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Abstract: In this work, we present a rigorous application of the Expectation Maximization algorithm
to determine the marginal distributions and the dependence structure in a Gaussian copula model
with missing data. We further show how to circumvent a priori assumptions on the marginals with
semiparametric modeling. Further, we outline how expert knowledge on the marginals and the
dependency structure can be included. A simulation study shows that the distribution learned
through this algorithm is closer to the true distribution than that obtained with existing methods and
that the incorporation of domain knowledge provides benefits.
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1. Introduction

Even though the amount of data is increasing due to new technologies, big data are by
no means good data. For example, missing values are ubiquitous in various fields, from
the social sciences [1] to manufacturing [2]. For explanatory analysis or decision making,
one is often interested in the joint distribution of a multivariate dataset, and its estimation
is a central topic in statistics [3]. At the same time, there exists background knowledge in
many domains that can help to compensate for the potential shortcomings of datasets. For
instance, domain experts have an understanding of the causal relationships in the data
generation process [4]. It is the scope of this paper to unify expert knowledge and datasets
with missing data to derive approximations of the underlying joint distribution.

To estimate the multivariate distribution, we use copulas, where the dependence
structure is assumed to belong to a parametric family, while the marginals are estimated
nonparametrically. Genest et al. [5] showed that for complete datasets, a two-step approach
consisting of the estimation of the marginals with an empirical cumulative distribution
function (ecdf) and subsequent derivation of the dependence structure is consistent. This
idea is even transferable to high dimensions [6].

In the case of missing values, the situation becomes more complex. Here, nonpara-
metric methods do not scale well with the number of dimensions [7]. On the other hand,
assuming that the distribution belongs to a parametric family, it can often be derived by
using the EM algorithm [8]. However, this assumption is, in general, restrictive. Due to
the encouraging results for complete datasets, there have been several works that have
investigated the estimation of the joint distribution under a copula model. The authors
of [9,10] even discussed the estimation in a missing-not-at-random (MNAR) setting. While
MNAR is less restrictive than missing at random (MAR), it demands the explicit modeling
of the missing mechanism [11]. On the contrary, the authors of [12,13] provided results in
cases in which data were missing completely at random (MCAR). This strong assumption is
rarely fulfilled in practice. Therefore, we assume an MAR mechanism in what follows [11].

Another interesting contribution [14] assumed external covariates, such that the prob-
ability of a missing value depended exclusively on them and not on the variables under
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investigation. They applied inverse probability weighting (IPW) and the two-step approach
of [5]. While they proved a consistent result, it is unclear how this approach can be adapted
to a setting without those covariates. IPW for general missing patterns is computationally
demanding, and no software exists [15,16]. Thus, IPW is mostly applied with monotone
missing patterns that appear, for example, in longitudinal studies [17]. The popular work
of [18] proposed an EM algorithm in order to derive the joint distribution in a Gaussian
copula model with data MAR [11]. However, their approach had weaknesses:

1. The presented algorithm was inexact. Among other things, the algorithm simplified by
assuming that the marginals and the copula could be estimated separately (compare
Equation (6) in [18] and Equation (11) in this paper).

2. If there was no a priori knowledge of the parametric family of all marginals, Ref. [18]
proposed using the ecdf of the observed data points. Afterwards, they exclusively
derived the parameters of the copula. This estimator of the marginals was biased
[19,20], which is often overlooked in the copula literature, e.g., [21] (Section 4.3), [22]
(Section 3), [23] (Section 3), or [24] (Section 3).

3. The description of the simulation study was incomplete and the results were not
reproducible.

The aim of this paper is to close these gaps, and our contributions are the following:

1. We give a rigorous derivation of the EM algorithm under a Gaussian copula model.
Similarly to [5], it consists of two separate steps, which estimate the marginals and
the copula, respectively. However, these two steps alternate.

2. We show how prior knowledge about the marginals and the dependency structure
can be utilized in order to achieve better results.

3. We propose a flexible parametrization of the marginals when a priori knowledge is
absent. This allows us to learn the underlying marginal distributions; see Figure 1.

4. We provide a Python library that implements the proposed algorithm.

The structure of this paper is as follows. In Section 2, we review some background in-
formation about the Gaussian copula. We proceed by presenting the method (Section 3). In
Section 4, we investigate its performance and the effect of domain knowledge in simulation
studies. We conclude in Section 5. All technical aspects and proofs in this paper are given
in Appendices A and B.

Figure 1. Estimates of the proposed EM algorithm (F̂EM
i , orange line), the Standard Copula Estimator

(F̂SCOPE
i , blue line, corresponds to ecdf), the Markov chain–Monte Carlo approach (F̂MCMC

i , purple
line) for the marginals Xi, i = 1, 2, and the truth (Fi, green line) of a two-dimensional example dataset
generated as described in Section 4.2 with N = 200, ρ = 0.5, and β = (0, 2).
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2. The Gaussian Copula Model
2.1. Notation and Assumptions

In the following, we consider a p-dimensional dataset {x1, . . . , xN} ⊂ Rp of size N,
where x1, . . . , xN are i.i.d. samples from a p-dimensional random vector X =

(
X1, . . . , Xp

)
with a joint distribution function F and marginal distribution functions F1, . . . , Fp. We

denote the entries of x` by x` =
(

x`1, . . . , x`p
)
∀` = 1, . . . , N. The parameters of the marginals

are represented by θ =
(
θ1, . . . , θp

)
, where θj is the parameter of Fj, so we write F

θj
j , where

θj can be a vector itself.
For ` ∈ {1, . . . , p}, we define obs(`) ⊂ {1, . . . , p} as the index set of the observed

and mis(`) ⊂ {1, . . . , p} as the index set of the missing columns of x`. Hence, mis(`) ∪
obs(`) = {1, . . . , p} and mis(`) ∩ obs(`) = ∅. R =

(
R1, . . . , Rp

)
∈ {0, 1}p is a random

vector for which Ri = 0 if Xi is missing and Ri = 1 if Xi can be observed. Further, we define
φ to be the density function and Φ to be the distribution function of the one-dimensional
standard normal distribution. Φµ,Σ stands for the distribution function of a p-variate
normal distribution with covariance Σ ∈ Rp×p and mean µ ∈ Rp. To simplify the notation,
we define ΦΣ := Φ0,Σ. For a matrix A ∈ Rp×p, the entry of the i-th row and the j-th column
is denoted by Aij, while for index sets S, T ⊂ {1, . . . , p}, AS,T is the submatrix of A with
the row number in S and column number in T. For a (random) vector x (X), xS (XS) is the
subvector containing entries with the index in S.

Throughout, we assume F to be strictly increasing and continuous in every component.
Therefore, Fj is strictly increasing and continuous for all j ∈ {1, . . . , p}, and so is the existing
inverse function F−1

j . For S = {s1, . . . , sk} ⊂ {1, . . . , p}, we define FS : R|S| → R|S| by

FS(xs1 , . . . , xsk ) =
(

Fs1(xs1), . . . , Fsk (xsk )
)
.

This work assumes that data are Missing at Random (MAR), as defined by [11], i.e.,

PX,R(R = r|Xr = x−r, Xr = xr) = PX,R(R = r|Xr = xr), (1)

where Xr := X{i: ri=1} are the observed and X−r := X{i: ri=0} are the missing entries of X.

2.2. Properties

Sklar’s theorem [25] decomposes F into its marginals F1, . . . , Fp and its dependency
structure C with

F(x1, . . . , xp) = C
(

F1(x1), . . . , Fp(xp)
)
. (2)

Here, C is a copula, which means it is a p-dimensional distribution function with
support [0, 1]p whose marginal distributions are uniform. In this paper, we focus on
Gaussian copulas, where

CΣ(u1, . . . , up) = ΦΣ

(
Φ−1(u1), . . . , Φ−1(up)

)
(3)

and Σ is a covariance matrix with Σjj = 1 ∀j ∈ {1, . . . , p}. Beyond all multivariate normal
distributions, there are distributions with non-normal marginals whose copula is Gaussian.
Hence, the Gaussian copula model provides an extension of the normality assumption.
Consider a random vector X whose copula is CΣ. Under the transformation

Z := Φ−1 ◦ F(X) :=
(

Φ−1 ◦ F1(X1), . . . , Φ−1 ◦ Fp
(
Xp
))

,

it holds that
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FZ(z1 . . . , zp) = P
(
Z1 ≤ z1, . . . , Zp ≤ zp

)
= P

(
X1 ≤ F−1

1 (Φ(z1)), . . . , Xp ≤ F−1
p
(
Φ
(
zp
)))

= ΦΣ

(
Φ−1

(
F1

(
F−1

1 (Φ(z1))
))

, . . . , Φ−1
(

Fp

(
F−1

p
(
Φ(zp)

))))
= ΦΣ(z1, . . . , zp)

(4)

and hence, Z is normally distributed with mean 0 and covariance Σ. The two-step ap-
proaches given in [5,6] use this property and apply the following scheme:

1. Find consistent estimates F̂1, . . . , F̂p for the marginal distributions F1, . . . , Fp.
2. Find Σ by estimating the covariance of the random vector

Z =
(

Φ−1
(

F̂1(X1)
)

, . . . , Φ−1
(

F̂p
(
Xp
)))

.

From now on, we assume that the marginals of X have existing density functions
f1, . . . , fp. Then, by using Equation (4) and a change of variables, we can derive the joint
density function

fF1,...,Fp ,Σ(x1, . . . , xp) = f (x1, . . . , xp) = |Σ|−
1
2 exp

(
−1

2
zT
(

Σ−1 − I
)

z
) p

∏
j=1

f j(xj), (5)

where z :=
(
Φ−1(F1(x1)), . . . , Φ−1(Fp(xp)

))
. As for the multivariate normal distribution,

we can identify the conditional independencies ([6]) from the inverse of the covariance
matrix K := Σ−1 by using the property

Kjk = Kkj = 0 ⇐⇒ Xj ⊥ Xk|{Xi : i ∈ {1, . . . , p} \ {j, k}}. (6)

K is called the precision matrix. In order to slim down the notation, we define

Φ−1(FS(xS)) :=
(

Φ−1(Fs1(xs1)), . . . , Φ−1(Fsk (xsk )
))

and similarly
F−1

S (Φ(zS)) :=
(

F−1
s1

(Φ(zs1)), . . . , F−1
s1

(
Φ
(
zsk

)))
.

The former function transforms the data of a Gaussian copula distribution to be
normally distributed. The latter mapping takes multivariate normally distributed data
and returns data following a Gaussian copula distribution with marginals Fs1 , . . . , Fsk . The
conditional density functions have a closed form.

Proposition 1 (Conditional Distribution of Gaussian Copula). Let S = {s1, . . . , sk} and
T = {t1, . . . , tk′} be such that T∪̇S = {1, . . . , p}.
1. The conditional density of XT|XS = xS is given by

f (xT|XS = xS) = |Σ′|−
1
2 exp

(
−1

2
(zT − µ)TΣ′−1(zT − µ)

)
exp

(
1
2

zT
TzT

)
∏
j∈T

f j(xj),

where µ = ΣT,SΣ−1
S,SzS, Σ′ = ΣT,T −ΣT,SΣ−1

S,SΣS,T, zT = Φ−1(FT(xT)) and zS = Φ−1(FS(xS)).

2. Φ−1(FT(XT))|XS = xs is normally distributed with mean µ and covariance Σ′.
3. The expectation of h(XT) with respect to the density f (xT|XS = xS) can be expressed by∫

h(xT) f (xT|XS = xS)dxT =
∫

h
(

F−1
T (Φ(zT))

)
φµ,Σ′(zT)dzT.
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Proposition 1 shows that the conditional distribution’s copula is Gaussian as well. More
importantly, we can derive an algorithm for sampling from the conditional distribution.

Algorithm 1: Sampling from the conditional distribution of a Gaussian copula
Input: xS, Σ, F1, . . . , Fp
Result: m samples of XT|XS = xS
Calculate zS := Φ−1(FS(xS)) ;
Calculate µ and Σ′ as in Proposition 1 using zS and Σ;
Draw samples {z1, . . . , zm} from N (µ, Σ′);
return {F−1

T
(
Φ(z1)

)
, . . . , F−1

T (Φ(zm))}

The very last step follows with Proposition 1, as it holds for any measurable A ⊂ Rk′ :

P(XT ∈ A|XS = xS) =
∫

1A(xT) f (xT|XS = xS)dxT =
∫

1A

(
F−1

T (Φ(zT))
)

φµ,Σ′(zT)dzT.

3. The EM Algorithm in the Gaussian Copula Model
3.1. The EM Algorithm

Let {y1, . . . , yN} ⊂ Rp be a dataset following a distribution with parameter ψ and
corresponding density function gψ(·), where observations are MAR. The EM algorithm [8]
finds a local optimum of the log-likelihood function

N

∑
`=1

ln
(

gψ

(
y`

obs(`)

))
=

N

∑
`=1

∫
ln
(

gψ

((
y`

obs(`), ymis(`)

)))
gψ

(
ymis(`)|Y`

obs(`) = y`
obs(`)

)
dymis(`)

=
N

∑
`=1

Eψ

(
ln
(

gψ

((
yobs(`), ymis(`)

)))
|Y`

obs = y`
obs(`)

)
.

After choosing a start value ψ0, it does so by iterating the following two steps.

1. E-Step: Calculate

λ(ψ|y1, . . . , yN , ψt) :=
N

∑
`=1

Eψt

(
ln
(

gψ

((
yobs(`), ymis(`)

)))
|Y`

obs = y`
obs(`)

)
=

N

∑
`=1

λ(ψ|y`, ψt).

(7)

2. M-Step: Set
ψt+1 = argmax

ψ
λ(ψ|y1, . . . , yN , ψt) (8)

and t = t + 1.

For our purposes, there are two extensions of interest:

• If there is no closed formula for the right-hand side of Equation (7), one can apply
Monte Carlo integration [26] as an approximation. This is called the Monte Carlo EM
algorithm.

• If ψ = (ψ1, . . . , ψv) and the joint maximization of (8) with respect to ψ is not feasible,
Ref. [27] proposed a sequential maximization. Thus, we optimize (8) with respect to ψi
while holding ψ1 = ψt+1

1 , . . . , ψi−1 = ψt+1
i−1 , ψi+1 = ψt

i+1, . . . , ψv = ψt
v fixed before we

continue with ψi+1. This is called the Expectation Conditional Maximization (ECM)
algorithm.
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3.2. Applying the ECM Algorithm on the Gaussian Copula Model

As we need a full parametrization of the Gaussian copula model for the EM algorithm,

we assume parametric marginal distributions Fθ1
1 , . . . , F

θp
p with densities f θ1

1 , . . . , f
θp
p . Ac-

cording to Equation (5), the joint density with respect to the parameters θ =
(
θ1, . . . , θp

)
and Σ has the form

fθ,Σ(x1, . . . , xp) = |Σ|−
1
2 exp

(
−1

2
zT

θ

(
Σ−1 − I

)
zθ

) p

∏
j=1

f
θj
j (xj), (9)

where zθ :=
(

Φ−1
(

Fθ1
1 (x1)

)
, . . . , Φ−1

(
F

θp
p
(
xp
)))

. Section 3.3 will describe how we can
keep the flexibility for the marginals despite the parametrization. However, first, we outline
the EM algorithm for general parametric marginal distributions.

3.2.1. E-Step

Set K := Σ−1 and Kt := Σt−1
. For simplicity, we pick one summand in Equation (7).

By Equation (7) and (9), it holds with ψ = (θ, Σ) and x` taking the role of y`:

λ(θ, Σ|x`, θt, Σt) = Eθt ,Σt

(
ln
(

fθ,Σ

((
xobs(`), xmis(`)

)))
|Xobs(`) = x`obs(`)

)
= −1

2
ln(|Σ|)

− 1
2
EΣt ,θt

(
zθ

T(K− I)zθ |Xobs(`) = x`obs(`)

)
+

p

∑
j=1

EΣt ,θt

(
ln
(

f
θj
j (xj)

)
|Xobs(`) = x`obs(`)

)
.

(10)

The first and last summand depend only on Σ and θ, respectively. Thus, of special
interest is the second summand, for which we obtain the following with Proposition 1:

EΣt ,θt

(
zT

θ (K− I)zθ |Xobs(`) = x`obs(`)

)
=
∫ (

zT
θ,θt(K− I)zθ,θt

)
φµ,Σt ′

(
qmis(`)

)
dqmis(`),

(11)
where

zθ,θt :=
(

Φ−1
(

Fθ1
1

(
Fθt

1
−1

1 (Φ(q1))

))
, . . . , Φ−1

(
F

θp
p

(
F

θt
p
−1

p
(
Φ(qp)

))))
.

Here,
µ = Σmis(`),obs(`)Σ

−1
obs(`),obs(`)Φ

−1
(

Fθt

obs(`)

(
x`obs(`)

))
and

Σt ′ = Σt
mis(`),mis(`) − Σt

mis(`),obs(`)

(
Σt

obs(`),obs(`)

)−1
Σt

obs(`),mis(`).

At this point, the authors of [18] neglected that, in general,

F
θt

j
j 6= F

θj
j , j = 1, . . . , p

holds, and hence, (11) depends not only on Σ, but also on θ. This let us reconsider their
approach, as we describe below.

3.2.2. M-Step

The joint optimization with respect to θ and Σ is difficult, as there is no closed form
for Equation (10). We circumvent this problem by sequentially optimizing with respect to
Σ and θ by applying the ECM algorithm. The maximization routine is the following.

1. Set Σt+1 = argmaxΣ ∑N
l=1 λ(θt, Σ|x`, θt, Σt).
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2. Set θt+1 = argmaxθ ∑N
l=1 λ(θ, Σt+1|x`, θt, Σt).

This is a two-step approach consisting of estimating the copula first and the marginals
second. However, both steps are executed iteratively, which is typical for the EM algorithm.

Estimating Σ

As we are maximizing Equation (10) with respect to Σ with a fixed θ = θt, the last
summand can be neglected. By a change-of-variables argument, we show the following in
Theorem A1:

EΣt ,θt

(
zθt

T(K− I)zθt |Xobs(`) = x`obs(`)

)
= tr

(
Σ−1V`

)
,

where V` depends on Σt and zθt ,obs(`) = Φ−1
(

Fθt

obs(`)

(
x`obs(`)

))
. Thus, considering all

observations, we search for

Σt+1 = argmax
Σ,Σ``=1∀`=1,...,p

1
N

N

∑
l=1

λ(θt, Σ|x`, θt, Σt)

= argmax
Σ,Σ``=1∀`=1,...,p

1
N

N

∑
`=1
−1

2
ln(|Σ|)− 1

2
tr
(

Σ−1V`

)
= argmax

Σ,Σ``=1∀`=1,...,p
−1

2
ln(|Σ|)− 1

2
tr

(
Σ−1 1

N

N

∑
`=1

V`

)
,

(12)

which only depends on the statistic S := 1
N ∑N

`=1 V`. Generally, this maximization can be
formalized as a convex optimization problem that can be solved by a gradient descent.
However, the properties of this estimator are not understood (for example, a scaling of S
by a ∈ R>0 leads to a different solution; see Appendix A.3). To overcome this issue, we
instead approximate the solution with the correlation matrix

argmax
Σ,Σ``=1∀`=1,...,p

−1
2

ln(|Σ|)− 1
2

tr
(

Σ−1S
)
≈ PSP,

where P ∈ Rp is the diagonal matrix with entries Pjj =
1√
Sjj

, ∀j = 1, . . . , p. This was also

proposed in [28] (Section 2.2).
In cases in which there is expert knowledge on the dependency structure of the

underlying distribution, one can adapt Equation (12) accordingly. We discuss this in more
detail in Section 4.4.

Estimating θ

We now focus on finding θt+1, which is the maximizer of

N

∑
`=1

λ(θ, Σt+1|x`, θt, Σt) =
N

∑
`=1

Eθt ,Σt

(
ln
(

fθ,Σt+1

(
xobs(`), xmis(`)

))
|Xobs(`) = x`obs(`)

)
=

N

∑
`=1

∫
ln
(

fθ,Σt+1

(
x`obs(`), xmis(`)

))
fθt ,Σt

(
xmis(`)|Xobs(`) = x`obs(`)

)
dxmis(`)

with respect to θ. As there is, in general, no closed formula for the right-hand side, we
use Monte Carlo integration. Again, we start by considering a single observation x` to
simplify terms. Employing Algorithm 1, we receive M samples x`mis(`),1, . . . , x`mis(`),M
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from the distribution of Xmis(`)|Xobs(`) = x`obs(`) given the parameters θt and Σt. We set

x`obs(`),m = x`obs(`) ∀m = 1, . . . , M. Then, by Equation (9),

λ(θ, Σt+1|x`, θt, Σt) ≈ C +
1
M

M

∑
m=1
− 1

2

(
Φ−1

(
Fθ1

1 (x`1,m)
)

, . . . , Φ−1
(

F
θp
p (x`p,m)

))T

(
Kt+1 − I

)
(

Φ−1
(

Fθ1
1 (x`1,m)

)
, . . . , Φ−1

(
F

θp
p (x`p,m

))
+

p

∑
j=1

ln
(

f
θj
j (x`j,m)

)
.

(13)

Hence, considering all observations, we set

θt+1 = argmax
θ

1
M

N

∑
`=1

M

∑
m=1
− 1

2

(
Φ−1

(
Fθ1

1 (x`1,m)
)

, . . . , Φ−1
(

F
θp
p (x`p,m)

))T

(
Kt+1 − I

)
(

Φ−1
(

Fθ1
1 (x`1,m)

)
, . . . , Φ−1

(
F

θp
p (x`p,m

))
+

p

∑
j=1

ln
(

f
θj
j (x`j,m)

)
.

(14)

Note that we only use the Monte Carlo samples to update the parameters of the
marginal distributions θ. We would also like to point out some interesting aspects about
Equations (13) and (14):

• The summand ∑N
`=1 ∑M

m=1 ln
(

f
θj
j (x`j,m)

)
describes how well the marginal distributions

fit the (one-dimensional) data.
• The estimations of the marginals are interdependent. Hence, in order to maximize

with respect to θj, we have to take into account all other components of θ.
• The first summand adjusts for the dependence structure in the data. If all observations

at step t + 1 are assumed to be independent, then Kt+1 = I, and this term is 0.

• More generally, the derivative ∂λ(θ,Σt+1|x`,θt ,Σt)
∂θj

depends on θk if and only if Kt+1
jk 6= 0.

This means that if Σt+1 implies the conditional independence of column j and k given
all other columns (Equation (6)), the optimal θj can be found without considering
θk. This, e.g., is the case if we set entries of the precision matrix to 0. Thus, the
incorporation of prior knowledge reduces the complexity of the identification of the
marginal distributions.

The intuition behind the derived EM algorithm is simple. Given a dataset with missing
values, we estimate the dependency structure. With the identified dependency structure,
we can derive likely locations of the missing values. Again, these locations help us to find a
better dependency structure. This leads to the proposed cyclic approach. The framework
of the EM algorithm guarantees the convergence of this procedure to a local maximum for
M→ ∞ in Equation (14).

3.3. Modelling with Semiparametric Marginals

In the case in which the missing mechanism is MAR, the estimation of the marginal
distribution using only complete observations is biased. Even worse, any moment of the
distribution can be distorted. Thus, one needs a priori knowledge in order to identify the
parametric family of the marginals [19,20]. If their family is known, one can directly apply
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the algorithm of Section 3.2. If this is not the case, we propose the use of a mixture model
parametrization of the form

F
θj
j (xj) =

1
g

g

∑
k=1

Φ

(
xj − θjk

σj

)
, θj1 ≤ . . . ≤ θjg, ∀j = 1, . . . , p, (15)

where σj is a hyperparameter and the ordering of the θjk ensures the identifiability.
Using mixture models for density estimation is a well-known idea (e.g., [29–31]).

As the authors of [31] noted, mixture models vary between being parametric and being
non-parametric, where flexibility increases with g. It is reasonable to choose Gaussian
mixture models, as their density functions are dense in the set of all density functions with
respect to the L1-norm [29] (Section 3.2). This flexibility and the provided parametrization
make the mixture models a natural choice.

3.4. A Blueprint of the Algorithm

The complete algorithm is summarized in Algorithm 2. For the Monte Carlo EM
algorithm, Ref. [26] proposed the stabilization of the parameters with a rather small
number of samples M and to increase this number substantially in the latter steps of the
algorithm. This seems to be reasonable for line 8 of Algorithm 2 as well.

If there is no a priori knowledge about the marginals, we propose that we follow
Section 3.3. We choose the initial θ0 such that the cumulative distribution function of the
mixture model fits the ecdf of the observed data points. For an empirical analysis of the
role of g, see Section 4.3.3. For σ1, . . . , σp, we use a rule of thumb inspired by [3] and set

σj = 1.06
σ̂j

g1/5 ,

where σ̂j is the standard deviation of the observed data points in the j-th component.

Algorithm 2: Blueprint for the EM algorithm for the Gaussian copula model

Input: {x1, . . . , xN}, Σ0, θ0, nmax, εconverged, M
Result: Σ, θ

1 niter ← 0;
2 ε← ∞;
3 Σt ← Σ0;
4 θt ← θ0;
5 while niter ≤ nmax and ε > εconverged do
6 Σt+1 ← solution of Equation (12);
7 for ` ∈ {1, . . . , N} do
8 Draw M samples of X|Xobs(`) = x`obs(`), under

(
θt, Σt);

9 end
10 θt+1 ← solution of Equation (14);
11 ε← ‖Σt+1 − Σt‖+ ‖θt+1 − θt‖;
12 θt ← θt+1;
13 Σt ← Σt+1;
14 niter ← niter + 1;
15 end
16 return Σt, θt

4. Simulation Study

We analyze the performance of the proposed estimator in two studies. First, we
consider scenarios for two-dimensional datasets and check the potential of the algorithm.



Entropy 2022, 24, 1849 10 of 24

In the second part, we explore how expert knowledge can be incorporated and how this
affects the behavior and performance. The proposed procedure, which is indexed with EM
in the figures below, is compared with:

1. Standard COPula Estimator (SCOPE): The marginal distributions are estimated by
the ecdf of the observed data points. This was proposed by [18] if the parametric
family is unknown, and it is the state-of-the art approach. Thus, we apply an EM
algorithm to determine the correlation structure on the mapped data points

z`j = Φ−1
(

F̂j(x`j )
)

, ` = 1, . . . , N, j = 1, . . . , p,

where F̂j is the ecdf of the observed data points in column j. Its corresponding results
are indexed with SCOPE in the figures and tables.

2. Known marginals: The distribution of the marginals is completely known. The idea
is to eliminate the difficulty of finding them. Here, we apply the EM algorithm for the
correlation structure on

z`j = Φ−1
(

Fj(x`j )
)

, ` = 1, . . . , N, j = 1, . . . , p,

where Fj is the real marginal distribution function. Its corresponding results are
indexed with a 0 in the figures and tables.

3. Markov chain–Monte Carlo (MCMC) approach [21]: The author proposed an MCMC
scheme to estimate the copula in a Bayesian fashion. Therefore, Ref. [21] derived the
distribution of the multivariate ranks. The marginals are treated as nuisance parame-
ters. We employed the R package sbgcop, which is available on CRAN, as it provides
not only a posterior distribution of the correlation matrix Σ, but also imputations for
missing values. In order to compare the approach with the likelihood-based methods,
we set

Σ̂MCMC =
1
M

M

∑
m=1

Σm,

where {Σm : m = 1, . . . , M} are samples of the posterior distribution of the correlation
matrix. For the marginals, we defined

F̂j,MCMC(x) =
1

MN

N

∑
`=1

M

∑
m=1

1{x`j,m≤x},

where x`j,m is the m-th of the total of M imputations for x`j and x`j,m = x`j ∀m = 1, . . . , M

if x`j can be observed. The samples were drawn from the posterior distribution. The
corresponding results were indexed with the MCMC approach in the figures and
tables.

Sklar’s theorem shows that the joint distribution can be decomposed into the marginals
and the copula. Thus, we analyze them separately.

4.1. Adapting the EM Algorithm

In Sections 4.3 and 4.4, we chose g = 15, for which we saw a sufficient flexibility. A
sensitivity analysis of the procedure with respect to g can be found in Section 4.3.3. The
initial θ0 was chosen by fitting the marginals to the existing observations, and Σ0 was the
identity matrix. For the number of Monte Carlo samples M, we observed that with M = 20,
θ stabilized after around 10 steps. Cautiously, we ran 20 steps before we increased M to
1000, for which we run another five steps. We stopped the algorithm when the condition
‖Σt+1 − Σt‖1 < 10−5 was fulfilled.
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4.2. Data Generation

We considered a two-dimensional dataset (we would have liked to include the setup
of the simulation study of [18]; however, neither could the missing mechanism be extracted
from the paper nor did the authors provide it on request) with a priori unknown marginals
F1 and F2, whose copula was Gaussian with the correlation parameter ρ ∈ [− 1, 1]. The
marginals were chosen to be χ2 with six and seven degrees of freedom. The data matrix
D ∈ RN×2 kept N (complete) observations of the random vector. We enforced the following
MAR mechanism:

1. Remove every entry in D with probability 0 ≤ pMCAR < 1. We denote the resulting

data matrix (with missing entries) as DMCAR =
(

DMCAR
`j

)
`=1,...,N,j=1,2

.

2. If DMCAR
`1 and DMCAR

`2 are observed, remove DMCAR
`2 with probability

P(R2 = 0|X1 = D`1, X2 = D`2) = P(R2 = 0|X1 = D`1)

=
1

1 + exp(−β0 − β1Φ−1(F1(D`1)))

We call the resulting data matrix DMAR.

The missing patterns were non-monotone. Aside from pMCAR, the parameters β0 and
β1 controlled how many entries were absent in the final dataset. Assuming that ρ > 0,
β1 > 0, and |β0| was not too large, the ecdf of the observed values of X2 was shifted to
the left compared to the true distribution function (changing the signs of β1 and/or ρ may
change the direction of the shift, but the situation is analogous). This can be seen in Figure 1,
where we chose N = 200, ρ = 0.5, β = (β0, β1) = (0, 2). The marginal distribution of X1
could be estimated well by the ecdf of the observed data.

4.3. Results

This subsection explores how different specifications of the data-generating process
presented in Section 4.2 influenced the estimation of the joint distribution. First, we inves-
tigate the influence of the share of missing values (controlled via β) and the dependency
(controlled via ρ) by fixing the number of observations (denoted by N) to 100. Then, we
vary N to study the behavior of the algorithms for larger sample sizes. Afterwards, we carry
out a sensitivity analysis of the EM algorithm with respect to g, the number of mixtures.
Finally, we study the computational demands of the algorithms.

4.3.1. The Effects of Dependency and Share of Missing Values

We investigate two different choices for the setup in Section 4.2 by setting the parame-
ters to ρ = 0.1, β = (−1, 1) and ρ = 0.5, β = (0, 2). For both, we draw 1000 datasets with
N = 100 each and apply the estimators. To evaluate the methods, we look at two different
aspects.

First, we compare the estimators for ρ with respect to bias and standard deviations.
The results are depicted in the corresponding third columns of Table 1 and are summarized
as boxplots in Figure A1 in Appendix B.3. We see that no method is clearly superior.
While the EM algorithm has a stronger bias for ρ = 0.5 than that of SCOPE, it also has a
smaller standard deviation. The MCMC approach shows the largest bias. As even known
marginals (ρ0) do not lead to substantially better estimators compared to SCOPE (ρSCOPE)
or the proposed (ρEM) approach, we deduce that (at least in this setting) the estimators for
the marginals are almost negligible. MCMC performs notably worse.

Second, we investigate the Cramer–von Mises statistics ω between the estimated and
the true marginal distribution (ω1 statistic for the first marginal, ω2 statistic for the second
marginal). The results are shown in Table 1 (corresponding first two columns) and are
summarized as boxplots in Figure A2 in Appendix B.3. While for ρ = 0.1, the proposed
estimator behaves only slightly better than SCOPE, we see that the benefit becomes larger
in the case of high correlation and more missing values, especially when estimating the
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second marginal. This is in line with the intuition that if the correlation is vanishing, the two
random variables X1 and X2 become independent. Thus, R2, the missing value indicator,
and X2 become independent. (Note that there is a difference from the case in which ρ 6= 0,
and hence, the missingness probability R2 isconditionally independent from X2 given X1.)
In that case, we can estimate the marginal of X2 using the ecdf of the observed data points.
Hence, SCOPE’s estimates of the marginals should be good for small values of ρ. An
illustration can be found in Figure 2. Again, the MCMC approach performs the worst.

Table 1. Comparison of the algorithms with respect to the Cramer–von Mises distance between
the estimated and the true first (ω1) and true second marginal distributions (ω2), as well as the
correlation (ρ). Shown are the mean and standard deviation of the proposed EM algorithm (EM), the
method based on known marginals (0), the Standard Copula Estimator (SCOPE), and the Markov
chain–Monte Carlo approach (MCMC) for 1000 datasets generated as described in Section 4.3.1.

Mean Standard Deviation

Setting Method ω1 ω2 ρ ω1 ω2 ρ

ρ = 0.1, β = (−1, 1)

EM 8.55 10.41 0.107 9.30 11.67 0.139
0 - - 0.109 - - 0.144

SCOPE 9.13 12.25 0.105 8.47 11.00 0.144
MCMC 18.21 24.99 0.094 16.62 21.89 0.127

ρ = 0.5, β = (0, 2)

EM 8.03 16.48 0.455 8.68 19.47 0.139
0 - - 0.498 - - 0.138

SCOPE 9.06 45.25 0.486 8.25 36.11 0.143
MCMC 17.90 59.34 0.393 16.13 57.15 0.131

Figure 2. Dependency graph for X1, X2, and R2. X2 is independent of R2 if either X1 and X2 are
independent (ρ = 0) or if X1 and R2 are independent (β1 = 0).

4.3.2. Varying the Sample Size N

To investigate the behavior of the methods for larger sample sizes, we repeat the exper-
iment from Section 4.2 with ρ = 0.5, β = (0, 2) for the sample sizes N = 100, 200, 500, 1000.
The results are depicted in Table 2 and Figures A3–A5 in Appendix B.3. The bias of SCOPE
and EM algorithm for ρ seem to vanish for large N, while the MCMC approach remains
biased. Studying the estimation of the true marginals, the approximation of the second
marginal via MCMC and SCOPE improves only slowly and is still poor for the largest
sample sizes N = 1000. In contrast, the EM algorithm performs best in small sample sizes,
and the mean (of ω1 and ω2) and standard deviations (of all three values) move towards 0
for increasing N.
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Table 2. Comparison of the algorithms with respect to the Cramer–von Mises distance between
the estimated and the true first (ω1) and true second marginal distributions (ω2), as well as the
correlation (ρ). Shown are the mean and standard deviation of the proposed EM algorithm (EM), the
method based on known marginals (0), the Standard Copula Estimator (SCOPE), and the Markov
chain–Monte Carlo approach (MCMC) for 1000 datasets generated as described in Section 4.2 with
ρ = 0.5 and β = (0, 2) and varying sample sizes N = 100, 200, 500, 1000.

Mean Standard Deviation

N Method ω1 ω2 ρ ω1 ω2 ρ

N = 100

EM 8.03 16.48 0.455 8.68 19.47 0.139
0 - - 0.498 - - 0.138

SCOPE 9.06 45.25 0.486 8.25 36.11 0.143
MCMC 17.90 59.34 0.393 16.13 57.15 0.131

N = 200

EM 4.91 8.53 0.469 5.46 8.88 0.098
0 - - 0.500 - - 0.094

SCOPE 4.76 37.38 0.493 4.18 25.35 0.096
MCMC 9.27 42.91 0.370 8.01 36.23 0.089

N = 500

EM 3.01 3.83 0.480 2.92 3.59 0.063
0 - - 0.499 - - 0.060

SCOPE 2.05 31.92 0.497 1.85 14.95 0.060
MCMC 4.01 31.41 0.0360 3.49 20.51 0.051

N = 1000

EM 2.25 2.74 0.486 1.92 2.40 0.047
0 - - 0.500 - - 0.042

SCOPE 1.08 30.60 0.499 0.93 11.13 0.043
MCMC 1.99 28.13 0.365 1.84 14.49 0.037

4.3.3. The Impacts of Varying the Number of Mixtures g

The proposed EM algorithm relies on the hyperparameter g, the number of mixtures
in Equation (15). To analyze the behavior of the EM algorithm with respect to g, we
additionally run the EM algorithm with g = 5 and g = 30 on the 1000 datasets of Section 4.2
for ρ = 0.5, β = (0, 2), and N = 100. We did not adjust the number of steps in the EM
algorithm to keep the results comparable. The results can be found in Table 3. We see that
the choice of g does not have a large effect on the estimation of ρ. However, an increased
g leads to better estimates for X1. This is in line with the intuition that the ecdf of the
first components is an unbiased estimate for the distribution function of X1, and setting
g to the number of samples corresponds to the kernel density estimator. On the other
hand, the estimator for X2 benefits slightly from g = 5, as ω2

EM has a lower mean and
standard deviation compared to the choice g = 30. However, this effect is small and almost
non-existent when we compare g = 5 with g = 15. As the choice g = 15 leads to better
estimates of the first marginal compared to g = 5, we see this choice as a good compromise
for our setting. For applications without prior knowledge, we recommend considering g as
additional tuning parameter (via cross-validation).
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Table 3. Comparison of the proposed EM algorithm with respect to the Cramer–von Mises distance
between the estimated and the true first (ω1) and true second marginal distributions (ω2), as well as
the correlation (ρ), for different numbers of mixtures g in Equation (15). Shown are the mean and
standard deviation for g = 5, 15, 30 and for 1000 datasets generated as described in Section 4.2 with
ρ = 0.5 and β = (0, 2).

Mean Standard Deviation

# Mixtures ω1 ω2 ρ ω1 ω2 ρ

g = 5 13.82 16.38 0.469 14.17 19.69 0.145
g = 15 8.03 16.48 0.455 8.68 19.47 0.139
g = 30 7.17 18.73 0.454 7.48 20.98 0.140

4.3.4. Run Time

We analyze the computational demands of the different algorithms by comparing
their run times in the study of Section 4.3.1 with ρ = 0.5 and β = (0, 2) (the settings ρ = 0.1
and β = (−1, 1) lead to similar results and are omitted). The run times of all presented
algorithms depend not only on the dataset, but also on the parameters (e.g., convergence
criterion and Σ0 for SCOPE). Thus, we do not aim for an extensive study, but focus on the
magnitudes. We compare the proposed EM algorithm with a varying number of mixtures
(g = 5, 15, 30) with MCMC and SCOPE. The results are shown in Table 4. We see that
the EM algorithm has the longest run time, which depends on the number of mixtures
g. The MCMC approach and the proposed EM algorithm have a higher computational
demand than SCOPE, as they are trying to model the interaction between the copula and the
marginals. As mentioned in the onset, we could reduce the run time of the EM algorithm
by going down to only 10 steps instead of 20.

Table 4. Comparison of the algorithms with respect to the run time in seconds. Shown are the mean
and standard deviation of the proposed EM algorithm (EM) with the number of mixtures g set to
5, 15, 30, the Standard Copula Estimator (SCOPE), and the Markov chain–Monte Carlo approach
(MCMC) for 1000 datasets generated as described in Section 4.2 with ρ = 0.5 and β = (0, 2).

Run Time in Seconds

Method Mean Standard Deviation

EM (g = 5) 21.78 3.27
EM (g = 15) 55.94 11.39
EM (g = 30) 161.57 38.00

SCOPE 0.45 0.11
MCMC 12.98 0.87

4.4. Inclusion of Expert Knowledge

In the presence of prior knowledge on the dependency structure, the presented EM
algorithm is highly flexible. While information on the marginals can be used to parametrize
the copula model, expert knowledge on the dependency structure can be incorporated
by adapting Equation (12). In the case of soft constraints on the covariance or precision
matrix, one can replace Equation (12) with a penalized covariance estimation, where the
penalty reflects the expert assessment [32,33]. Similarly, one can define a prior distribution
on the covariance matrices and set Σt+1 as the mode of the posterior distribution (the MAP
estimate) of Σ given the statistic S of Equation (12).

Another possibility could be that we are aware of conditional independencies in
the data-generating process. This is, for example, the case when causal relationships are
known [4]. To exemplify the latter, we consider a three-dimensional dataset X with the
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Gaussian copula CΣ and marginals X1, X2, X3, which are χ2 distributed with six, seven,
and five degrees of freedom. The precision is set to

K = Σ−1 = ∆1/2

 1 0.5 0.5
0.5 1 0
0.5 0 1

∆1/2,

where ∆1/2 is a diagonal matrix, which ensures that the diagonal elements of Σ are 1. We
see that X2 and X3 are conditionally independent given X1. The missing mechanism is
similar to the one in Section 4.2. The missingness of X3 depends on X1 and X2, while the
probability of a missing X1 or X2 is independent of the others. The mechanism is, again,
MAR. Details can be found in Appendix B.2. We compare the proposed method with
prior knowledge on the zeros in the precision matrix (indexed by KP, EM in the figures)
with the EM, SCOPE, and MCMC algorithms without background knowledge. We again
sample 1000 datasets with 50 observations each from the real distribution. The background
knowledge on the precision is used by restricting the non-zero elements in Equation (12).
Therefore, we apply the procedure presented in [34] (Chapter 17.3.1) to find Σt+1. The
means and standard deviations of the estimates are presented in Table 5.

First, we evaluate the estimated dependency structures by calculating the Frobenius
norm of the estimation error Σ − Σ̂. The EM algorithm with background knowledge
(KP, EM) performs best and is more stable than its competitors. Apart from MCMC, the
other procedures behave similarly, which indicates again that the exact knowledge of the
marginal distributions is not too relevant for identifying the dependency structure. MCMC
performs the worst.

Table 5. Comparison of the algorithms with respect to the Cramer–von Mises distance between the
estimated and the true first marginal distribution (ω1), true second marginal distribution (ω2), and
true third marginal distribution (ω3), as well as the correlation (ρ). Shown are the mean and standard
deviation of the proposed EM algorithm (EM), the proposed EM algorithm with prior knowledge on
the conditional independencies (KP, EM), the method based on known marginals (0), the Standard
Copula Estimator (SCOPE), and the Markov chain–Monte Carlo approach (MCMC) for 1000 datasets
generated as described in Section 4.4.

Mean Standard Deviation

Method ω1 ω2 ω3 ||Σ̂− Σ||2 ω1 ω2 ω3 ||Σ̂− Σ||2
EM 12.12 13.38 21.15 0.229 13.89 14.25 22.44 0.113

KP, EM 12.04 13.28 19.66 0.182 13.93 14.37 20.88 0.111
0 - - - 0.227 - - - 0.108

SCOPE 17.57 17.55 26.69 0.232 16.75 15.55 24.84 0.113
MCMC 36.85 35.70 80.22 0.263 32.82 33.24 78.57 0.140

Second, we see that the proposed EM estimators return marginal distributions that are
closer to the truth, while the estimate with background knowledge (KP, EM) performs the
best. Thus, the background knowledge on the copula also transfers into better estimates
for the marginal distribution—in particular, for X3. This is due to Equation (14) and the
comments thereafter. The zeros in the precision structure indicate which other marginals
are relevant in order to identify the parameter of a marginal. In our case, X2 provides no
additional information for X3. This information is provided to the EM algorithm through
the restriction of the precision matrix.

Finally, we compare the EM estimates of the joint distribution. The relative entropy or
Kullback–Leibler divergence is a popular tool for estimating the difference between two
distributions [35,36], where one of them is absolutely continuous with respect to the other.
A lower number indicates a higher similarity. Due to the discrete structure of the marginals
of SCOPE and MCMC, we cannot calculate their relative entropy with respect to the truth.
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However, we would like to analyze how the estimate of the proposed procedure improves
if we include expert knowledge. The results are depicted in Table 6. Again, we observe that
the incorporation of extra knowledge improves the estimates. This is in line with Table 5,
as the estimation of all components in the joint distribution of Equation (3) is improved by
the domain knowledge.

Table 6. Comparison of the algorithms with respect to the Kullback–Leibler divergence (DKL) between
the true joint distribution (F) and the estimates. Shown are the mean and standard deviation of
the proposed EM algorithm (EM) and the proposed EM algorithm with prior knowledge on the
conditional independencies (KP, EM) for 1000 datasets generated as described in Section 4.4.

Mean(DKL(F, ·)) Standard Deviation(DKL(F, ·))

EM 1.37 0.53
KP, EM 1.26 0.32

5. Discussion

In this paper, we investigated the estimation of the Gaussian copula and the marginals
with an incomplete dataset, for which we derived a rigorous EM algorithm. The procedure
iteratively searches for the marginal distributions and the copula. It is, hence, similar to
known methods for complete datasets. We saw that if the data are missing at random, a
consistent estimate of a marginal distribution depends on the copula and other marginals.

The EM algorithm relies on a complete parametrization of the marginals. The paramet-
ric family of the marginals is, in general, a priori unknown and cannot be identified through
the observed data points. For this case, we presented a novel idea of employing mixture
models. Although this is practically always a misspecification, our simulation study re-
vealed that the combination of our EM algorithm and marginal mixture models delivers
better estimates for the joint distribution than currently used procedures do. In principle,
uncertainty quantification of the parameters derived by the proposed EM algorithm can be
achieved by bootstrapping [37].

There are different possibilities for incorporating expert knowledge. Information
on the parametric family of the marginals can be used for their parametrization. How-
ever, causal and structural understandings of the data-generating process can also be
utilized [4,38,39]. For example, this can be achieved by restricting the correlation matrix
or its inverse, the precision matrix. We presented how one can restrict the non-zero ele-
ments of the precision, which enforces conditional independencies. Our simulation study
showed that this leads not only to an improved estimate for the dependency structure,
but also to better estimates for the marginals. This translates into a lower relative entropy
between the real distribution and the estimate. We also discussed how soft constraints on
the dependency structure can be included.

We note that the focus of this paper is on estimating the joint distribution without
precise specification of its subsequent use. Therefore, we did not discuss imputation
methods (see, e.g., [40–43]). However, Gaussian copula models were employed as a device
for multiple imputation (MI) with some success [22,24,44]. The resulting complete datasets
can be used for inference. All approaches that we are aware of estimate the marginals by
using the ecdf of the observed data points. The findings in Section 4 translate into better
draws for the missing values.

Additionally, the joint distribution can be utilized for regressing a potentially multi-
variate Y on Z even if data are missing. By applying the EM algorithm on X := (Y, Z) and
by Proposition 1, one even obtains the whole conditional distribution of Y given Z = z.

We have shown how to incorporate a causal understanding of the data-generating
process. However, in the potential outcome framework of [45], the derivation of a causal
relationship can also be interpreted as a missing data problem in which the missing patterns
are “misaligned” [46]. Our algorithm is applicable for this.
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Appendix A. Technical Results

Appendix A.1. Proof of Conditional Distribution

Proof of Proposition 1. We prove in the order of the proposition, which is a multivariate
generalization of [47].

1. We inspect the conditional density function:

f (xT|XS = xS) =
|Σ|− 1

2 exp
(
− 1

2 zT(Σ−1 − I
)
z
)

∏
p
j=1 f j(xj)

|ΣS,S|−
1
2 exp

(
− 1

2 zT
S

(
Σ−1

S,S − I
)

zS

)
∏j∈S f j(xj)
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)
Using well-known factorization lemmas and using the Schur complement (see, for
example, [48] (Section 4.3.4)) applied on Σ−1, we encounter

f (xT|XS = xS) = |Σ′|−
1
2 exp

(
−1

2
(zT − µ)TΣ′−1(zT − µ)

)
exp

(
1
2

zT
TzT

)
∏
j∈T

f j(xj). (A1)

2. The distribution of
Φ−1(FT(XT))|XS = xS

follows with a change-of-variable argument. Using Equation (A1), we observe for any
measurable set A that

P
((

Φ−1(FT(XT))|XS = xs

)
∈ A

)
=
∫

F−1(Φ(A))
|Σ′|− 1

2 exp
(
−1

2
(zT − µ)TΣ′−1(zT − µ)

)
exp

(
1
2

zT
TzT

)
∏
j∈T

f j(xj)dxT

=
∫

A
φµ,Σ′(qT)dqT,

where, in the second equation, we used the transformation qT = Φ−1(FT(xT)) and
the fact that∣∣∣D(φ−1(FT(xT))

)∣∣∣ = 2π
|T|
2 exp

(
1
2

(
Φ−1(FT(xT))

)T(
Φ−1(FT(xT))

))
∏
j∈T

f j(xj).

https://github.com/mkrtl/misscop
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3. This proof is analogous to the one above, and we finally obtain∫
h(xT) f (xT|XS = xS)dxT =

∫
h
(

F−1(Φ(zT))
)

φµ,Σ′(zT)dzT.

The result can be generalized to the case in which S ∪ T 6= {1, . . . , p}.

Appendix A.2. Closed-Form Solution of the E-Step for θ = θt

Theorem A1. We assume w.l.o.g. that x` = (x`obs(`), x`mis(`)) and set

zθt :=
(

zobs(`),θt , zmis(`)

)
:=
(

Φ−1
(

Fθt

obs(`)(x
`
obs(`))

)
, zmis(`)

)
.

Then, it holds that

EΣt ,θt

(
zθt

TΣ−1zθt |Xobs(`) = x`obs(`)

)
= tr

(
Σ−1V

)
,

where V =

(
zobs(`),θt zobs(`),θt

T zobs(`),θt µT

µzobs(`),θt
T Σ′ + µµT

)
, µ = Σt

mis(`),obs(`)Σ
t
obs(`),obs(`)

−1zobs(`),θt

and Σ′ = Σt
mis(`),mis(`) − Σt

mis(`),obs(`)Σ
t
obs(`),obs(`)

−1Σt
obs(`),mis(`).

Proof. We define Fθt(xmis(`)) := Fθt(x`obs(`), xmis(`)). Then,

EΣt ,θt

(
zT

θt Σ−1zθt |Xobs(`) = x`obs(`)

)
= EΣt ,θt

((
Φ−1

(
Fθt(xmis(`))

))T
Σ−1

(
Φ−1

(
Fθt(xmis(`))

))
|Xobs(`) = x`obs(`)

)
=
∫ (

Φ−1
(

Fθt(xmis(`))
))T

Σ−1
(

Φ−1
(

Fθt(xmis(`))
))

fθt ,Σt

(
xmis(`)|Xobs(`) = x`obs(`)

)
dxmis(`).

We now apply Proposition 1 and encounter∫ (
Φ−1

(
Fθt(xmis(`))

))T
Σ−1Φ−1

(
Fθt(xmis(`))

)
fθt ,Σt

(
xmis(`)|Xobs(`) = x`obs(`)

)
dxmis(`)

=
∫

zT
θt Σ−1zθt φΣ′ ,µ(zmis(`))dzmis(`)

=
∫

tr(zθt zT
θt Σ−1)φΣ′ ,µ(zmis(`))dzmis(`)

= tr
(

Σ−1
∫

zθt zT
θt φΣ′ ,µ(zmis(`))dzmis(`)

)
.

The last integral is understood element-wise. By the first and second moment of ΦΣ′ ,µ,
it follows that∫

zθt zT
θt φΣ′ ,µ(zmis(`),θt)dzmis(`),θt =

∫ (
zobs(`),θt , zmis(`),θt

)(
zobs(`),θt , zmis(`),θt

)T

φΣ′ ,µ(zmis(`),θt)dzmis(`),θt

=

(
zobs(`),θt zT

obs(`),θt zobs(`),θt µT

µzT
obs(`),θt Σ′ + µµT

)
.
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Appendix A.3. Maximizer of argmaxΣ,Σjj=1∀j=1,...,p λ(θt, Σ|θt, Σt)

We are interested in

argmax
Σjj=1∀j=1,...,p

l(Σ) := argmax
Σjj=1∀j=1,...,p

− log(|Σ|)− tr
(

Σ−1S
)

,

where Σ, S ∈ Rp×p are positive definite matrices. Clearly,

Σjj = 1 ⇐⇒ 1 = eT
j Σej = tr

(
eT

j Σej

)
= tr

(
ejeT

j Σ
)

.

Using the Lagrangian, we obtain the following function to optimize

L(Σ, λ) = − log(|Σ|)− tr
(

Σ−1S
)
+

p

∑
j=1

λj

(
tr
(

ejeT
j Σ
)
− 1
)

.

Applying the identities ∂tr(AX)
∂X = A, ∂tr(AX−1)

∂X = −X−1 AX−1, and ∂ log(|X|)
∂X = X−1,

we obtain the derivative with respect to Σ:

∂L
∂Σ

= −Σ−1 + Σ−1SΣ−1 −
(

p

∑
j=1

λj

(
ejeT

j

))
!
= 0.

This is equivalent to
−K + KSK = Dλ,

where Dλ is the diagonal matrix with entries λ =
(
λ1, . . . , λp

)
and K := Σ−1. We see that

the scaling of S by a ∈ R>0 leads, in general, to a different solution K, and hence, the
estimator is not invariant under strictly monotone linear transformations of S.
We can also formulate the task as a convex optimization problem:

argmin
(K−1)ii=1 ∀i=1,...,p

− log(|K|) + tr(KS).

Appendix B. Details of the Simulation Studies

Appendix B.1. Drawing Samples from the Joint Distributions

Appendix B.1.1. Estimators of the Percentile Function

• In the case of SCOPE, consider the marginal observed data points, which we assume
to be ordered y1 ≤ . . . ≤ yN . We use the following linearly interpolated estimator for
the percentile function:

F̂−1(u) =


y1 for u ≤ 1

N+1
yN , for u > N

N+1
u− i

N+1
i+1
N+1− i

N+1
(yi+1 − yi) + yi, for u ∈

(
i

N+1 , i+1
N+1

]


• To estimate the percentile function for the mixture models, we choose with equal
probability (all Gaussians have equal weight) one component of the mixture and then
draw a random number with its mean θjk and standard deviation σj, j = 1, . . . , p, k =
1, . . . , g. In this manner, we generate N′ samples y′1, . . . , y′N′ . The estimator for the
percentile function is then chosen to be analogous to the one above. A higher N′ leads
to a more exact result. We choose N′ to be 10,000.
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Appendix B.1.2. Sampling

Given an estimator ρ̂ and estimators for the percentile functions F̂−1
1 , F̂−1

2 , we obtain
M samples from the learned joint distribution with

y` = (y`1, y`2) =
(

F̂−1
1 (u`1), F̂−1

2 (u`2)
)
=
(

F̂−1
1 (Φ(z`1)), F̂−1

2 (Φ(z`2))
)

, ` = 1, . . . , M,

where z` = (z`1, z`2), ` = 1, . . . , M are draws from a bivariate normal distribution with

mean 0 and covariance
(

1 ρ̂
ρ̂ 1

)
. In the case of the gold standard, we set F̂−1

j = F−1
j , j = 1, 2.

We obtain samples of the real underlying distribution by using the correct percentile
functions, as in the gold standard, and, additionally, ρ̂ = ρ. The procedure for three
dimensions is analogous.

Appendix B.2. Missing Mechanism for Section 4.4

The missing mechanism is similar to the two-dimensional case. The marginals are
chosen to be χ2 with six, seven, and five degrees of freedom. The data matrix D ∈ RN×3

keeps N (complete) observations of the random vector. We enforce the following missing
data mechanism:

1. Again, we remove every entry in the data matrix D with probability 0 ≤ pMCAR < 1.
The resulting data matrix (with missing entries) is denoted as

DMCAR =
(

DMCAR
`j

)
`=1,...,N,j=1,2,3

.

2. If DMCAR
`1 , DMCAR

`2 , and DMCAR
`3 are observed, we remove DMCAR

`3 with probability

P(R3 = 0|X1 = D`1, X2 = D`2) = h(D`1, D`2; β),

where

h(D`1, D`2; β) =
1

1 + exp(−(β0 + β1Φ−1(F1(D`1)) + β2Φ−1(F2(D`2))))

and β = (β0, β1, β2).

We call the resulting data matrix DMAR. Its missing patterns are, again, non-monotone,
and the data are MAR, but not MCAR. In Section 4.4, we set β = (0, 2, 2).

Appendix B.3. Complementary Figures

ρSCOPE ρEM ρ0 ρMCMC

0.0

0.5

ρ = 0.1, β = (−1, 1)

ρSCOPE ρEM ρ0 ρMCMC

0.0

0.5

ρ = 0.5, β = (0, 2)

C
or

re
la

ti
on

ρ

Methods

Estimators for ρ for Different Settings and Methods

Figure A1. Comparison of the algorithms with respect to the correlation ρ. Shown are the boxplots
for the Standard Copula Estimator (SCOPE), the proposed EM algorithm (EM), the method based
on known marginals (0), and the Markov chain–Monte Carlo approach (MCMC) for 1000 datasets
generated as described in Section 4.2, where ρ = 0.1, β = (−1, 1) are depicted in the left canvas
and ρ = 0.5, β = (0, 2) are depicted in the right canvas. The true correlations are indicated by the
dashed line.
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Figure A2. Comparison of the algorithms with respect to the Cramer–von Mises distance between the
estimated and the true first (ω1) and true second marginal distributions (ω2). Shown are the boxplots
on a logarithmic scale for the proposed EM algorithm (EM), the Standard Copula Estimator (SCOPE),
and the Markov chain–Monte Carlo approach (MCMC) for 1000 datasets generated as described in
Section 4.2, where ρ = 0.1, β = (−1, 1) are depicted in the left canvas and ρ = 0.5, β = (0, 2) are
depicted in the right canvas.
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Figure A3. Comparison of the algorithms with respect to the correlation (ρ). Shown are the mean
(upper canvas) and standard deviation (lower canvas) of the Standard Copula Estimator (SCOPE),
the proposed EM algorithm (EM), and the Markov chain–Monte Carlo approach (MCMC) for 1000
datasets generated as described in Section 4.2 with ρ = 0.5 and β = (0, 2) and for varying sample
sizes N = 100, 200, 500, 1000, where the true ρ is 0.5 (dashed line in the upper canvas).
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Figure A4. Comparison of the algorithms with respect to the Cramer–von Mises statistic ω1 between
the estimated and the true first marginal distribution. Shown are the mean (upper canvas) and
standard deviation (lower canvas) of the Standard Copula Estimator (SCOPE), the proposed EM
algorithm (EM), and the Markov chain–Monte Carlo approach (MCMC) for 1000 datasets generated
as described in Section 4.2 with ρ = 0.5 and β = (0, 2) and for varying sample sizes of N =

100, 200, 500, 1000.

0

20

40

60

M
ea

n
of
ω

2

Mean

ω2
SCOPE

ω2
EM

ω2
MCMC

100 200 500 1000
0

20

40

60

S
ta

n
d

ar
d

D
ev

ia
ti

on
of
ω

2

Standard Deviation

ω2
SCOPE

ω2
EM

ω2
MCMC

Sample Size N

Mean and Standard Deviation for ω2

Figure A5. Comparison of the algorithms with respect to the Cramer–von Mises statistic ω2 between
the estimated and the true second marginal distribution. Shown are the mean (upper canvas) and
standard deviation (lower canvas) of the Standard Copula Estimator (SCOPE), the proposed EM
algorithm (EM), and the Markov chain–Monte Carlo approach (MCMC) for 1000 datasets generated
as described in Section 4.2 with ρ = 0.5 and β = (0, 2) and for varying sample sizes of N = 100, 200,
500, 1000.
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