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Abstract: The interval-valued q-rung dual hesitant linguistic (IVq-RDHL) sets are widely used
to express the evaluation information of decision makers (DMs) in the process of multi-attribute
decision-making (MADM). However, the existing MADM method based on IVq-RDHL sets has
obvious shortcomings, i.e., the operational rules of IVq-RDHL values have some weaknesses and
the existing IVq-RDHL aggregation operators are incapable of dealing with some special decision-
making situations. In this paper, by analyzing these drawbacks, we then propose the operations
for IVq-RDHL values based on a linguistic scale function. After it, we present novel aggregation
operators for IVq-RDHL values based on the power Hamy mean and introduce the IVq-RDHL power
Hamy mean operator and IVq-RDHL power weighted Hamy mean operator. Properties of these new
aggregation operators are also studied. Based on these foundations, we further put forward a MADM
method, which is more reasonable and rational than the existing one. Our proposed method not only
provides a series of more reasonable operational laws but also offers a more powerful manner to
fuse attribute values. Finally, we apply the new MADM method to solve the practical problem of
patient admission evaluation. The performance and advantages of our method are illustrated in the
comparative analysis with other methods.

Keywords: interval-valued q-rung dual hesitant linguistic set; linguistic scale function; power Hamy
mean operator; multi-attribute decision-making

1. Introduction

Multi-attribute decision-making (MADM) is a frequently used method for determin-
ing choices in daily life. This is because most real-life decision-making problems are very
complicated, and to make a wise decision, decision makers (DMs) have to evaluate all
the feasible forms of multiple aspects before determining the ranking order of alterna-
tives [1–10]. There are many methods to obtain the rankings of alternatives in the MADM
framework, and the aggregation operator (AO) is a powerful technique, which helps DMs
acquire the optimal or best alternative. AO refers to a series of special functions that in-
tegrate individual attribute values into a collective one. By ranking the comprehensive
evaluation values of candidates, the corresponding ranking results of alternatives are de-
termined. More and more complex realistic decision-making problems have prompted
many scholars and scientists to realize the importance of studying and exploring the inter-
action between attributes. This is because there exist complex interrelationships between
attributes, which should be considered along with the attribute values when obtaining
the comprehensive evaluation ranks of alternatives. Considering it, the Bonferroni mean
(BM) [11] and HEronian mean (HEM) [12] were proposed to capture the interrelationship
among interacted attributes. Therefore, BM and HEM were widely used by scholars to
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deal with MADM problems [13–16] to produce reasonable aggregation results. However,
it is insufficient to solely use BM or HEM to aggregate attributes, because DMs’ may pro-
vide extreme evaluation values and negatively affect the decision-making results. Due
to the lack of enough professional knowledge and time shortage, the decision experts
may put forward some extreme values subjectively, which can have a negative influence
on aggregation results. He et al. [17] noticed this phenomenon, and they combined the
power average (PA) [18] with BM and proposed the power Bonferroni mean (PBM) op-
erator. The authors applied PBM in hesitant fuzzy sets and comparative analysis reveals
the advantages of PBM over PA and BM [17]. Afterwards, Liu and Li [19] soon extended
PBM to interval-valued intuitionistic fuzzy sets, proposed interval-valued intuitionistic
fuzzy AOs and applied them in an air quality evaluation in Guangzhou, China. Wang
and Li [20] studied PBM in a Pythagorean fuzzy environment, along with the interactive
operational rules. Under the framework of the Dempster–Shafer theory, Liu and Gao [21]
continued to study intuitionistic fuzzy PBM operators and applied them in air-condition
systems selection. Liu and Liu [22] further generalized PBM into linguistic intuitionistic
fuzzy sets and investigated their applications in MADM problems. Liu and Liu [23] used
PBM to fuse linguistic q-rung orthopair fuzzy information. He et al. [24] studied the dual
form of PBM, proposed the power geometric BM and investigated its performance and
advantages in MADM problems. Similar to the PBM operator, Liu [25] introduced the
definition of power HEM (PHEM) operator by integrating PA with HEM. PHEM has similar
performance and capability as PBM, and it has also been investigated under hesitant fuzzy
linguistic terms sets [26], linguistic neutrosophic sets [27], q-rung orthopair hesitant fuzzy
sets [28], neutrosophic cubic sets [29], interval-valued dual hesitant fuzzy sets [30], etc.,
which illustrates the effectiveness and advantages of PHEM.

The aforementioned literature implies the high efficiency of PBM and PHEM in ag-
gregating fuzzy decision-making information under different environments; however, the
shortcoming of PBM and PHEM is still prominent, i.e., they just consider the interrela-
tionship that exists between the two attributes rather than among all attributes. Later,
Liu et al. [31] proposed the power Hamy mean (PHM) operators, with a combination of
PA with Hamy mean (HM) [32] and studied it in interval neutrosophic MADM problems.
Compared with PBM and PHEM, PHM takes the interrelationship among multiple input
arguments into consideration, and this feature makes PHM suitable and flexible to be
employed to fuse attribute values. Based on the pioneering works, Liu and Li [33] and
Liu et al. [34] utilized PHM to fuse fuzzy linguistic information.

Nevertheless, as practical MADM problems are very complicated, the interval-valued
q-rung dual hesitant linguistic (IVq-RDHL) set proposed by Feng and her colleagues [35]
can express complex decision information and is a promising information description
tool. Therefore, we analyze the advantages and superiorities of IVq-RDHL sets from three
perspectives. First of all, more and more scholars have become aware of the importance
of allowing DMs to express their assessments quantificationally and qualitatively [36–39],
while IVq-RDHL sets describe both DMs’ quantitative and qualitative evaluation informa-
tion, providing DMs with an effective manner to convey their ideas. Secondly, IVq-RDHL
sets allow the existence of multiple membership degrees (MDs) and non-membership
degrees (NMDs), which can effectively express the hesitation of DMs. Thirdly, IVq-RDHL
sets can provide more sufficient space for the description of decision information because
they allow the sum of the qth power of MD and the qth power of NMD to be less than or
equal to one. In order to make full use of IVq-RDHL sets in decision-making problems,
Feng et al. [35] continued to propose operational rules, a comparison method, and AOs of
Ivq-RDHL values, and based on which, a novel MADM method was designed. In addition,
the performance and advantages of this method proposed are further proved by illustrative
examples and comparative analysis.

However, the method proposed by Feng et al. [35] still has some significant shortcom-
ings, which are mainly divided into two aspects. First, the operational laws of IVq-RDHL
values cannot solve the different translation requirements of different DMs for the same
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semantics. (In Section 3, we analyzed the shortcomings of these operating rules in detail.)
Second, the method based on IVq-RDHL Maclaurin symmetric mean operators fails to
consider the impact of DMs’ unreasonable evaluation value on the final decision result,
although they have the capacity of capturing the interrelationship among attributes. More
and more evidence shows that while considering the impact of DMs’ evaluation value, the
relationship among attributes can also be considered [40–45].

Based on the above analysis, an MADM method under IVq-RDHL sets is proposed in
this paper. The main motivations of this study are as follows:

(1) Firstly, we introduce the operational laws of IVq-RDHL values based on linguistic
scale functions to overcome the shortcoming of existing operations rules. (We analyzed
in detail why novel operational rules are more effective and rational in Section 3).

(2) Secondly, considering the good performance of PHM in fusing fuzzy information, we
generalized PHM into IVq-RDHL sets and presented AOs for IVq-RDHL values that
can overcome the shortcomings of existing AOs.

(3) Thirdly, we introduced a new MADM method under the IVq-RDHL environment
based on the novel AOs. In addition, a practical example about the patient admission
evaluation is employed to show the validity and advantages of our new method.

The paper is structured as follows. We review basic notions connected with IVq-RDHL
sets in Section 2. Section 3 proposes novel operations for IVq-RDHL values based on a
linguistic scale function and studies their properties. Section 4 puts forward new IVq-RDHL
AOs based on PHM. Section 5 introduces a new IVq-RDHL MADM method. Section 6
is a series of illustrative examples. Section 7 summarizes the manuscript and outlines
future research.

2. Preliminaries

In this section, we briefly review the basic concepts, including IVq-RDHLSs, Hamy
mean, power average, and power Hamy mean operators.

2.1. The IVq-RDHLSs

Definition 1 ([35]). Let X be a fixed set and S̃ be a continuous linguistic term sets (LTS) of
S = {si|i = 1, 2, . . . , t}, then an interval-valued q-rung dual hesitant linguistic set (IVq-RDHLS)
D defined on X is expressed as

D =
{〈

x, sθ(x), hD(x), gD(x)
〉
|x ∈ X

}
, (1)

where sθ(x) ∈ S̃ , hD(x) = ∪[rl
D ,ru

D ]∈hD(x)

{[
rl

D, ru
D

]}
and gD(x) = ∪[ηl

D ,ηu
D ]∈gD(x)

{[
ηl

D, ηu
D

]}
are two sets of interval values in [0, 1], denoting the possible MG and NMG of the element.

x ∈ X to the set D, respectively, such that
[
rl

D, ru
D

]
,
[
ηl

D, ηu
D

]
∈ [0, 1], and 0 ≤

((
ru

D
)+)q

+((
ηu

D
)+)q

≤ 1 , q ≥ 1, where,
[
ηl

D, ηu
D

]
∈ gD(x),

(
ru

D
)+ ∈ h+D(x) = ∪[rl

D ,ru
D ]∈hD(x)max

{
ru

D
}

,

and
(
ηu

D
)+ ∈ g+D(x) = ∪[ηl

D ,ηu
D ]∈gD(x)max

{
ηu

D
}

for all x ∈ X. For convenience, we call

d =
〈

sθ(x),
{{[

rl
D, ru

D

]}
,
{[

ηl
D, ηu

D

]}}〉
an interval-valued q-rung dual hesitant linguistic

variable (IVq-RDHLV), which can be denoted as d = 〈sθ , (h, g)〉 for simplicity. In addition, IVq-
RDHLV can transferred into other fuzzy sets. For example, if q = 1, then D is IVDHFLS; if q = 2,
then D can be simplified to a dual hesitant interval-valued Pythagorean linguistic set; if rl = ru

and ηl = ηu, then D is simplified to the q-rung dual hesitation linguistic set.

Then, the operational laws of IVq-RDHLVs are as follows.
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Definition 2 ([35]). Let d = 〈sθ , (h, g)〉, d1 =
〈
sθ1 , (h1, g1)

〉
and d2 =

〈
sθ2 , (h2, g2)

〉
be any

three IVq-RDHLVs, then

(1) d1 ⊕ d2 =
〈

sθ1+θ2 ,∪r1∈h1,r2∈h2,η1∈g1,η2∈g2{{[((
rl

1

)q
+
(

rl
2

)q
−
(

rl
1rl

2

)q)1/q
,
((

ru
1
)q

+ (ru
2 )

q −
(
ru

1 ru
2
)q
)1/q

]}
,
{[

ηl
1ηl

2, ηu
1 ηu

2

]}}〉
;

(2) d1 ⊗ d2 =
〈

sθ1×θ2 ,∪r1∈h1,r2∈h2,η1∈g1,η2∈g2{{[
rl

1rl
2, ru

1 ru
2

]}
,
{[((

ηl
1

)q
+
(

ηl
2

)q
−
(

ηl
1ηl

2

)q)1/q
,
((

ηu
1
)q

+ (ηu
2 )

q −
(
ηu

1 ηu
2
)q
)1/q

]}}〉
;

(3) λd =

〈
sλθ ,∪r∈h,η∈g

{{[(
1−

(
1−

(
rl
)q)λ

)1/q
,
(

1−
(
1− (ru)q)λ

)1/q
]}

,
{(

ηl
)λ

, (ηu)λ
}}〉

;

(4) dλ =

〈
sθλ ,∪r∈h,η∈g

{{(
rl
)λ

, (ru)λ
}

,

{[(
1−

(
1−

(
ηl
)q)λ

)1/q
,
(

1−
(
1− (ηu)q)λ

)1/q
]}}〉

.

Definition 3 ([35]). Assume that d = 〈sθ , (h, g)〉 is an IVq-RDHLV, then the score function of d is

S(d) =

(
1 +

(
1

#h ∑
[rl ,ru ]∈h

rl

)q

+

(
1

#h ∑
[rl ,ru ]∈h

ru

)q

−
(

1
#g ∑

[ηl ,ηu ]∈g
ηl

)q

−
(

1
#g ∑

[ηl ,ηu ]∈g
ηl

)q)
× sθ

2
, (2)

and the accuracy function of d is

p(d) =

 1
#h ∑

[rl ,ru ]∈h

rl

q

+

 1
#h ∑

[rl ,ru ]∈h

ru

q

+

 1
#g ∑

[ηl ,ηu ]∈g

ηl

q

+

 1
#g ∑

[ηl ,ηu ]∈g

ηl

q× sθ , (3)

where #h and #g represent the number of interval values in h and g, respectively. For example, as-
sume thatd = 〈s3, {{[0.2, 0.3], [0.4, 0.6]}{[0.7, 0.8]}}〉 is an IVq-RDHLV. Therefore, we canobtain
#h = 2 and #g = 1.

Suppose that d1 =
〈
sθ1 , (h1, g1)

〉
and d2 =

〈
sθ2 , (h2, g2)

〉
are any two IVq-RDHLVs, then

(1) If S(d1) > S(d2), then d1 is superior to d2, denoted by d1 > d2;
(2) If S(d1) = S(d2), then calculate the accuracy score of the two IVq-RDHLVs

if p(d1) = p(d2), then d1 is equivalent to d2, denoted by d1 = d2;
if p(d1) > p(d2), then d1 is superior to d2, denoted by d1 > d2.

Remark 1. Suppose that there are three IVq-RDHLVs: d1 = 〈s5, {{[0.5, 0.6]}, {[0.1, 0.2]}}〉
and d2 = 〈s5, {{[0.6, 0.7]}, {[0.1, 0.2], [0.3, 0.4]}}〉, then the score values can be obtained by the
Equation (2), and we have (assume that q = 2)

S(d1) =

(
1 + (0.5)q + (0.6)q − (0.1)q − (0.2)q)× 5

2
=

1.56× 5
2

= 3.9

S(d2) =

(
1 + (0.6)q + (0.7)q −

(
1
2 (0.1 + 0.3)

)q
−
(

1
2 (0.2 + 0.4)

)q)
× 5

2
=

1.72× 5
2

= 4.3

From the results, we can find that S(d1) < S(d2), then d1 < d2. If the score values
are the same, then the accuracy values can be considered for comparison, which can be
calculated by Equation (3).
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2.2. HM, PA and PHM Operator

Definition 4 ([18]). Suppose that ai(i = 1, 2, . . . , n) is a collection of non-negative crisp numbers,
then the PA operator is defined as

PA(a1, a2, . . . , an) =

n
∑

i=1
(1 + T(ai))ai

n
∑

i=1
(1 + T(ai))

, (4)

where T(ai) =
n
∑

j=1,i 6=j
Sup

(
ai, aj

)
. In addition, Sup

(
ai, aj

)
represents the support for ai from aj,

satisfying the conditions:

(1) Sup
(
ai, aj

)
∈ [0, 1];

(2) Sup
(
ai, aj

)
= Sup

(
aj, ai

)
(3) Sup(a, b) ≤ Sup(c, d), if |a, b| ≥ |c, d|.

Definition 5 ([32]). Assume that ai(i = 1, 2, . . . , n) is a collection of non-negative real numbers. If

HM(k)(a1, a2, . . . , an) =

∑
1≤i1<···<ik≤n

(
k

∏
j=1

aij

)1/k

Ck
n

, (5)

then HM(k) is the HM operator. In addition, k = 1, 2, . . . , n, Ck
n is the binomial coefficient, and

(i1, i2, . . . , ik) t raverses all the k-tuple combination of (1, 2, . . . , n).

Definition 6 ([31]). Suppose that ai(i = 1, 2, . . . , n) is a collection of non-negative real numbers.
Then, the PHM operator is defined as

PHM(k)(a1, a2, . . . , an) =
1

Ck
n

 ∑
1≤i1<···<ik≤n

 k

∏
j=1

n

(
1 + T

(
aij

))
aij

n
∑

j=1

(
1 + T

(
aj
))



1/k
, (6)

where k = 1, 2, . . . , n,Ck
n is the binomial coefficient, and (i1, i2, . . . , ik) traverses all the k-tuple

combination of (1, 2, . . . , n). In addition, T(ai) =
n
∑

j=1,i 6=j
Sup

(
ai, aj

)
and Sup

(
ai, aj

)
stand for

the support for ai from aj satisfying the properties presented in Definition 4.

3. Novel Operations of IVq-RDHLVs Based on LSFs
3.1. Necessity of Proposing New Operations of IVq-RDHLVs

Feng et al. [35] originated some operations of IVq-RDHLVs, which, however, have
some shortcomings.

(1) The existing operations of IVq-RDHLVs are not closed. To illustrate this shortcoming
in more detail, we provide the following example.

Example 1. Assume that there are two IVq-RDHLVs a1 = 〈s5, {{[0.3, 0.4], [0.6, 0.7]}, {[0.1, 0.2]}}〉
and a2 = 〈s3, {{[0.4, 0.6], [0.6, 0.8]} {[0.2, 0.5]}}〉 defined on a given LTS S = {s0, s1, . . . , s5}.
According to the operational rules proposed by Feng et al. [35], we have

(1) α1 ⊕ α2 = 〈s8, {{[0.4172, 0.6139], [0.6838, 0.8488]}, {[0.02, 0.1]}}〉
(2) α1 ⊗ α2 = 〈s15, {{[0.12, 0.24], [0.36, 0.56]}, {[0.2012, 0.5010]}}〉
(3) α1

3 = 〈s75, {{[0.027, 0.064], [0.216, 0.343]}, {[0.1246, 0.2491]}}〉
(4) 3α1 = 〈s15, {{[0.3735, 0.4973], [0.7358, 0.8424]}, {[0.001, 0.008]}}〉
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The calculation result of Example 1 shows that the operation proposed by Feng et al. [35]
has a drawback: the calculation results of the linguistic term set (LTS) easily breaks the
predefined upper limit; thus, these operations are not closed.

(2) These rules proposed by Feng et al. [35] assumed that the semantic gap between
any two adjacent LTs is always equal. However, in practical MADM problems, DMs
may feel that the semantic gap will change when the subscript of the LT increase or
decrease. For example, DMs may believe that the semantic gap between “extremely
poor” and “very poor” is greater or smaller than “good” and “very good”.

3.2. The Notion of LFSs

Definition 7 ([46]). Assume that S = {si|i = 0, 1, . . . , 2t} is an LTS, and si ∈ S is a lin-
guistic variable. For any real number γi(i = 0, 1, 2, . . . , 2t), an LSF f is a mapping from si
toγi(i = 0, 1, 2, . . . , 2t) such that:

f : si → γi(i = 0, 1, 2, . . . , 2t), (7)

where 0 ≤ γ0 < γ1 < . . . < γ2t.

The three most widely used LSFs are presented as follows.

LSF1 : f1(si) = γi =
i

2t
(i = 1, 2, . . . , 2t) (8)

LSF2 : f2(si) = γi =


ρt−ρt−i

2ρt−2 (i = 0, 1, 2, . . . , t)
ρt+ρt−i−2

2ρt−i−2 (i = t + 1, t + 2, . . . , 2t)
(9)

LSF3 : f3(si) = γi =

{ tε−(t−i)ε

2tε (i = 0, 1, 2, . . . , t)
tβ+(i−t)β

2tβ (i = t + 1, t + 2, . . . , 2t)
, (ε, β ∈ [0, 1]) (10)

For Equations (9) and (10), it can be seen that the absolute deviations between adjacent
linguistic subscripts are different. For example, in Equation (9), the semantic gap between
“extremely poor” and “very poor” is smaller than “good” and “very good”. However,
in Equation (10), the semantic gap between “extremely poor” and “very poor” is greater
than “good” and “very good”. For more information, please refer to the literature by Liu
et al. (2019). In particular, if ε = β = 1, then Equation (11) is reduced to Equation (8).
Meanwhile, the function f can be further expanded to a continuous function such that
f ∗ : f̃ → Ω+(Ω+ = {d|d ≥ 0}, d ∈ R) , which satisfies f ∗ (si) = γi. The inverse function

of f ∗ is depicted as f ∗−1. Then, we can obtain

LSF 1 : f1 ∗−1 (γi) = s2t∗i(i = 0, 1, 2, . . . , 2t), (11)

LSF 2 : f2 ∗−1 (γi) =

{
st−logρ (ρ

t−(2ρt−2)γi)
, (γi ∈ [0, 0.5])

st+logρ ((2ρt−2)γi−ρt+2), (γi ∈ [0.5, 1.0])
, (12)

LSF 3 : f3 ∗−1 (γi) =

{
st−(tε−2×tε×γi)

1/ε , (γε ∈ [0, 0.5])
s

t+(2×tβ×γi−tβ)
1/β ,

(
γβ ∈ [0.5, 1]

) , (13)
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3.3. Operational Rules of IVq-RDHLVs Based on the LSF

Definition 8. Let d = 〈sθ , (h, g)〉 ,d1 =
〈
sθ1 , (h1, g1)

〉
and d2 =

〈
sθ2 , (h2, g2)

〉
be any three

IVq-RDHLVs, then

(1) d1 ⊕ d2 =
〈

f ∗−1( f ∗(θ1) + f ∗(θ2)− f ∗(θ1) f ∗(θ2)),

∪r1∈h1,r2∈h2,η1∈g1,η2∈g2

{{[((
rl

1

)q
+
(

rl
2

)q
−
(

rl
1rl

2

)q)1/q
,
(
(ru

1 )
q + (ru

2 )
q − (ru

1 ru
2 )

q)1/q
]}

,
{[

ηl
1ηl

2, ηu
1 ηu

2

]}}〉
;

(2) d1 ⊗ d2 =
〈

f ∗−1( f ∗(θ1) f ∗(θ2)),

∪r1∈h1,r2∈h2,η1∈g1,η2∈g2

{{[
rl

1rl
2, ru

1 ru
2

]}
,
{[((

ηl
1

)q
+
(

ηl
2

)q
−
(

ηl
1ηl

2

)q)1/q
,
(
(ηu

1 )
q + (ηu

2 )
q − (ηu

1 ηu
2 )

q)1/q
]}}〉

;

(3) λd =
〈

f ∗−1
(

1− (1− f ∗(θ1))
λ
)

,

∪r∈h,η∈g

{{[(
1−

(
1−

(
rl
)q)λ

)1/q
,
(

1−
(
1− (ru)q)λ

)1/q
]}

,
{(

ηl
)λ

, (ηu)λ
}}

;

(4) dλ =
〈

f ∗−1
(
( f ∗(θ))λ

)
,

∪r∈h,η∈g

{{(
rl
)λ

, (ru)λ
}

,

{[(
1−

(
1−

(
ηl
)q)λ

)1/q
,
(

1−
(
1− (ηu)q)λ

)1/q
]}}〉

.

Theorem 1. Let d = 〈sθ , (h, g)〉, d1 =
〈
sθ1 , (h1, g1)

〉
and d2 =

〈
sθ2 , (h2, g2)

〉
be any three

IVq-RDHLVs, then

(1) d1 ⊕ d2 = d2 ⊕ d1; (14)

(2) d1 ⊗ d2 = d2 ⊗ d1; (15)

(3) λ(d1 ⊕ d2) = λd1 ⊕ λd2(λ ≥ 0); (16)

(4) λ1d⊕ λ2d = (λ1 ⊕ λ2)d(λ1, λ2) ≥ 0; (17)

(5) dλ
1 ⊗ dλ

2 = (d1 ⊗ d2)
λ(λ ≥ 0); (18)

(6) dλ1 ⊗ dλ2 = dλ1+λ2(λ1, λ2 ≥ 0). (19)

It is easy to prove Equations (14) and (15), so we omit them here.

Proof. According to the operational rules of IVq-RDHLVs in Definition 8, we can obtain
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λ(d1 ⊕ d2) = λ
〈

f ∗−1(1− (1− f ∗(θ1))(1− f ∗(θ2))),

∪r1∈h1,r2∈h2,η1∈g1,η2∈g2

{{[((
rl

1

)q
+
(

rl
2

)q
−
(

rl
1rl

2

)q)1/q
,
((

ru
1
)q

+ (ru
2 )

q −
(
ru

1 ru
2
)q
)1/q

]}
,
{[

ηl
1ηl

2, ηu
1 ηu

2

]}}〉
=
〈

f ∗−1
(
((1− f ∗(θ1))(1− f ∗(θ2)))

λ
)

,∪r1∈h1,r2∈h2,η1∈g1,η2∈g2{{[(
1−

(
1−

(
rl

1

)q)λ(
1−

(
rl

2

)q)λ
)1/q

,
(

1−
(

1−
(
rU

1
)q
)λ(

1−
(
rU

2
)q
)λ
)1/q

]}
,
{[(

ηl
1ηl

2

)λ
,
(
ηu

1 ηu
2
)λ
]}}〉

λd1 ⊕ λd2 =
〈

f ∗−1
(

1− (1− f ∗(θ1))
λ
)

,

∪r1∈h1,η1∈g1

{{[(
1−

(
1−

(
rl

1

)q)λ
)1/q

,
(

1−
(

1−
(
ru

1
)q
)λ
)1/q

]}
,
{(

ηl
1

)λ
,
(
ηu

1
)λ
}}

⊕
〈

f ∗−1
(

1− (1− f ∗(θ2))
λ
)

,

∪r2∈h2,η2∈g2

{{[(
1−

(
1−

(
rl

2

)q)λ
)1/q

,
(

1−
(
1− (ru

2 )
q)λ
)1/q

]}
,
{(

ηl
2

)λ
, (ηu

2 )
λ
}}

=
〈

f ∗−1
((

1− (1− f ∗(θ1))
λ(1− f ∗(θ2))

λ
))

,∪r1∈h1,r2∈h2,η1∈g1,η2∈g2{{[(
1−

(
1−

(
rl

1

)q)λ(
1−

(
rl

2

)q)λ
)1/q

,
(

1−
(

1−
(
rU

1
)q
)λ(

1−
(
rU

2
)q
)λ
)1/q

]}
,
{[(

ηl
1ηl

2

)λ
,
(
ηu

1 ηu
2
)λ
]}}〉

= λ(d1 ⊕ d2)

According to the above process, it is obvious that Equation (16) holds for λ ≥ 0. In
addition, we have

λ1d⊕ λ2d =
〈

f ∗−1
(

1− (1− f ∗(θ))λ1(1− f ∗(θ))λ2
)

,∪r∈h,η∈g{{[(
1−

(
1−

(
rl
)q)λ1(

1−
(

rl
)q)λ2

)1/q
,
(

1−
(

1−
(
rU)q

)λ1
(

1−
(
rU)q

)λ1
)1/q

]}
,{[(

ηl
)λ1
(

ηl
)λ2

,
(
ηU)λ1

(
ηU)λ2

]}}〉
= (λ1 + λ2)d

According to the above process, Equation (17) is kept. Based on Definition 7 and
Definition 8, we have

dλ
1 ⊗ dλ

2 =
〈

f ∗−1
(
( f ∗(θ1) f ∗(θ2))

λ
)

,∪r1∈h1,r2∈h2,η1∈g1,η2∈g2{{[(
rl

1rl
2

)λ
,
(
ru

1 ru
2
)λ
]}

,

{[(
1−

(
1−

(
ηl

1

)q)λ(
1−

(
ηl

2

)q)λ
)1/q

,
(

1−
(

1−
(
ηU

1
)q
)λ(

1−
(
ηU

2
)q
)λ
)1/q

]}}〉
= dλ

1 ⊗ dλ
2

dλ1 ⊗ dλ2 =

〈
f ∗−1

(
( f ∗(θ))λ1( f ∗(θ2))

λ2
)

,∪r∈h,η∈g

{{[(
rl
)λ1
(

rl
)λ2

,
(
rU)λ1

(
rU)λ2

]}
,{[(

1−
(

1−
(

ηl
)q)λ1(

1−
(

ηl
)q)λ2

)1/q
,
(

1−
(

1−
(
ηU)q

)λ1
(

1−
(
ηU)q

)λ1
)1/q

]}}〉
= dλ1+λ2 .

So far, Theorem 1 have been proved. �

3.4. Comparison Method of IVq-RDHLVs Based on LSF

Based on LSF f, the comparison method of IVq-RDHLVs is put forward as follows.

Definition 9. Assume that d = 〈sθ , (h, g)〉 is an IVq-RDHLV, then the score function of d can be
calculated by

S(d) =

(
1 +

(
1

#h ∑
[rl ,ru ]∈h

rl

)q

+

(
1

#h ∑
[rl ,ru ]∈h

ru

)q

−
(

1
#g ∑

[ηl ,ηu ]∈g
ηl

)q

−
(

1
#g ∑

[ηl ,ηu ]∈g
ηl

)q)
× f ∗(θ)

2
. (20)
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and the accuracy function of d can be computed by

p(d) =

 1
#h ∑

[rl ,ru ]∈h

rl

q

+

 1
#h ∑

[rl ,ru ]∈h

ru

q

+

 1
#g ∑

[ηl ,ηu ]∈g

ηl

q

+

 1
#g ∑

[ηl ,ηu ]∈g

ηl

q× f ∗(θ). (21)

For any two IVq-RDHLVs d1 =
〈
sθ1 , (h1, g1)

〉
and d2 =

〈
sθ2 , (h2, g2)

〉
, the specific

comparison rules are presented in Definition 3.

3.5. Distance Measure of IVq-RDHLVs

In this section, we propose a new concept of the distance between two IVq-RDHLVs
based on the LSF.

Definition 10. Suppose that d1 =
〈
sθ1 , (h1, g1)

〉
and d2 =

〈
sθ2 , (h2, g2)

〉
are any two IVq-

RDHLVs, then the distance betweend1 and d2 is expressed as

d(d1, d2) =

(
1

2(#h+#g)

(
#h
∑

i=1

(∣∣∣((γL
1
)

σ(i)

)q
−
((

γL
2
)

σ(i)

)q∣∣∣+ ∣∣∣((γU
1
)

σ(i)

)q
−
((

γU
2
)

σ(i)

)q∣∣∣)+
#g
∑

j=1

(∣∣∣((ηL
1
)

σ(j)

)q
−
((

ηL
2
)

σ(j)

)q∣∣∣+ ∣∣∣((ηU
1
)

σ(j)

)q
−
((

ηU
2
)

σ(j)

)q∣∣∣))× | f ∗(θ1)− f ∗(θ2)|.
(22)

where
[(

γL
1
)

σ(i),
(
γU

1
)

σ(i)

]
∈ h1,

[(
γL

2
)

σ(i),
(
γU

2
)

σ(i)

]
∈ h2,

[(
ηL

1
)

σ(i),
(
ηU

1
)

σ(i)

]
∈ g1,[(

ηL
2
)

σ(i),
(
ηU

2
)

σ(i)

]
∈ g2,

[(
γL

1
)

σ(i),
(
γU

1
)

σ(i)

]
<

[(
γL

1
)

σ(i+1),
(
γU

1
)

σ(i+1)

]
,[(

γL
2
)

σ(i),
(
γU

2
)

σ(i)

]
<
[(

γL
2
)

σ(i+1),
(
γU

2
)

σ(i+1)

]
,

[(
ηL

1
)

σ(i),
(
ηU

1
)

σ(i)

]
<

[(
ηL

1
)

σ(i+1),(
ηU

1
)

σ(i+1)

]
and

[(
ηL

2
)

σ(i),
(
ηU

2
)

σ(i)

]
<
[(

ηL
2
)

σ(i+1),
(
ηU

2
)

σ(i+1)

]
. In addition, #h represents

the number of interval values contained in h1 and h2, and #g represents the number of elements that
make up g1 and g2.

Remark 2 ([35]). Assume that d1 =
〈
sθ1 , (h1, g1)

〉
and d2 =

〈
sθ2 , (h2, g2)

〉
are any two IVq-

RDHLVs. From Definition 10, it is obvious that #h1 = #h2 and #g1 = #g2, which means that h1 and
h2 should have the same number of values, and g1 and g2 should have the same number of values
when calculating the distance. However, this condition cannot be always satisfied. In order to make
the MD and NMD numbers of the two IVq-RDHFEs equal, Feng et al. [35] proposed two methods
to adjust the IVq-RDHFEs, which fail to satisfy the condition. Inspired by this idea, we extend
the shorter IVq-RDHLV to satisfy the condition by adding the largest interval values in MD and
NMD, respectively.

Example 2. Assume that there are two evaluation values denoted by IVq-RDHLVs, which are
d1 = {s3, {[0.3, 0.4]}, {[0.3, 0.5], [0.4, 0.6], [0.7, 0.8]}} and d2 = {s5, {[0.2, 0.3], [0.4, 0.7]}
{[0.3, 0.5], [0.6, 0.8]}} defined on a given LTS S = {s0, s1, s2, s3, s4, s5}. For calculation,d1 and
d2 can be transformed tod′1 and d′2, respectively (q = 5).

d′1 = {s3, {[0.3, 0.4], [0.3, 0.4]}, {[0.3, 0.5], [0.4, 0.6], [0.7, 0.8]}},
d2
′ = {s5, {[0.2, 0.3], [0.4, 0.7]}, {[0.3, 0.5], [0.3, 0.5], [0.6, 0.8]}}.

If we use LSF1, then the distance between d1 and d2 is

d(d1, d2) =
∣∣ 3

6 −
5
5

∣∣× ( 1
2(2+3)

((∣∣(0.3)q − (0.2)q∣∣+ ∣∣(0.4)q − (0.3)q∣∣+ ∣∣(0.3)q − (0.4)q∣∣+ ∣∣(0.4)q − (0.7)q∣∣) +(∣∣(0.3)q − (0.3)q∣∣+ ∣∣(0.5)q − (0.5)q∣∣+ ∣∣(0.4)q − (0.3)q∣∣+ ∣∣(0.6)q − (0.5)q∣∣+ ∣∣(0.7)q − (0.6)q∣∣+ ∣∣(0.8)q − (0.8)q∣∣))
= 1

3 ×
(

1
10
(
(0.4)q + (0.7)q − (0.3)q − (0.2)q)+ ((0.7)q + (0.4)q − (0.3)q − (0.5)q))

= 0.0107



Entropy 2022, 24, 166 10 of 26

For two IVq-RDHLVs d1 and d2, d(d1, d2) represents the distance between d1 and d2
and satisfy the following properties:

(1) d(d1, d2) ∈ [0, 1];
(2) d(d1, d2) = 0 if and only if d1 = d2;
(3) d(d1, d2) = d(d2, d1).

4. Aggregation Operators of IVq-RDHLVs and Their Properties
4.1. The Interval-Valued q-Rung Dual Hesitant Linguistic Power Hamy Mean
(IVq-RDHLPHM) Operator

Definition 11. Let di(i = 1, 2, . . . , n) be a collection of IVq-RDHLVs, and then tIVq-RDHLPHM
operator is defined as

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

 k
⊗

j=1

 n
(

1+T
(

dij

))
dij

n
∑

i=1
(1+T(di))

1/k
, (23)

where k = 1, 2, . . . , n, Ck
n is the binomial coefficient and (i1, i2, . . . , ik) traverses all the k-tuple

combination of (1, 2, . . . , n). Moreover, T(di) =
n
∑

j=1,i 6=j
Sup

(
di, dj

)
and Sup

(
di, dj

)
stand for

the support for di from dj and satisfy the conditions presented in Definition 4.

In order to simplify Equation (22), assume that

σi =
1 + T(di)

n
∑

i=1
(1 + T(di))

, (24)

then Equation (22) can be transformed as

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nσij dij

))
)

1/k
, (25)

where 0 ≤ σi ≤ 1 and ∑n
i=1 σi = 1.

Theorem 2. Let di =
〈
sθi , (hi, gi)

〉
(i = 1, 2, . . . , n) be a collection of IVq-RDHLVs, then the

results aggregated by the IVq-RDHLPHM operator is also an IVq-RDHLV and

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
)1/k

) 1
Ck

n

,∪rij
∈hij

,ηij
∈gij



1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γL

ij

)q)nσij
)1/k

) 1
Ck

n

1/q

,

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γU

ij

)q)nσij
)1/k

) 1
Ck

n

1/q


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)nqσij
)1/k

)1/qCk
n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nqσij
)1/k

)1/qCk
n



〉

.

(26)

Proof. From Definitions 8 and 9, we can obtain

nσij dij =
〈

f ∗−1
(

1−
(

1− f ∗
(

θij

))nσij
)

,

∪rij
∈hij

,ηij
∈gij

{{[(
1−

(
1−

(
γL

ij

)q)nσij
)1/q

,
(

1−
(

1−
(

γU
ij

)q)nσij
)1/q

]}
,
{[(

ηL
ij

)nσij ,
(

ηU
ij

)nσij
]}}〉

and
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k
⊗

j=1

(
nσij dij

)
=

〈
f ∗−1

(
k

∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
))

,

∪rij
∈hij

,ηij
∈gij

{{[
k

∏
j=1

(
1−

(
1−

(
γL

ij

)q)nσij
)1/q

,
k

∏
j=1

(
1−

(
1−

(
γU

ij

)q)nσij
)1/q

]}
,

(1−
k

∏
j=1

(
1−

(
ηL

ij

)nqσij
))1/q

,

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nqσij
))1/q



〉

.

Further,

k
⊗

j=1

(
nσij dij

)1/k
=

〈
f ∗−1

(
k

∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
)1/k

)
,

∪rij
∈hij

,ηij
∈gij

{{[
k

∏
j=1

(
1−

(
1−

(
γL

ij

)q)nσij
)1/kq

,
k

∏
j=1

(
1−

(
1−

(
γU

ij

)q)nσij
)1/kq

]}
,

(1−
k

∏
j=1

(
1−

(
ηL

ij

)nqσij
)1/k

)1/q

,

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nqσij
)1/k

)1/q



〉

and

⊕
1≤i1<...<ik≤n

(
k
⊗

j=1

(
nσij dij

))1/k

=

〈
f ∗−1

(
1− ∏

1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
)1/k

))
,∪rij

∈hij
,ηij
∈gij


(1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γL

ij

)q)nσij
)1/k

))1/q

,

(
1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γU

ij

)q)nσij
)1/k

))1/q


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)nqσij
)1/k

)1/q

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nqσij
)1/k

)1/q



〉

.

Finally,

1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1

(
nσij dij

))1/k

=

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
)1/k

) 1
Ck

n

,∪rij
∈hij

,ηij
∈gij



1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γL

ij

)q)nσij
)1/k

) 1
Ck

n

1/q

,

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γU

ij

)q)nσij
)1/k

) 1
Ck

n

1/q


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)nqσij
)1/k

)1/qCk
n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nqσij
)1/k

)1/qCk
n



〉

.

�

Theorem 3. Let di =
〈
sθi , (hi, gi)

〉
(i = 1, 2, . . . , n) be a collection of IVq-RDHLVs, if di = d =

〈sθ , (h, g)〉 for all i, and there is only one MD and NMD in d, then

IVq− RDHLPHM(k)(d1, d2, . . . , dn) = d. (27)

Proof. According to di = d = 〈sθ , (h, g)〉, we can have Sup
(
di, dj

)
= 1 for all

i, j = (1, 2, 3, . . . , n)(i 6= j), then σij =
1
n hold for all i. According to Theorem 2, we obtain
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IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
)1/k

) 1
Ck

n

,∪rij
∈hij

,ηij
∈gij



1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γL

ij

)q)nσij
)1/k

) 1
Ck

n

1/q

,

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γU

ij

)q)nσij
)1/k

) 1
Ck

n

1/q


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)nqσij
)1/k

)1/qCk
n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nqσij
)1/k

)1/qCk
n



〉

=

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))n× 1
n
)1/k) 1

Ck
n

,∪rij
∈hij

,ηij
∈gij



1− ∏

1≤i1<...<ik≤n

1−
k

∏
j=1

(
1−

(
1−

(
γL

ij

)q)n× 1
n

)1/k
 1

Ck
n


1/q

,

1− ∏
1≤i1<...<ik≤n

1−
k

∏
j=1

(
1−

(
1−

(
γU

ij

)q)n× 1
n

)1/k
 1

Ck
n


1/q


 ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)nq× 1
n
)1/k)1/qCk

n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nq× 1
n
)1/k)1/qCk

n




〉

=

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
f ∗
(

θij

))1/k
) 1

Ck
n

,∪rij
∈hij

,ηij
∈gij



1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

((
γL

ij

)q)1/k
) 1

Ck
n

1/q

,

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

((
γU

ij

)q)1/k
) 1

Ck
n

1/q


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)q)1/k
)1/qCk

n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)q)1/k
)1/qCk

n



〉

=

〈
f ∗−1

(
1− ∏

1≤i1<···<ik≤n
(1− f ∗(θi))

1
Ck

n

)
,∪ri∈hi ,ηi∈gi


(1− ∏

1≤i1<...<ik≤n

(
1−

(
γL

i
)q
) 1

Ck
n

)1/q

,

(
1− ∏

1≤i1<...<ik≤n

(
1−

(
γU

i
)q
) 1

Ck
n

)1/q
{[

∏
1≤i1<...<ik≤n

(
1−

(
1−

(
ηL

i
)q
))1/qCk

n
, ∏

1≤i1<...<ik≤n

(
1−

(
1−

(
ηU

i
)q
))1/qCk

n

]}}〉
=

〈
f ∗−1

(
1− (1− f ∗(θ))

1
Ck

n
×Ck

n
)

,∪r∈h,η∈g

(1−

(
1−

(
γl
)q) 1

Ck
n
×Ck

n

)1/q

,
(

1−
(
1− (γu)q) 1

Ck
n
×Ck

n
)1/q

{[((
ηl
)q)Ck

n× 1
qCk

n ,
(
(ηu)q)Ck

n× 1
qCk

n

]}}〉
=

〈
f ∗−1( f ∗(θ)),∪r∈h,η∈g,

{{[((
γl
)q)1/q

,
(
(γu)q)1/q

]}
,
{[

ηl , ηu
]}}〉

=
〈

θ,∪r∈h,η∈g,
{{[

γl , γu
]}

,
{[

ηl , ηu
]}}〉

= d

�

Theorem 4. Let di =
〈
sθi , (hi, gi)

〉
(i = 1, 2, . . . , n) be a collection of IVq-RDHLVs, if d− =

min(d1, d2, . . . , dn) and d+ = max(d1, d2, . . . , dn), then

x ≤ IVq− RDHLPHM(k)(d1, d2, . . . , dn) ≤ y. (28)

where x = 1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1

(
nσij d

−
))1/k

and y = 1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1

(
nσij d

+
))1/k

.

Proof. From Definition 11, we can obtain

nσij d
− ≤ nσij dij and

k
⊗

j=1

(
nσij d

−
)
≤

k
⊗

j=1
nσij dij
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Then, (
k
⊗

j=1

(
nσij d

−
))1/k

≤
(

k
⊗

j=1
nσij dij

)1/k

Further,

⊕
1≤i1<...<ik≤n

(
k
⊗

j=1

(
nσij d

−
))1/k

≤ ⊕
1≤i1<...<ik≤n

(
k
⊗

j=1
nσij dij

)1/k

Thus,

1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1

(
nσij d

−
))1/k

≤ 1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1
nσij dij

)1/k

which means that x ≤ IVq− RDHLPHM(k)(d1, d2, . . . , dn).
Similarly, we can also prove that IVq− RDHLPHM(k)(d1, d2, . . . , dn) ≤ y. Thus, the

proof of Theorem 4 is completed. �

Next, we will explore several special cases of the IVq-RDHLPHM operator when the
parameter values changes.

Case 1. When k = 1, the proposed IVq-RDHLPHM operator is simplified to IVq-RDHL power
average (IVq-RDHLPA) operator.

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

(
1− ∏

1≤i1<···<ik≤n
(1− f ∗(θi))

σi

)
,∪ri∈hi ,ηi∈gi{{[(

1−
n
∏
i=1

(
1−

(
γL

i
)q
)σi
)1/q

,
(

1−
n
∏
i=1

(
1−

(
γU

i
)q
)σi
)1/q

]}
,
{[

k
∏
i=1

(
ηL

i
)σi ,

k
∏
i=1

(
ηU

i
)σi

]}}〉
=

n
⊕

i=1
σidi = IVq− RDHLPA(d1, d2, . . . , dn).

(29)

Moreover, for all Sup
(
di, dj

)
= t > 0, i 6= j, then the IVq-RDHLPHM operator is simplified

to the IVq-RDHL average (IVq-RDHLA) operator.

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

(
1− ∏

1≤i1<···<ik≤n
(1− f ∗(θi))

1/n

)
,∪ri∈hi ,ηi∈gi{{[(

1−
n
∏
i=1

(
1−

(
γL

i
)q
)1/n

)1/q
,
(

1−
n
∏
i=1

(
1−

(
γU

i
)q
)1/n

)1/q
]}

,
{[

k
∏
i=1

(
ηL

i
)1/n,

k
∏
i=1

(
ηU

i
)1/n

]}}〉
= 1

n
n
⊕

i=1
di = IVq− RDHLA(d1, d2, . . . , dn).

(30)

Case 2. When k = n, the IVq-RDHLPHM operator is simplified to IVq-RDHL power geometric
(IVq-RDHLPG) operator.

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

(
k

∏
j=1

(
1−

(
1− f ∗

(
θj
))nσj

) 1
n

)
,∪rj∈hj ,ηj∈gj

{[
k

∏
j=1

(
γL

j

)σj
,

k
∏
j=1

(
γU

j

)σj

]}
,


(1−

n
∏
j=1

(
1−

(
ηL

j

)q)σj

)1/q

,

(
1−

n
∏
j=1

(
1−

(
ηU

j

)q)σj

)1/q



〉

=

(
n
⊗

j=1
nσjdj

)1/n

= IVq− RDHLPG(d1, d2, . . . , dn).

(31)

Moreover, for all Sup
(
di, dj

)
= t > 0, i 6= j, then the IVq-RDHLPHM operator is simplified

to IVq-RDHL geometric (IVq-RDHLG) operator.



Entropy 2022, 24, 166 14 of 26

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

(
k

∏
j=1

(
f ∗
(
θj
)) 1

n

)
,∪rj∈hj ,ηj∈gj

{[
k

∏
j=1

(
γL

j

) 1
n ,

k
∏
j=1

(
γU

j

) 1
n

]}
,


(1−

n
∏
j=1

(
1−

(
ηL

j

)q) 1
n

)1/q

,

(
1−

n
∏
j=1

(
1−

(
ηU

j

)q) 1
n

)1/q



〉

=

(
n
⊗

j=1
dj

)1/n

= IVq− RDHLG(d1, d2, . . . , dn).

(32)

Case 3. When q = 1, the IVq-RDHLPHM operator is simplified to interval-valued dual hesitant
linguistic PHM (IVDHLPHM) operator.

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
)1/k

) 1
Ck

n

,∪rij
∈hij

,ηij
∈gij


1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γL

ij

))nσij
)1/k

) 1
Ck

n
, 1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γU

ij

))nσij
)1/k

) 1
Ck

n


 ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)nσij
)1/k

)1/Ck
n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nσij
)1/k

)1/Ck
n



〉

.

(33)

Moreover, for all Sup
(
di, dj

)
= t > 0, i 6= j, then the IVq-RDHLPHM operator is simplified

to interval-valued dual hesitant linguistic HM (IVDHLHM) operator.

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
f ∗
(

θij

))1/k
) 1

Ck
n

,∪rij
∈hij

,ηij
∈gij


1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
γL

ij

)1/k
) 1

Ck
n

, 1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
γU

ij

)1/k
) 1

Ck
n


 ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

))1/k
)1/Ck

n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

))1/k
)1/Ck

n



〉

.

(34)

Case 4. When q = 2, the IVq-RDHLPHM operator is simplified to interval-valued dual hesitant
Pythagorean linguistic PHM (IVDHPLPHM) operator.

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))nσij
)1/k

) 1
Ck

n

,∪rij
∈hij

,ηij
∈gij



1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γL

ij

)2
)nσij

)1/k) 1
Ck

n

1/2

,

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γU

ij

)2
)nσij

)1/k) 1
Ck

n

1/2


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)2nσij

)1/k
)1/Ck

n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)2nσij

)1/k
)1/Ck

n



〉

.

(35)

In addition, for all Sup
(
di, dj

)
= t > 0, i 6= j, the IVq-RDHLPHM operator is simplified to

interval-valued dual hesitant Pythagorean linguistic HM (IVDHPLHM) operator.

IVq− RDHLPHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
f ∗
(

θij

))1/k
) 1

Ck
n

,∪rij
∈hij

,ηij
∈gij



1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
γL

ij

)2/k
) 1

Ck
n

1/2

,

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
γU

ij

)2/k
) 1

Ck
n

1/2


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)2
)1/k

)1/2Ck
n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)2
)1/k

)1/2Ck
n



〉

.

(36)
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4.2. The Interval-Valued q-Rung Dual Hesitant Linguistic Power Weighted Hamy Mean
(IVq-RDHLPWHM) Operator

Definition 12. Let di(i = 1, 2, . . . , n) be a collection of IVq-RDHLVs and k = 1, 2, . . . , n. The
corresponding weight vector can be denoted asw = (w1, w2, . . . , wn)

T , satisfying 0 ≤ wi ≤ 1 and
∑n

i=1 wi = 1. Then, the IVq-RDHLPWHM operator is expressed as

IVq− RDHLPWHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

 k
⊗

j=1

 nwij

(
1+T

(
dij

))
dij

n
∑

i=1
wi(1+T(di))

1/k
, (37)

where Ck
n is the binomial coefficient, and (i1, i2, . . . , ik) traverses all the k-tuple combination of

(1, 2, . . . , n). In addition, T(di) =
n
∑

j=1,i 6=j
Sup

(
di, dj

)
and Sup

(
di, dj

)
represents the support for

di from dj, satisfying the conditions depicted in Definition 4.
For convenience, we assume

δi =
wi(1 + T(di))

n
∑

i=1
wi(1 + T(di))

, (38)

then, Equation (37) can be transformed into

IVq− RDHLPWHM(k)(d1, d2, . . . , dn) =
1

Ck
n

 ⊕
1≤i1<···<ik≤n

(
k
⊗

j=1

(
nδij dij

))1/k
, (39)

where 0 ≤ δi ≤ 1 and ∑n
i=1 δi = 1.

Theorem 5. Let di =
〈
sθi , (hi, gi)

〉
(i = 1, 2, . . . , n) be a collection of IVq-RDHLVs, then the

results aggregated by the IVq-RDHLPWHM operator is also an IVq-RDHLV and

IVq− RDHLPWHM(k)(d1, d2, . . . , dn) =

〈
f ∗−1

1− ∏
1≤i1<···<ik≤n

(
1−

k
∏
j=1

(
1−

(
1− f ∗

(
θij

))nδij

)1/k
) 1

Ck
n

,

∪rij
∈hij

,ηij
∈gij




1− ∏

1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γL

ij

)q)nδij
)1/k

) 1
Ck

n

1/q

,

1− ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
1−

(
γU

ij

)q)nδij
)1/k

) 1
Ck

n

1/q


 ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηL

ij

)nqδij

)1/k
)1/qCk

n

, ∏
1≤i1<...<ik≤n

(
1−

k
∏
j=1

(
1−

(
ηU

ij

)nqδij

)1/k
)1/qCk

n



〉

.

(40)

The specific proof process of Theorem 5 is omitted here because it is similar to the
proof of Theorem 2.

Theorem 6. (Boundedness) Let di =
〈
sθi , (hi, gi)

〉
(i = 1, 2, . . . , n) be a collection of IVq-RDHLVs,

if d− = min(d1, d2, . . . , dn) and d+ = max(d1, d2, . . . , dn), then

x ≤ IVq− RDHLPWHM(k)(d1, d2, . . . , dn) ≤ y. (41)

where x = 1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1

(
nδij d

−
))1/k

and y = 1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1

(
nδij d

+
))1/k

.

Proof. From Definition 11, we can obtain

nδij d
− ≤ nδij dij and

k
⊗

j=1

(
nδij d

−
)
≤

k
⊗

j=1
nδij dij
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Then, (
k
⊗

j=1

(
nδij d

−
))1/k

≤
(

k
⊗

j=1
nδij dij

)1/k

Further,

⊕
1≤i1<...<ik≤n

(
k
⊗

j=1

(
nδij d

−
))1/k

≤ ⊕
1≤i1<...<ik≤n

(
k
⊗

j=1
nδij dij

)1/k

Thus,

1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1

(
nδij d

−
))1/k

≤ 1
Ck

n
⊕

1≤i1<...<ik≤n

(
k
⊗

j=1
nδij dij

)1/k

which means that x ≤ IVq− RDHLPWHM(k)(d1, d2, . . . , dn).�

Similarly, we can also prove that IVq− RDHLPWHM(k)(d1, d2, . . . , dn) ≤ y. Thus,
the proof of Theorem 6 is completed.

5. A MADM Method under IVq-RDHLSs

For a MADM problem, DMs express their assessment with IVq-RDHLSs information.
Assume that there are m alternatives {A1, A2, . . . , Am} that will be evaluated, and n attributes
{C1, C2, . . . , Cn} should be considered in the process of decision making. The weight vector
of the attributes is w = (w1, w2, . . . , wn)

T, which satisfy that 0 ≤ wj ≤ 1 and ∑n
j=1 wj = 1.

When evaluating, DMs use IVq-RDHLS dij =
〈

sθij ,
(
hij, gij

)〉
(i = 1, 2, . . . , m; j = 1, 2, . . . , n)

to express their evaluation of the attribute Cj(j = 1, 2, . . . , n) of Ai(i = 1, 2, . . . , m). Later,
the overall evaluation information can be collected, and a decision matrix can be obtained,
which can be written as Rij =

(
dij
)

m×n. In the following, we introduce the steps of how to
determine the ranks of alternatives based on the IVq-RDHLPWHM operator.

Step 1. Standardize the original decision values. Before aggregation, the original
decision values should be standardized according to the following formula:

dij =


〈

sθij ,
(
hij, gij

)〉
Cj is bene f it type〈

sθij ,
(

gijhij
)〉

Cj is cost type
, (42)

Step 2. Calculate the support

Sup(dil , dim) = 1− d(dil , dim), (l, m = 1, 2, . . . , n, l 6= m), (43)

Step 3. Compute the T
(
dij
)

between the two IVq-RDHLS dil and dim by

T
(
dij
)
=

n

∑
l,m=1,l 6=m

Sup(dil , dim). (44)

Step 4. Compute the power weight δij associated with IVq-RDHLSs by

δij =
wi
(
1 + T

(
dij
))

n
∑

i=1
wi
(
1 + T

(
dij
)) . (45)

Step 5. Calculate the overall evaluation values di of the alternative Ai by

di = IVq− RDHLPWHM(k)(di1, di2, . . . , din) (46)
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Step 6. Calculate the score values of di(i = 1, 2, . . . , n) according to the Equation (20).
Step 7. Rank all the alternatives according to the score values, and choose the best alternative.

6. A Case Study in Assessment Indicator System of Patient Admission Evaluation

With the development of society, the aging of the population and the improvement of
health awareness, people’s medical needs are increasing rapidly. However, medical resources,
such as bed resources, medical technology, and operating rooms, are limited. When scarce
resources cannot accommodate a large number of hospitalized patients, a feasible solution is
to prioritize the patient’s hospitalization list. In practical MADM problems, there are always
qualitative criteria whose values can hardly be depicted by crisp values, such as the level
of pain, the severity of illness, etc. The IVq-RDHLs provide a new and powerful technique
to represent the qualitative judgments of experts. Therefore, in order to assess the relative
priorities of patients for treatment on a waiting list, we construct an evaluation index system
to allow the patients with a high degree of disease severity to be hospitalized.

6.1. Patient Admission Evaluation Criteria

In this section, we build a patient admission evaluation index system for general
patient prioritization. In practical problems, the evaluation of patient prioritization involves
multiple factors and multiple indicators, such as the level of pain, the severity of illness,
and the impact on the patient’s life year, etc. To solve this problem, Li et al. [47] conducted
an investigation on the admission process and obtained four dimensions, including clinical
and functional disorders (C1), expected outcomes (C2), social factors (C3), patient’s basic
information (C4), as shown in Table 1.

Table 1. The evaluation criteria of patient admission.

Parameters Brief Description

Clinical and functional disorders (C1)

Clinical and functional disorders are an essential dimension of the indicator
system, which describe the severities of patients’ diseases and the degrees of
treatment needed in terms of the disease characteristics. It includes disease
severity, pain level, etc.

Expected outcomes (C2)

Expected outcomes refer to the effectiveness of treatment after hospitalization
from the hospital’s point of view. To be precise, before admission, the hospital
has the right to evaluate if the patients have expected negative effects after
receiving treatment, such as mortality. In this sense, it includes the difficulty of
treatment, the complication probability, etc.

Social factors (C3)

When considering the admission of patients, we need to maximize social
welfare from a moral point of view. In this regard, social factors include
resource consumption during waiting periods, limitations in doing activities of
daily living and so on.

Patient basic information (C4)

The basic information of the patient should be considered in the
comprehensive assessment process. For example, when other conditions are
the same, patients who wait longer will be given higher priorities for treatment.
A patient’s basic information can be described as follows: gender, age, waiting
time under the same condition, etc.

Example 3. Suppose that there are four patients Ai(i = 1, 2, 3, 4) needed to be considered for pa-
tient admission. The parameters Cj(j = 1, 2, 3, 4) are employed in assessing the patients, in which
C1 represents clinical and functional disorders, C2 represents expected outcomes, C3 represents social
factors, and C4 represents patient basic information, whose weight vector is w = (0.3, 0.3, 0.2, 0.2)T .
Doctors mainly express their assessment information on patients in 5 levels {s1 = noting, s2=low,
s3 = medium, s4 = high, s5 = very high}. To express the evaluation information of the pa-
tient’s symptoms in detail, doctors request to evaluate the four patients Ai(i = 1, 2, 3, 4) from
the perspective of the four parameters Cj(j = 1, 2, 3, 4) by IVq-RDHLs. Then, a decision matrix

dij =
〈

sθij ,
(
hij, gij

)〉
(i = 1, 2, 3, 4; j = 1, 2, 3, 4) consisting of IVq-RDHLs can be obtained, which

is shown in Table 2.
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Table 2. The interval-valued q-rung dual hesitant linguistic decision matrix D.

A1 A2

C1 〈s2, {{[0.6, 0.7], [0.5, 0.8]}, {[0.3, 0.4], [0.4, 0.5]}}〉 〈s2, {{[0.7, 0.8], [0.8, 0.9]}, {[0.2, 0.3], [0.2, 0.5]}}〉
C2 〈s1, {{[0.6, 0.7]}, {[0.1, 0.4], [0.3, 0.5]}}〉 〈s3{[0.4, 0.6], [0.6, 0.7]}, {[0.1, 0.3], [0.3, 0.4]}〉
C3 〈s3, {{[0.5, 0.6], [0.6, 0.9]}, {[0.2, 0.5], [0.4, 0.6]}}〉 〈s4, {[0.6, 0.8]}, {[0.2, 0.4], [0.3, 0.4]}〉
C4 〈s4, {{[0.4, 0.6], [0.7, 0.8]}, {[0.1, 0.2]}}〉 〈s5, {[0.5, 0.6], [0.7, 0.9]}, {[0.1, 0.2], [0.3, 0.6]}〉

A3 A4

C1 〈s2, {{[0.5, 0.6]}, {[0.5, 0.7], [0.6, 0.7]}}〉 〈s3, {{[0.3, 0.6], [0.5, 0.8]}, {[0.4, 0.6], [0.5, 0.6]}}〉
C2 〈s3, {{[0.4, 0.5], [0.5, 0.6]}, {[0.4, 0.5], [0.5, .0.7]}}〉 〈s2, {{[0.3, 0.5], [0.5, 0.7]}, {[0.4, 0.6], [0.6, 0.7]}}〉
C3 〈s1, {{[0.4, 0.6], [0.6, 0.7]}, {[0.2, 0.4], [0.3, 0.6]}}〉 〈s4, {{[0.3, 0.5]}, {[0.6, 0.8], [0.8, 0.9]}}〉
C4 〈s5, {{[0.6, 0.8], [0.7, 0.8]}, {[0.4, 0.6], [0.5, 0.6]}}〉 〈s1, {{[0.1, 0.3], [0.2, 0.4]}, {[0.6, 0.8], [0.7, 0.8]}}〉

Step 1. After analysis, it is obvious that all attributes belong to benefit type, so there is
no need to standardize the original matrix according to Equation (42).

Step 2. Calculate the support Sup(dil , dim) according to Equation (43) (suppose we
choose LSF1 in the calculation process). For convenience, we use Slm to represent the value
Sup(dil , dim)(l, m = 1, 2, 3, 4; i = 1, 2, 3, 4; l 6= m). After calculation,

S12 = S21 = (0.9961, 0.9871, 0.9953, 0.9957)
S13 = S31 = (0.9937, 0.9913, 0.9932, 0.9826)
S14 = S41 = (0.9894, 0.9779, 0.9668, 0.9705)
S23 = S32 = (0.9828, 0.9911, 0.9902, 0.9738)
S24 = S42 = (0.9851, 0.9860, 0.9774, 0.9896)
S34 = S43 = (0.9937, 0.9907, 0.9647, 0.9820)

Step 3. Calculate T
(
dij
)

according to Equation (44). The symbol T represents the
value T

(
dij
)
,

T =


2.9792 2.9640 2.9702 2.9682
2.9563 2.9642 2.9731 2.9545
2.9553 2.9629 2.9481 2.9089
2.9488 2.9591 2.9384 2.9421


Step 4. Calculate the power weight δij according to Equation (45), and we have

σij =


0.3006 0.2995 0.2000 0.1999
0.2996 0.3002 0.2006 0.1996
0.3006 0.3012 0.2001 0.1981
0.3000 0.3008 0.1995 0.1997


Step 5. For the patients Ai(i = 1, 2, 3, 4), utilize the IVq-RDHLPWHM operator to

calculate the evaluation di(i = 1, 2, 3, 4). (Assume that k = 2 and q = 4.) We omit them here
because the aggregation results are complicated.

Step 6. Calculate the score values S(di)(i = 1, 2, 3, 4) of the overall evaluation values,
and we have

S(d1) = 0.0424; S(d2) = 0.0745; S(d3) = 0.0354; S(d4) = 0.0211

Step 7. According to the score values S(di)(i = 1, 2, 3, 4), the ranking orders of the
patients can be determined, that is A2 > A1 > A3 > A4, which indicates that A2 is the
optimal patient that should be admitted to the hospital.

6.2. Sensitivity Analysis

From Definition 12, we can find that the parameters k, q, and LSF f play an important
role in calculating the final decision results. Therefore, it is of high necessity to explore the
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influence on the final score values and ranking orders of alternatives. In this section, we
explore how the parameters k, q and LSF affect the outcome of the decision, respectively.

6.2.1. The Impact of the Parameter q

In this part, we explore the influence of the parameter q on the final results. In order to
do that, we select different values of q to calculate the results, and the results are shown
in Table 3. For convince, we assume k = 2 and choose the LSF 1 when aggregating. The
data in Table 3 tell us that the score values increase as the value of q increases. Although
the score values are different, the ranking orders are the same A2 > A1 > A3 > A4,
and A2 is the optimal patient that should be admitted. Then, how to determine the ap-
propriate value of q is a meaningful and worthy issue. Considering this, the method
proposed by Feng et al. [3] suggests that the value of q should be the smallest integer

that makes 0 ≤
((

γU)+)q
+
((

ηU)+)q
≤ 1(q ≥ 1). For example, an evaluation value pro-

duced by a DM using an IVq-RDHLE is 〈s3, {{[0.5, 0.6], [0.6, 0.9]}, {[0.2, 0.5], [0.4, 0.7]}}〉.
As 0.93 + 0.73 = 1.072 > 1 and 0.94 + 0.74 = 0.8962 < 1, then the value of q should be
taken as 4.

Table 3. Score values of alternatives Ai(i = 1, 2, 3, 4) when q ∈ [1, 5] based on IVq-RDHLPWHM
operator (k = 2).

q Score Values S(di)(i = 1,2,3,4) Ranking Orders

q = 1 S(d1) = 0.0281; S(d2) = 0.0508;
S(d3) = 0.0241; S(d4) = 0.0139 A2 > A1 > A3 > A4

q = 2 S(d1) = 0.0330; S(d2) = 0.0594;
S(d3) = 0.0263; S(d4) = 0.0145 A2 > A1 > A3 > A4

q = 3 S(d1) = 0.0381; S(d2) = 0.0677;
S(d3) = 0.0307; S(d4) = 0.0176 A2 > A1 > A3 > A4

q = 4 S(d1) = 0.0424; S(d2) = 0.0745;
S(d3) = 0.0354; S(d4) = 0.0211 A2 > A1 > A3 > A4

q = 5 S(d1) = 0.0458; S(d2) = 0.0797;
S(d3) = 0.0398; S(d4) = 0.0246 A2 > A1 > A3 > A4

6.2.2. The Influence of the Parameter k

In this part, we discuss the impact of parameter k on the IVq-RDHLPWHM operator.
Then, we assume the parameters q and LSF are stable and change the values of k. Based on
this idea, we calculate the final results using the IVq-RDHLPWHM operator and obtain the
results, as shown in Table 4. From Table 4, the score values of the four patients are obviously
different. Specifically, the score values decrease when the parameter k increases. However,
the ranking orders have not changed, i.e., A2 > A1 > A3 > A4. In practical problems, the
appreciated value of k can be selected according to the preference of the DM. When the DM
has a positive attitude towards the alternatives, a smaller value of k will be selected.

Table 4. Score values and ranking results of Example 3 with different values of k in the IVq-
RDHLPWHM operator (q = 4).

k Score Values S(di)(i = 1,2,3,4) Ranking Orders

k = 1 S(d1) = 0.0480; S(d2) = 0.0827; S(d3) = 0.0440; S(d4) = 0.0276 A2 > A1 > A3 > A4
k = 2 S(d1) = 0.0424; S(d2) = 0.0745; S(d3) = 0.0354; S(d4) = 0.0211 A2 > A1 > A3 > A4
k = 3 S(d1) = 0.0404; S(d2) = 0.0717; S(d3) = 0.0323; S(d4) = 0.0188 A2 > A1 > A3 > A4
k = 4 S(d1) = 0.2044; S(d2) = 0.2408; S(d3) = 0.1821; S(d4) = 0.0927 A2 > A1 > A3 > A4

6.2.3. The Influence of the LSF

Obviously, LSF f have an important impact on the final results. Therefore, we select
different LSF f values to solve Example 3, and the score values are shown in Table 5. It
is found from Table 5 that with different f values, the score values of the alternatives are
different. However, A2 > A1 > A3 > A4 is always the ranking orders of alternative, and
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A2 is the optimal alternative. Different LSF f values represent the understanding of a
semantic gap by different DMs. In reality, the appropriate LSF f can be selected according
to actual needs. If the DM thinks that adjacent semantics are equal, we can choose LSF1. If
the DM has a positive attitude towards semantics, choose LSF2; otherwise, choose LSF3.
All in all, the existence of LSF proves the practicality and flexibility of the new method.

Table 5. Score functions and ranking orders by different LSFs (q = 4, k = 2).

Parameters Score Values S(di)(i = 1,2,3,4) Ranking Orders

Our method based on LSF1 (t = 3) S(d1) = 0.0424; S(d2) = 0.0745;
S(d3) = 0.0354; S(d4) = 0.0211. A2 > A1 > A3 > A4

Our method based on LSF1 (t = 3, ρ= 1.6 ) S(d1) = 0.0277; S(d2) = 0.0442;
S(d3) = 0.0226; S(d4) = 0.0137. A2 > A1 > A3 > A4

Our method based on LSF1 (t = 3, ε = β= 0.5 ) S(d1) = 0.0670; S(d2) = 0.1262;
S(d3) = 0.0553; S(d4) = 0.0339. A2 > A1 > A3 > A4

6.3. Validity Analysis

In this section, we perform a comparative analysis between the two existing methods
and our method. Later, we divided the comparison into two subsections as follows.

6.3.1. Compared with the Method Based on the IVq-RDHLWMSM Operator

In this subsection, the method based on the IVq-RDHLWMSM operator proposed
by Feng et al. [35] and the method we proposed are used to calculate the decision results,
and the results are shown in Table 6. In addition, we choose different values of k when
using the IVq-RDHLWMSM operator [35] and choose different LSF values when using the
IVq-RDHLPWHM operator. Although the score values are obtained by different methods
and different parameters, the ranking orders are the same. To be precise, compared with
the method proposed by Feng et al. [35], our method can consider the understanding of
different semantics according to the adjustment of LSF. Therefore, our method has strong
flexibility compared to the IVq-RDHLWMSM operator proposed by Feng et al.’s [35].

Table 6. Score functions and ranking orders by different methods.

Methods Score Values S(di)(i=1,2,3,4) Ranking Orders

Feng et al.’s [35] method based on
IVq-RDHLWMSM operator (k = 1)

S(d1) = 1.1187; S(d2) = 1.2410;
S(d3) = 1.0981; S(d4) = 1.0135 A2 > A1 > A3 > A4

Feng et al.’s [35] method based on
IVq-RDHLWMSM operator (k = 2)

S(d1) = 0.8789; S(d2) = 1.1015;
S(d3) = 0.8146; S(d4) = 0.6472 A2 > A1 > A3 > A4

Feng et al.’s [35] method based on
IVq-RDHLWMSM operator (k = 3)

S(d1) = 0.4962; S(d2) = 0.6929;
S(d3) = 0.4163; S(d4) = 0.2843 A2 > A1 > A3 > A4

Feng et al.’s [35] method based on
IVq-RDHLWMSM operator (k = 4)

S(d1) = 0.1901; S(d2) = 0.3002;
S(d3) = 0.1426; S(d4) = 0.0863 A2 > A1 > A3 > A4

Our method based on LSF1(t = 3, k = 2, q = 4) S(d1) = 0.0424; S(d2) = 0.0742;
S(d3) = 0.0346; S(d4) = 0.0212. A2 > A1 > A3 > A4

Our method based on LSF2(t = 3, ρ= 1.2 ) S(d1) = 0.0358; S(d2) = 0.0611;
S(d3) = 0.0297; S(d4) = 0.0178. A2 > A1 > A3 > A4

Our method based on LSF3(t = 3, ε= 0.3, β= 0.6 ) S(d1) = 0.0840; S(d2) = 0.1518;
S(d3) = 0.0695; S(d4) = 0.0427. A2 > A1 > A3 > A4

6.4. Validity Analysis

In this section, we perform a comparative analysis between the two existing methods
and our method. Later, we divided the comparison into two subsections as follows.

6.4.1. Compared with the Method Based on the IVq-RDHLWMSM Operator

In this subsection, the method based on the IVq-RDHLWMSM operator proposed
by Feng et al. [35] and the method we proposed are used to calculate the decision results,
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and the results are shown in Table 6. In addition, we choose different values of k when
using the IVq-RDHLWMSM operator [35] and choose different LSF values when using the
IVq-RDHLPWHM operator. Although the score values are obtained by different methods
and different parameters, the ranking orders are the same. To be precise, compared with
the method proposed by Feng et al. [35], our method can consider the understanding of
different semantics according to the adjustment of LSF. Therefore, our method has strong
flexibility compared to the IVq-RDHLWMSM operator proposed by Feng et al.’s [35].

6.4.2. Compared with Du et al.’s Method

Example 4. (Revised from Du et al. [48]) A hospital intends to choose a supplier of medical
equipment, and the choice of the supplier is affected by many factors. Suppose that there are four
suppliers Ai(i = 1, 2, 3, 4) that should be evaluated based on the four attributes Cj(j = 1, 2, 3, 4, 5):
the quality (C1), the price (C2), the service performance (C3), and the user evaluation (C4). The
weight vector of the attributes is w = (0.29, 0.28, 0.18, 0.25)T . When evaluating, DMs were advised
to use the interval-valued Pythagorean fuzzy linguistic variables (IVPFLVs) to express their opinion.
Then, the decision matrix composed of IVPFLVs is omitted here, and it can be found in reference [48].
Later, two methods based on the IVPFLWA operator [48] and the IVq-RDHLPWHM operator were
conducted to calculate the final ranking results. The results presented in Table 7 depict that the score
values of each alternative are different, but the ranking orders are the same. In other words, our
method cannot only deal with the problems under the IVq-RDHLVs environment but also solve
the problems under the IVPFLVs fuzzy environment, which shows the usefulness and power of our
proposed method.

Table 7. The results of Example 4 calculated by different methods.

Methods Score Values S(di)(i = 1,2,3,4) Ranking Orders

Du et al.’s [48] method based on IVPFLWA operator S(d1) = 1.5450; S(d2) = 2.0000;
S(d3) = 2.2425; S(d4) = 1.9920 A3 > A4 > A2 > A1

Our method based on LSF1 (t = 3, k = 2, q = 4) S(d1) = 0.0442; S(d2) = 0.0627;
S(d3) = 0.0822; S(d4) = 0.0766. A3 > A4 > A2 > A1

6.5. Advantages of the Proposed Method

In this section, we analyze the advantages and strengths of our proposed method
point by point.

6.5.1. The Flexibility of Its Operation

In most real MADM problems, DMs may have different semantic preference. The LSF
is well-known for its ability to match different DMs’ semantic translation requirements.
Our method based on IVq-RDHLPWHM also allows the DMs to choose the appropriate
LSFs according to personal preference and the actual semantic environment for selecting
the most suitable alternative. To illustrate this advantage, we use our method to solve
the problem of Example 4 and obtain the final results by different LSFs (see Table 8). It
can be clearly seen from Table 8 that although the score values obtained by different LSFs
are different, the ranking orders calculated by different LSFs are completely the same.
Therefore, our method can consider more semantic gaps and has more flexibility in solving
MADM problems.
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Table 8. The final results of Example 4 by the proposed methods (k = 2, q = 4).

Parameters Score Values S(di)(i = 1,2,3,4) Ranking Orders

Our methos based on LSF1 (t = 3) S(d1) = 0.0442; S(d2) = 0.0627;
S(d3) = 0.0908; S(d4) = 0.0721. A3 > A4 > A2 > A1

Our methos based on LSF2 (t = 3, ρ= 1.6 ) S(d1) = 0.0265; S(d2) = 0.0339;
S(d3) = 0.0506; S(d4) = 0.0408. A3 > A4 > A2 > A1

Our methos based on LSF3 (t = 3, ε= 0.6; β= 0.4)
S(d1) = 0.0711; S(d2) = 0.1136;
S(d3) = 0.1443; S(d4) = 0.1191. A3 > A4 > A2 > A1

6.5.2. Its Capability of Effectively Dealing with DMs’ Unreasonable Evaluation Values

The IVq-RDHLPWHM operator we proposed combined the PA operator and Hamy
mean operator. The PA operator is famous for its ability to weaken the influence of extreme
evaluation values on the final result because it considers the power weighting of attributes.
In the decision-making process, influenced by knowledge background and educational
experience, DMs may feel hesitant or have a prejudice against some alternatives; as a result,
they may give egregiously high or low arguments when providing assessment information.
Therefore, our method can eliminate the influence of extreme values and make the decision
results more reasonable.

6.5.3. It Powerfully Deals with the Complex Interrelationship among Multiple Attributes
When Aggregating

The IVq-RDHLPWHM operator combines the PA operator and the HM operator. The
HM operator can handle the complex interrelationships among attributes. Further, we use
the IVq-RDHLPWHM operator to solve Example 4 by using different values of k and obtain
the final results (presented in Table 9). Specifically, the value of parameter k indicates how
to consider the relationship among attributes in the calculation process. However, the final
ranking result of the alternatives shows that no matter what the values of k, the ranking
orders are the same. Therefore, our method is robust to deal with the MADM problems
because it can flexibly handle the correlation among attributes.

Table 9. Score values and ranking results of Example 4 with different values of k in the IVq-
RDHLPWHM operator (q = 4).

k Score Values S(di)(i = 1,2,3,4) Ranking Orders

k = 1 S(d1) = 0.0462; S(d2) = 0.0658; S(d3) = 0.0956; S(d4) = 0.0791 A3 > A4 > A2 > A1
k = 2 S(d1) = 0.0442; S(d2) = 0.0627; S(d3) = 0.0908; S(d4) = 0.0721 A3 > A4 > A2 > A1
k = 3 S(d1) = 0.0435; S(d2) = 0.0617; S(d3) = 0.0892; S(d4) = 0.0698 A3 > A4 > A2 > A1
k = 4 S(d1) = 0.2093; S(d2) = 0.2439; S(d3) = 0.2712; S(d4) = 0.2278 A3 > A4 > A2 > A1

6.5.4. It Effectively Expresses DM’s Evaluation Comprehensively

Example 5. In Example 4, DMs express their assessment of alternatives using the IVPFLs. In order
to illustrate the advantage, we change the assessment of attribute C3 of A3 with
{s5, {[0.8, 0.9]}, {[0.4, 0.5]}}. Then, use the IVPFLWA operator [48] and our method to solve
the problem and obtain the final results (shown in Table 10). Obviously, we can find that the
IVPFLWA operator cannot deal with the problem, but our method can still obtain the results. Next,
we analyze the reasons for this result. The IVPFLWA operator can only solve the problem that
satisfies that the sum of the second power of MG and the second power of NMG should be smaller
than or equal to one. However, our method can break the constraint according to the definition
of the IVq-RDHLPWHM operator. To be more precise, 0.92 + 0.52 = 1.06 > 1, but if we set
q = 3, then 0.93 + 0.53 = 0.854 < 1. Therefore, the IVq-RDHLPWHM operator can still deal with
Example 5 and obtain the ranking orders, i.e., A3 > A4 > A2 > A1, but the IVPFLWA operator
cannot solve it. The parameter of q makes DMs describe more information compared with the
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IVPFLs, which provide a useful tool for DMs when expressing their evaluation on the alternatives
more comprehensively.

Table 10. The final results of Example 5 by different methods.

Methods Score Values S(di)(i = 1,2,3,4) Ranking Orders

Du et al.’s [48] method based on IVPFLWA operator Cannot be calculated -

Our method based on LSF1 (t = 3, k = 2, q = 4) S(d1) = 0.0442 ; S(d2) = 0.0627;
S(d3) = 0.0934; S(d4) = 0.0721. A3 > A4 > A2 > A1

6.6. Summarization

Based on the above analysis, we have summarized the characteristics of the existing
MADM and displayed them in Table 11. From Table 11, it is obvious that our proposed
method has more advantages in solving MADM problems compared with other methods.
Next, we mainly analyze the following three aspects: (1) Compared with the method
based on the IVq-RDHLWMSM operator proposed by Feng et al. [35], IVq-RDHLPWHM
can effectively handle DMs’ extreme evaluation values; thereby, the decision results are
more accurate and realistic. (2) In addition, the operational laws of our method are more
flexible than those of the IVq-RDHLWMSM operator [35] because of the existence of LSF.
By choosing different LSFs, the IVq-RDHLPWHM operator can capture the subjective
evaluation of DMs, and it can make the final decision results more valuable. For example,
a DM thinks that the semantic gap between “extremely bad” and “very bad” is smaller
than “very good” and “extremely good”. When aggregating the evaluation values, we
should choose LSF 2 to make the final decision results more reasonable. (3) Compared
with the method based on the IVPFLWA operator [48], IVq-RDHLPWHM can capture the
complicated relationship among the attributes and use it in the calculation of the final
results. In addition, the applications of the IVq-RDHLPWHM operator are wider as it
can deal with a larger information space, which shows that our method can effectively
reduce the loss of evaluation information. In the condition of the DMs believe that adjacent
semantics are not equal, the proposed IVq-RDHLPWHM operator based on LSF in this
article can handle this issue well. Moreover, the IVq-RDHLPWHM operator can also handle
the MADM problem, which is under the condition of the complex interrelationship among
attributes and the extreme values proposed by DMs. All in all, our method is more robust
and effective than existing methods when dealing with MADM problems.

Table 11. Characteristics of different MADM methods.

Feng et al.’s [35] Method Based
on IVq-RDHLWMSM Operator

Du et al.’s [48] Method Based on
the IVPFLWA Operator

Our Method Based on the
IVq-RDHLPWHM Operator

Allow the sum of MG and NMG
to be greater than one Yes Yes Yes

Allow the different semantic gap
between adjacent LTs No No Yes

Consider the relationship among
multiple attributes Yes No Yes

Reduce the adverse influence of
unreasonable evaluation values No No Yes

The degree of flexibility and
robustness of the operational rules Low Low High

7. Conclusions

In this paper, we introduce a new MADM method under the IVq-RDHLs fuzzy
environment. Firstly, we proposed new operational rules of IVq-RDHLs that can satisfy
different DMs’ semantic translation requirements. Secondly, inspired by the idea of the
PHM operator and IVq-RDHLs, the IVq-RDHLPHM operator and the IVq-RDHLPWHM
operator were proposed, which can not only reduce the negative influence of extreme
values but also consider the interrelationships among attributes. Thirdly, we put forward a
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method based on the IVq-RDHLPWHM operator and show the main steps to dealing with
MADM problems that involve IVq-RDHLs fuzzy information. Finally, numerical examples
were used to reveal the validity of our method, and comparative analyses were used to
explain the powerfulness of our methods. After the comparative analysis, it is obvious that
the proposal of the IVq-RDHLPHM operator and the IVq-RDHLPWHM operator provide
new solutions for MADM problems. It can not only deal with the understanding of different
semantics between LTs by DMs but also capture the relationship among attributes and
eliminate the influence of extreme values on the final decision. In the future, we will extend
the decision-making methods to more actual MADM problems. In addition, combining
IVq-RDHLs with traditional multi-objective decision-making methods (such as TOPSIS,
AHP, etc.) to propose novel and powerful MADM methods is a good research direction.
Moreover, we will explore more methods for IVq-RDHL information and apply them in
modern realistic decision-making situations.
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