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Abstract: In the paper, discrete-time multi-agent systems under Denial-of-Service (DoS) attacks are
considered. Since in the presence of DoS attacks the stability of the whole system may be disturbed,
sufficient stability conditions for the multi-agent system under DoS attacks are delivered. The
consensus problem for the special case of the considered system under DoS attacks is also examined
by delivering sufficient conditions. Theoretical considerations are illustrated by numerical examples.
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1. Introduction

Nowadays, cyber attacks on networks of cooperating devices are one of the most
troublesome threats that disrupt or interrupt entire systems. A priority is to ensure the
security of industrial control systems based on the flow of information and communication
technologies. A major concern is that cyber-attackers may be able to break connections in
control systems that are utilized in power grids, transportation, food distribution, and many
other services important to society. Therefore, it is critical to assess and improve the security
of such control systems and ensure resilience against cyber attacks. This will result in
protecting the environment against financial losses and other possible damages. Motivated
by the above, an enormous number of researchers have been attracted to work on these
kind of problems; see for example [1–7].

In general, in the literature, the problem of how Denial-of-Service (DoS) attacks
interrupt entire systems is explored from the point of view of feedback control, state
estimation, and multi-agent consensus problems, and one can find different approaches to
solutions of these problems. A very interesting approach focuses on multi-agent consensus
problems under DoS attacks [8–13]. In the mentioned papers, authors characterize the
communication topology of multi-agent systems with an undirected graph represented by
nodes (agents) and edges (communication links).

In [8–10], researchers proposed control law and interaction rules to ensure consensus
under DoS attacks. They considered the case in which the jamming attacker can target
all communication links at once. In particular, Senejohnny et al. [8] used a self-triggering
approach: when a triggering condition holds, each agent attempts to communicate.

In the modified problem formulation in [9], multiple jamming intruders attack indi-
vidual communications links.

The works discussed above concern scalar dynamics, while in [11], the authors explore
the same problem with multi-dimensional dynamics. In addition, an apparently differ-
ent game-theoretical formulation of multi-agent systems under DoS attacks that target
individual links is presented in [12,13].

Particularly interesting is the problem of how Denial-of-Service attacks disrupt the
exponential stability of systems, which is investigated in, for example [1,14,15]; see also the
references therein.

Following this lead, we decided to investigate the stability problem of systems under
DoS attacks. In the first work devoted to this problem (see [16]), we examined stability in
the presence of DoS attacks of multi-agent systems (MAS) defined on time scales. However,
there is an enormous number of scientists who study such problems for systems with
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discrete time and only a narrow group of researchers who deal with similar problems on
time scales. Moreover, this subject is also closely related to the problem of consensus with a
leader for multi-agent systems. Taking all this into account, we decided to study behaviour
(stability and leader-following consensus) of the discrete multi-agent systems. Since in the
presence of DoS attacks, the information flow between devices can be interrupted, which
in mathematical language means that stability of the whole system is disturbed, we propose
sufficient conditions for the stability of the MAS. To tackle this problem, the distributed
control law guaranteeing stability of the system dynamics despite DoS attacks is delivered.
In order to improve the resilience of the network, we propose a control technique that
modifies the coupling strength parameter after an attack on the system. In our previous
paper, we examined only the stability of the system, paying no attention to the consensus
problem. In this work, we cope with the leader-following consensus problem of the
multi-agent system in the presence of DoS attacks by employing switched symmetric error
systems and proving their exponential stability under arbitrary switching in base-of-Schur
stability. This results in the formulation of sufficient conditions for the multi-agent system
to achieve a consensus under DoS attacks. The main contribution of this paper can be
described in terms of three aspects:

1. Discrete-time multi-agent systems under Denial-of-Service (DoS) attacks are inves-
tigated in terms of the leader-consensus problem in a DoS attacks situation, and
sufficient conditions ensuring such a consensus are delivered;

2. Stability protocol under DoS attacks on the considered systems is proposed in order
to guarantee stability of the system in the presence of DoS attacks;

3. Numerical analysis of the theoretical investigation is given to illustrate presented results.

We organize the paper as follows. In Section 2, the preliminaries from the graph theory
are given, while in Section 3, we formulate the statement of the problem of behaviour of
systems under DoS attacks. Further, in Section 4, we derive sufficient conditions guarantee-
ing exponential stability of the system under DoS attacks. Consensus problem analysis is
given in Section 5. To be more precise, we deliver conditions under which the consensus
is achieved in the multi-agent system with a leader in spite of DoS attacks. Illustrative
examples are presented to verify the theoretical consideration. Finally, we conclude the
paper in the last section.

2. Preliminaries

We start with some notions from graph theory. By G = (V, E) we denote a weighted
communication graph of n agents, by V = {v1, v2, . . . , vn} the set of nodes (vertices), and
by E ⊆ V ×V the set of edges. If information flows from agent j to agent i, then we denote
it as edge (i, j). Entries of the adjacency matrix A = [aij] ∈ Rn×n are defined by aij = 1
if (i, j) ∈ E, and aij = 0 if (i, j) /∈ E. Matrix L = [lij] ∈ Rn×n is called a Laplacian matrix
induced by the topology G if lii = ∑i 6=j aij and lij = −aij, i 6= j, where aij are the entries of
the adjacency matrix A. We observe that there exists at least one zero eigenvalue of matrix
L with a corresponding eigenvector 1n = [1, . . . , 1]T . Graph G is called undirected if for
every (i, j) ∈ E we have (j, i) ∈ E. It is easy to see that matrices A and L are symmetric
for any undirected graph, and we get 0 = λ1 ≤ λ2 ≤ . . . ≤ λn for λi, i = 1, . . . , n with
eigenvalues of L. Let us also recall that if there exists an edge between any two different
vertices, then an undirected graph is connected. Moreover, we get λ2 > 0 if the graph
is connected.

Throughout the paper, all graphs are assumed to be finite, undirected, and with-
out loops or multiple edges.

In the proposed model of MAS under DoS attacks, we employ discrete-time switched
linear systems.

A discrete-time switched linear system under arbitrary switching is an inclusion of
the following form,

x(t + 1) ∈ {Mκx(t)}κ∈I , x(0) = x0 , (1)
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where x(t) ∈ Rn is the state vector, x(0) is initial condition, Mκ ∈ Rn×n, and I is a finite
index set. The switched system with a specific switching pattern is denoted by

x(t + 1) = Mκ(t)x(t) , x(0) = x0 ,

where κ : Z+ → I is a piecewise continuous switching signal. Here, Z+ denotes the set of
all nonnegative integers.

Definition 1 ([17]). Switched system (1) is exponentially stable if ‖x(t)‖ ≤ µt‖x0‖ with
0 < µ < 1 holds for any t ∈ Z+ and any initial state x0.

The following theorem will be useful for deriving the main results.

Theorem 1 (cf. [17], Theorem 1). Let {Mκ}κ∈I be a family of symmetric matrices. If all matrices
in the family {Mκ}κ∈I are Schur stable, then switched system (1) is exponentially stable under
arbitrary switching.

3. Problem Statement

Consider a multi-agent networked system consisting of N agents. The interaction
topology of a network is described by undirected graph G with the corresponding adjacency
matrix A = [aij] ∈ RN×N and the Laplacian matrix L. The neighbours of agent i are denoted
by Ni = {j ∈ V | (j, i) ∈ E}. Each node of graph G represents a dynamic agent with
the dynamics

xi(t + 1) = axi(t) + bui(t) , t ∈ Z+, i = 1, . . . , N, (2)

where xi(t) ∈ R and ui(t) ∈ R denote the state and the control input at time t, respectively.
The constant real parameters a and b (coupling strengths) will be specified later.

In the sequel, we assume that DoS attacks can occur on some or all transmission
channels at any time. We define

• D(i,j)(Z+), i < j, to be the union of moments of DoS attacks on channel (i, j) ∈ E
over Z+;

• Γ(t) := {(i, j) ∈ E | t ∈ D(i,j)(Z+)} to be the set of channels that are attacked at time t.

Since graph G is undirected, only edge (i, j) with i < j is considered and D(i,j) = D(j,i).
We set Laplacian matrix LΓ(t) with entries lij = 0 for (j, i) /∈ Γ(t); that is, if channel (j, i)

is not attacked at time t. According to the definition, matrix LΓ(t) describes DoS attack at
time t. Next, let us denote by Ω a set of all subsets of the set of all connections between every
two different nodes in graph G. To be more precise, setting E = {(i, j) : 1 ≤ i, j ≤ N∧ i < j},
we can write that Ω is the set of all subsets of the set E and, what follows, |Ω| = 2|E |. One
can observe that the definition of Γ gives an index for the attack modes. Therefore, for a

given t ∈ N, there are 2
|E|
2 = 2|E | possible different attack modes. By introducing a bijection

map f : Ω → {1, . . . , 2|E |} ⊂ N, we define switching signal κ : Z+ → {1, . . . , 2|E |} = I
as κ(t) := f (Γ(t)), which is piecewise continuous. In this way, every DoS attack mode is
described by matrix Aκ(t) as follows:

Aκ(t) := L− LΓ(t), t ∈ Z+. (3)

4. Stability Protocol under DoS Attacks

In this section, we present how to design a control protocol that solves the stability
problem under DoS attacks.

The state-feedback distributed control for multi-agent system (2) is proposed as follows

ui(t) = ∑
j∈Ni ,(j,i)/∈Γ(t)

aij(xj(t)− xi(t)) , i = 1, . . . , N . (4)
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Then the collective dynamics of a multi-agent system (2) following protocol (4) can be
written in the following matrix form

x(t + 1) = (aIN − b(L− LΓ(t)))x(t) , x(0) = x0 , (5)

where x = [x1, . . . , xN ]
T , IN is an identity matrix of dimension N × N, and L and LΓ(t) are

the Laplacian matrices of an appropriate dimension. According to Formulas (1) and (3), we
obtain the switched system

x(t + 1) ∈ {(aIN − bAκ)x(t)}κ∈I , x(0) = x0 ∈ RN (6)

that represents multi-agent system (5) under DoS attacks. Here, x0 denotes the initial state
for system (5).

Theorem 2. If all matrices in the family {aIN − bAκ}κ∈I are Schur stable, then a multi-agent
system (5) under DoS attacks is exponentially stable.

Proof. Observe that multi-agent system (5) under DoS attacks is described by a switched
system (6). Since all matrices in the family {aIN − bAκ}κ∈I are symmetric and Schur stable,
the claim follows by Theorem 1.

Let us define the following

spec(Aκ) := {λκ
j : j = 1, . . . , N}, κ ∈ I

and
λmax := max

j∈{1,...,N},κ∈I
λκ

j .

Proposition 1. Assume that a ∈ (−1, 1) in system (5). If for b < 0 holds a−1
b > λmax or

for b > 0 holds 1
b (1 + a) > λmax; then, a multi-agent system (5) under DoS attacks will be

exponentially stable.

Proof. First let us observe that, due to Theorem 2, if all matrices in the set {aIN − bAκ}κ∈I
are Schur stable, then system (5) has the equilibrium x(t) ≡ 0 exponentially stable, in spite
of DoS attacks. We notice that spec{aIN − bAκ}κ∈I = {a − bλκ

j : j = 1, . . . , N, κ ∈ I}.
Therefore, we have to show that |a − bλκ

j | < 1 for all j = 1, . . . , N and κ ∈ I. Since
0 ∈ spec(Aκ), κ ∈ I, it follows that a ∈ (−1, 1). We show that first condition, namely
that for b < 0, a−1

b > λmax holds, implies Schur stability of all matrices in {aIN − bAκ}κ∈I .
Indeed, since b < 0, a−1

b > λmax and a ∈ (−1, 1), it follows that:

a− 1− bλκ
j < 0 and a + 1− bλκ

j > 0 ,

for all κ ∈ I , j ∈ {1, . . . , N}. The proof for the second case is analogous.

Remark 1. Observe that if b = 0 in system (5), then it is enough that a ∈ (−1, 1) for system (5)
to be exponentially stable.

5. Consensus with a Leader under DoS Attacks

In this section, we investigate multi-agent system (2) with a, b = 1 but with a leader.
Therefore, the model of N agents is described as follows:

xi(t + 1) = xi(t) + ui(t) , t ≥ 0, i = 1, 2, . . . , N , (7)

while the dynamics of a leader, labelled by l, are given by

xl(t + 1) = xl(t) + f (t) , t ≥ 0, (8)
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where f : Z+ → R. If f (t) ≡ 0, then xl(t) ≡ constant (constant reference state). In the
opposite case, it is time-varying reference state.

Definition 2. Multi-agent system (7) and (8) is said to achieve a consensus with a leader if

lim
t→∞
|xi(t)− xl(t)| = 0 , ∀i ∈ {1, 2, . . . , N} (9)

for any initial conditions: xl(0), xi(0), i = 1, . . . , N.

The state-feedback distributed consensus control for agent i is expressed as follows:

ui(t) = f (t)− β

 ∑
j∈Ni ,(j,i)/∈Γ(t)

aij
(
xi(t)− xj(t)

)
+ bi(xi(t)− xl(t))

 i = 1, 2, . . . , N, (10)

where aij (i, j = 1, 2, . . . , N) is the (i, j)th entry of the adjacency matrix A ∈ RN×N , bi > 0
if there is information flow from a leader to agent i and bi = 0; otherwise, β > 0 is the
coupling strength that will be specified later. We assume that not all bi’s are equal to zero.

Remark 2. One can observe that the assumption that there exists i ∈ {1, 2, . . . , N} such that
bi 6= 0 means that a leader always has influence on at least one agent. Moreover, since the entries of
adjacency matrix are not all zeros at the same time, this implies that there is always information
flow between agents, which ensures the leader’s influence is also spread over other agents. Finally,
in the case bi 6= 0 for all i = 1, . . . , N, we have the strongest leader-dependence situation when all
agents are directly influenced by the leader.

On account of consensus protocol (10), we have

x(t + 1) = f (t)1N + x(t)− β
(

L− LΓ(t) + B
)

x(t) + βBxl(t)1N , (11)

where x = [x1, . . . , xN ]
T , B := diag{b1, . . . , bN} ∈ RN×N is a diagonal matrix with nonzero

trace, 1N is a column of N × 1, and IN is an N × N-identity matrix. Now, applying
Formulas (1) and (3), as in the previous section, we obtain the switched system

x(t + 1) ∈ { f (t)1N + x(t)− β(Aκ + B)x(t) + βBxl(t)1n} κ∈I (12)

that gathers all possible DoS attacks on system (11). Now let us define an error vector
e(t) = [e1(t), . . . , eN(t)]T with ei = xi − xl . Then we get

e(t + 1) =x(t + 1)− xl(t + 1)1N

= f (t)1N + x(t) +
(

IN − β
(

Aκ(t) + B
))

x(t) + βBxl(t)1N − xl(t + 1)1N

= f (t)1N +
(

IN − β
(

Aκ(t) + B
))

(x(t)− xl(t)1N)

+
(

IN − β
(

Aκ(t) + B
))

xl(t)1N + βBxl(t)1N − xl(t + 1)1N

=
(

IN − β
(

Aκ(t) + B
))

e(t)− βAκ(t)xl(t)1N .

Since Aκ(t)xl(t)1N = 0, we obtain

e(t + 1) =
(

IN − β
(

Aκ(t) + B
))

e(t) (13)

and an error-switched system is as follows

e(t + 1) ∈ {(IN − β(Aκ + B))e(t)}κ∈I . (14)
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Remark 3. Observe that transformation of system (11) to system (13) results in solving the stability
problem of system (13) instead of the consensus problem of system (11).

Theorem 3. Multi-agent system (11) under DoS attacks achieves a consensus with a leader,
provided that matrices in the family {IN − β(Aκ + B)}κ∈I are Schur stable.

Proof. Since, by assumption, all matrices in the family {IN − β(Aκ + B)}κ∈I are symmetric
and Schur stable, by use of Theorem 1, we get that error-switched system (14) is exponen-
tially stable under arbitrary switching. Now, let us observe that exponential stability of
switched system (14) implies that

lim
t→∞
|ei(t)| = lim

t→∞
|xi(t)− xl(t)| = 0 ,

which means that multi-agent system (11) under DoS attacks achieves a consensus with
a leader.

In order to give a simple condition on the coupling strength β that guarantees achieving
a consensus with a leader, we set spec(Aκ + B) = {γκ

j : j = 1, . . . , N}, κ ∈ I, and

γmax = max
j∈{1,...,N},κ∈I

γκ
j . (15)

Proposition 2. If β ∈
(

0, 2
γmax

)
, with γmax > 0 given by Formula (15), then multi-agent

system (11) under DoS attacks achieves a consensus with a leader.

Proof. First let us observe that spec({IN − β(Aκ + B)}κ∈I) = {1 − βγκ
j : j = 1, . . . , N,

κ ∈ I}. We show that |1− βγκ
j | < 1 for all j = 1, . . . , N and κ ∈ I. Since β ∈

(
0, 2

γmax

)
, it

follows that

0 < βγκ
j < 2

−1 < 1− βγκ
j < 1

|1− βγκ
j | < 1 , ∀ j = 1, ..., N , κ ∈ I .

The latter means that all matrices from the family {IN − β(Aκ + B)}κ∈I are Schur stable,
and since they are also symmetric, by Theorem 1 we conclude that the error-switched
system (14) is exponentially stable. It follows that

lim
t→∞
|ei(t)| = lim

t→∞
|xi(t)− xl(t)| = 0 ,

and the proof is complete.

Now we illustrate the above results by numerical examples.

Example 1. Let us consider five agents with the dynamics described by (7) and two cases of leader’s
dynamics, with constant (xl(t) ≡ 1) and time-varying (xl(t + 1) = xl(t) + sin( t

3 )) reference
states. The initial conditions are X(0) = (1, 0, 1, 1, 0). We assume that there is information flow
from a leader to the third and fourth agents, that is, B = diag{0, 0, 1, 1, 0}, and we calculate that
γmax ≈ 5, 4. In what follows, we apply the control law (10), and we examine the influence of the
coupling strength β on the consensus with a leader under DoS attacks in the three cases. As the
first one, we consider the system working without any interference and the matrix of the system of
the form:
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4 −1 −1 −1 −1

−1 3 0 −1 −1

−1 0 3 0 −1

−1 −1 0 4 −1

−1 −1 −1 −1 4


The second and the third cases are considered when DoS attacks take place and the matrices describing
the attacked channels are the following:

2 0 0 −1 −1

0 2 0 −1 −1

0 0 1 0 0

−1 −1 0 4 −1

−1 −1 0 −1 3


and 

2 −1 −1 0 0

−1 1 0 0 0

−1 0 3 0 −1

0 0 0 1 0

0 0 −1 0 1


.

The interaction topologies for every case are presented in Figure 1 without DoS attacks and in
Figure 2 with two consecutive attacks, respectively.

Figure 1. The interaction topology of the system without DoS attacks.

(a) First DoS attack (b) Second DoS attack

Figure 2. The interaction topologies of the systems with two DoS attacks.
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Constant reference state
Figure 3 illustrates the case when xl(t) ≡ 1. In the first simulation, we choose β = 0.35
(Figure 3a), which fulfils the constraints of Proposition 2, and in the second β = 0.5
(Figure 3b), which does not. It is apparent that the consensus with a leader is achieved
in the first case under the proposed controller.

(a) (b)

Figure 3. The multi-agent system with a constant reference state. (a) β = 0.35; (b) β = 0.5.

Time-varying reference state
Figure 4 shows the situation when f (t) = sin( t

3 ). As was already observed in the pre-
vious case if we choose β =0.35, then it fulfils the constraints of Proposition 2 and the
consensus is achieved (Figure 4a), while for β =0.5 it does not (Figure 4b).

(a) (b)

Figure 4. The multi-agent system with a time-varying reference state. (a) β = 0.35; (b) β = 0.5.
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