered as the same value. H0 : λ1 = λ2. The
p-value is calculated to be 94.3%. Obviously, the null hypothesis cannot be rejected. The
two scale parameters can be considered as the same. Based on the null hypothesis, the
MLEs are obtained as θ̂1 = 15.55, θ̂2 = 14.87, λ̂ = 57.08.

Use the complete data above and generate observed data for the following three
censoring schemes, (0(18), 2(36), 0(18)), (0(35), 36(2), 0(35)), and (36, 0(70), 36). Take MLEs for
complete data as the initial values of EM algorithm. Then, the AVs and MSEs of MLEs can
be obtained in Table 10.
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Figure 5. The IERD fitness of data sets. Fobs(x) means the empirical cumulative distribution function
of data set. Fep(x) means the fitted distribution function of data set. (a) The fitness of data set 1.
(b) The fitness of data set 2.

Table 10. Maximum likelihood estimates under three schemes.

Scheme θ̂1 θ̂2 λ̂

(0(18), 2(36), 0(18)) 14.73 13.97 54.15
(0(35), 36(2), 0(35)) 16.78 12.91 57.23
(36, 0(70), 36) 13.50 12.76 55.51

To verify the stablitity of iteration, we change the initial guesses and plot the trend
of the estimates. The results are shown in Figure 6. The iteration times are 15 times in (a),
23 times in (b) and (c), and 26 times in (d). It is observed that with the same initial guess of
λ, the more dispersed scheme need less iteration times. When the initial guesses are not
close to the true value, the iteration times will increase but the processes are still stable.

In this case, we cannot get the informative priors, so all Bayesian estimates are based
on non-informative priors. Tables 11 and 12 record the results of Bayesian method with
non-informative priors. The 90% confidence/credible intervals with Bootstrap methods
and Bayes estimates for non-informative prior are displayed in Table 13.

From the real data, some facts are displayed. Bayesian point estimates for non-
informative prior under square loss function are higher than those under linex function.
Besides, the first scheme (0(18), 2(36), 0(18)) corresponds to higher estimates in point estima-
tions and shorter interval lengths in interval estimations. Table 13 reveals that Bayesian
inference under non-informative priors yields shorter interval lengths than Bootstrap-p
and Bootstrap-t methods. More dispersed schemes and Bayesian inference are preferred in
real data analysis.
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Figure 6. (a,b) The iterations for two different initial guesses of lambda, 57.07 and 70, under
(0(18), 2(36), 0(18)). (c,d) The iterations for two different initial guesses of lambda, 57.07 and 70,
under (36, 0(70), 36).

Table 11. Bayes estimates for non-informative prior under square loss function.

Scheme θ̂1 θ̂2 λ̂

(0(18), 2(36), 0(18)) 14.40 13.47 54.73
(0(35), 36(2), 0(35)) 13.55 11.97 54.72
(36, 0(70), 36) 13.29 10.99 54.68
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(0(18), 2(36), 0(18)). (c,d) The iterations for two different initial guesses of lambda, 57.07 and 70,
under (36, 0(70), 36).

Table 11. Bayes estimates for non-informative prior under square loss function.

Scheme θ̂1 θ̂2 λ̂

(0(18), 2(36), 0(18)) 14.40 13.47 54.73
(0(35), 36(2), 0(35)) 13.55 11.97 54.72
(36, 0(70), 36) 13.29 10.99 54.68

Figure 6. (a,b) The iterations for two different initial guesses of lambda, 57.07 and 70, under
(0(18), 2(36), 0(18)). (c,d) The iterations for two different initial guesses of lambda, 57.07 and 70,
under (36, 0(70), 36).

Table 11. Bayes estimates for non-informative prior under square loss function.

Scheme θ̂1 θ̂2 λ̂

(0(18), 2(36), 0(18)) 14.40 13.47 54.73
(0(35), 36(2), 0(35)) 13.55 11.97 54.72
(36, 0(70), 36) 13.29 10.99 54.68
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Table 12. Bayes estimates for non-informative prior under linex loss function.

Scheme θ̂1 θ̂2 λ̂

(0(18), 2(36), 0(18)) 14.23 13.38 53.56
(0(35), 36(2), 0(35)) 13.41 11.86 53.50
(36, 0(70), 36) 13.16 10.89 53.34

Table 13. The interval estimates with three methods. LB means lower bound and UB means up-
per bound.

Scheme Parameter Bootstrap-p Bootstrap-t NIP
LB UB LB UB LB UB

(0(18), 2(36), 0(18))
θ1 12.26 17.57 11.97 18.02 12.45 18.51
θ2 10.23 17.05 9.91 18.20 11.26 16.78
λ 53.33 61.59 53.06 62.30 53.51 60.13

(0(35), 36(2), 0(35))
θ1 11.37 18.41 11.88 19.76 12.43 19.17
θ2 9.36 17.29 9.40 18.55 10.23 17.96
λ 51.60 60.64 50.05 61.23 53.30 61.18

(36, 0(70), 36)
θ1 13.27 20.74 12.81 20.07 12.25 19.46
θ2 11.69 19.80 11.09 19.08 12.72 20.79
λ 53.53 65.16 52.33 64.16 51.41 62.11

7. Conclusions

In this article, we studied two samples following inverted exponentiated Rayleigh
distribution under joint progressively type-II censoring scheme. It was supposed that
the shape parameters were different but that the scale parameters were the same. The
expectation-maximization algorithm was applied to obtain the estimates of MLEs. The
performance of MLEs and Bayesian estimators for non-informative prior and informative
prior was compared. Bootstrap-p, Bootstrap-t, and Bayesian methods were used in intervals
estimations. Importance sampling technique was introduced when calculating Bayesian
estimates. The contrast between estimates under square loss function and linex loss function
was also studied.

During the point estimation process, Bayesian inference under informative priors
turned out to be the best method and many patterns of censoring scheme were concluded.
To study the confidence intervals, Bootstrap methods were applied and evaluated. Besides,
observed Fisher information matrix played a key role in getting Bootstrap-t intervals based
on the missing value principle.

In the future, the methods can be extended to many other distributions such as
multivariate Gaussian distribution with zero mean. Ref. [31] proposed a total Bregman
divergence-based matrix information geometry (TBD-MIG) detector and applied it to detect
targets emerged into nonhomogeneous clutter. We are still doing more work the situations
where the scale parameters are different and the samples are not independent.
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Appendix A

The elements of the Fisher information matrix are expressed as follows:
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