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Abstract: This study aims to propose modified semiparametric estimators based on six different
penalty and shrinkage strategies for the estimation of a right-censored semiparametric regression
model. In this context, the methods used to obtain the estimators are ridge, lasso, adaptive lasso,
SCAD, MCP, and elasticnet penalty functions. The most important contribution that distinguishes
this article from its peers is that it uses the local polynomial method as a smoothing method. The
theoretical estimation procedures for the obtained estimators are explained. In addition, a simulation
study is performed to see the behavior of the estimators and make a detailed comparison, and
hepatocellular carcinoma data are estimated as a real data example. As a result of the study, the
estimators based on adaptive lasso and SCAD were more resistant to censorship and outperformed
the other four estimators.

Keywords: local polynomial regression; lasso; elasticnet; SCAD; MCP; partially linear model; right-
censored data

1. Introduction

Consider the partially linear (or semiparametric) regression model

zi = x′iβ+ f (ti) + εi, i = 1, . . . , n (1)

where zi
′s are the observations of the response variable, xi = (xi1, . . . , xik) is known k−

dimensional vectors of explanatory variables, ti ∈ [a, b] is the value of an extra explanatory
variable t, β = (β1, . . . ,βk)

′ is an unknown k-dimensional parameter vector to be estimated,
f (.) is an unknown univariate smooth function, and εi

′s are supposed to be uncorrelated
independent random variables with mean zero and finite variance σ2

ε = E
(
ε2). Partially

linear models through a nonparametric component are flexible enough to cover many
situations; in fact, these models may be an appropriate choice when it is suspected that the
response variable z is linearly dependent on x, indicating parametric effects, but nonlinearly
related to ti denoting nonparametric effects. Note that model (1) can be expressed in matrix
and vector form as

Z = Xβ+ f + ε (2)

where Z = (z1, . . . , zn)
′, X = [x1, . . . , xn]

′ is an (n× k) design matrix with xi = (xi1, . . . , xik)
′

denoting the i.th k−dimensional row vector of X, f = ( f (t1), . . . , f (tn)) ′, and ε =
(ε1, ε2, . . . , εn) is a random error vector with E(ε) = 0 and Var(ε) = σ2In. For more
discussions on model (1), see [1–3], among others.

In this paper, we are interested in estimating the parametric and nonparametric
components of model (1) when the observations of the response variable are incompletely
observed and right-censored by the random censoring variable ci, i = 1, 2, . . . , n, but xi
and ti are completely observed. In the case where zi’s are the censored from the right, then
any estimation procedure cannot be applied to zi due to censoring. To add the effect of the
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censorship to the model estimation process, it should be revealed with the help of auxiliary
variables that the censorship problem should be solved accordingly. Therefore, instead of
observing the values of the response variable zi, we observe the dataset (yi, δi) with

yi = min(zi, ci), δi = I(yi < ci), i = 1, 2, . . . , n (3)

where yi’s are the observations of the updated new response variable according to censor-
ship and δi’s are the values of the censor indicator related to yi’s. If the ith observation of
zi is censored, we choose yi = ci and δi = 0; otherwise, we consider yi = zi and δi = 1. In
this case, model (1) transforms into a semiparametric model with the right-censored data,
which can also be updated in terms of the values of the new response variable.

In the literature, there are several studies about the right-censored linear model
( f (t) = 0 in model (1)), including [4–7]. The right-censored nonparametric regression
model (β = 0 in model (1)) has been studied by [8,9], among others. In addition, right-
censored partially linear models have been studied by [10], who used smoothing splines
based on Kaplan–Meier weights as an estimation procedure, and [11] considered censored
partial linear models and illustrated the theoretical properties of the semiparametric esti-
mators based on the synthetic data transformation. Aydın and Yilmaz [12] suggested three
semiparametric estimators based on regression splines, kernel smoothing, and smoothing
spline methods using synthetic data transformation. Regarding the partially linear models
with penalty functions, in the case of the noncensored data, [13] studied the estimation of
the semiparametric model based on the two absolute penalty functions, which are lasso
and adaptive lasso with B-splines. Moreover, they conducted a technical analysis of the
estimators meticulously with asymptotic properties.

This paper considers model (1) under a right-censored response variable and a large
number of covariates in the parametric component. Notice that right-censored data cause
biased estimates due to incomplete observations that manipulate the data structure. There-
fore, if the censorship is ignored, inferences based on estimated models may be wrong or
deviated. For instance, in clinical trials, some of the observed patients may withdraw from
the study before it ends, or they may die from another reason, which makes the correspond-
ing observation right-censored. In particular, in medical studies as in the given example,
preventing information loss and obtaining less biased estimates are quite important. This
paper, therefore, solves both variable selection and censorship problems. To achieve the
variable selection, six different penalty functions are considered: ridge, lasso, adaptive
lasso, SCAD, MCP, and elasticnet. Notice that a detailed study about penalty functions
and shrinkage techniques is provided by [14]. Local polynomial regression is used as the
smoothing method. Finally, the censorship problem is solved using the synthetic data
transformation proposed by [6].

In the light of the information given, the main difference and most important contri-
bution of this article from previous studies is that it proposes quasi-parametric estimators
based on six different penalty functions with the local polynomial technique for the right-
censored model (1). To the best of our knowledge, this kind of detailed study has not yet
been made in the literature.

The paper is organized as follows: Section 2 introduces the right-censored data phe-
nomenon and some preliminaries. Section 3 explains the local polynomial smoothing
method, and the modified semiparametric estimators are introduced based on the six
penalty functions with theoretical properties. In Section 4, the evaluation metrics are shown.
Section 5 performs a Monte Carlo simulation study, and the results are presented. Section 6
presents an analysis of hepatocellular carcinoma data as a real data example. Finally,
conclusions are given in Section 7.
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2. Preliminaries and General Estimation Procedure

Let H, F, and G be distribution functions of the variables yi, zi and ci, respectively.
More precisely, let the probability distribution functions of these variables be

H(u) = P(yi ≤ u), F(u) = P(zi ≤ u), and G(u) = P(ci ≤ u) for u ∈ R

and their corresponding survival functions are given by

H(u) = 1− H(u) = P(yi > u), F(u) = P(zi > u), and G(u) = P(ci > u).

The key idea here is to examine the effect of the explanatory variables on the response
variable by estimating the expected value of E(z|x, t ) by the regression function. In the
setting of a semiparametric regression problem, first, we need to make some identification
conditions on the response variable, censoring, and explanatory variables and their depen-
dence relationships. In other words, we take some assumptions to ensure that the model is
identifiable.

Assumption 1. (i) zi and ci are conditionally independent given (xi, ti); (ii) P( zi ≤ ci|xi, ti, zi)
= P( zi ≤ ci| zi).

It should be emphasized that Assumption 1(i) and Assumption 1(ii) are commonly
accepted assumptions regarding right-censored models and survival analysis (see [15,16]).
Assumption 1(i) is an independency condition that provides identifiability for the model.
Assumption 1(ii) indicates that covariates provide the same information about the response
variable independent of the existence of censorship (see [17]).

Because of the censoring, the classical methods for estimating the parametric and
nonparametric components of model (3) are inapplicable. The most important reason
for this is that the censored observations zi and updated random observations yi have
different expectations. This problem can be overcome by using so-called synthetic data, as
in censored linear models. We refer, for example, to the studies of [6,12], among others. In
this context, when the distribution G is known, we use synthetic data transformation

y∗iG = δiyi{1− G(yi)}−1 = δiyi
{

G(yi)
}−1 (4)

where G(.) = 1 − G(.) and G(.) denotes the distribution functions of censoring vari-
ables C, as defined in the introduction to this section. The nature of the synthetic data
method ensures that

(
Y∗iG, Xi, Wi

)
, i = 1, 2, . . . , n are independent random variables with

E
(
y∗iG|xi, ti

)
= E(zi|xi, ti ), as described in Lemma 1.

Lemma 1. If, instead of response observations zi, only {(yi, δi)}n
i=1 is observed in the context of a

semiparametric regression model and the censoring distribution G is known, then the regression
function (or mean vector) µ = x′iβ+ f (ti) is a conditional expectation; that is, E

(
y∗iG|xi, ti

)
=

E(zi|xi, ti ) = µ.

A proof of Lemma 1 is given in Appendix A.1.
Lemma 1 cannot be directly applied to the estimation f (·) if the distribution G is

unknown. To overcome this difficulty, [6] recommends replacing G with its Kaplan–Meier
estimator [18]:

Ĝ(t) = 1−
n

∏
i=1

(
n− i

n− i + 1

)I[y(i)≤ t, δ(i)=0]
, t ≥ 0 (5)

where y(1) ≤ · · · ≤ y(n) are the order statistics of y1, . . . , yn and δ(i) is the corresponding
indicator related to y(i), as defined in previous sections. In this case, that is, when the
distribution G is unknown, we consider the following synthetic data transformation:

y∗iĜ = δiyi
{

1− Ĝ(yi)
}−1, i = 1, 2, . . . , n (6)
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3. Local Polynomial Estimator

Consider the semiparametric regression model defined in (1). Here, we approxi-
mate the regression function f (ti) locally by a polynomial of order p (see [19]). Using a
Taylor series expansion in ti at a neighborhood of fixed ti0, the p.th degree polynomial
approximation of f (ti) yields

f (ti) ≈
p

∑
j=0

f (j)(ti0)

j!
(ti − ti0)

j =
p

∑
j=0

bj(ti − ti0)
j (7)

Note that fixed ti0 is determined in the range ti0 ∈ [ti − δ, ti + δ] for a small real-valued
δ and used to estimate ti locally (see [8] for details). The idea is to estimate the components
of a semiparametric model, leading to the minimization of the local weighted least squares
criterion:

min
b,β

n

∑
i=1

{
y∗iĜ −

p

∑
j=0

(ti − ti0)
jbj − x′iβ

}2

K
(

ti − ti0
h

)
(8)

where y∗
iĜ
′s are the values of the synthetic variable, as defined in (6), K(.) is a kernel function

assigning weights to each point, and h is the bandwidth parameter controlling the size of
the local neighborhood of ti0. Additionally, note that vector and matrix notation (8) can be
written as follows:

min
b,β

(
y∗Ĝ − Tb− Xβ

)′
Wn

(
y∗Ĝ − Tb− Xβ

)
(9)

where y = (y1, . . . , yn)
′, b =

(
b0, . . . , bp

)′, Wn = diag
(

K
(

ti−ti0
h

))
is a n × n weights

matrix whose properties are provided in Assumption 4. Note that the minimum problem
(9) has a unique solution based on the following matrices:

T =


1 (t1 − ti0) · · · (t1 − ti0)

p

1 (t2 − ti0) · · · (t2 − ti0)
p

...
1

...
(tn − ti0)

...
. . .

...
(tn − ti0)

p

 and X =


x11 x12 · · · x1k
x21 x22 . . . x2k
...

xn1

...
xn2

...
...

. . . xnk


For technical convenience, we assume that β is known to be the true parameter. Then

the solution to minimizing (9) is

^
b =

(
T’WnT

)−1
T’Wn

(
y∗Ĝ − Xβ

)
(10)

It can be seen from the Taylor series expansion given in (7) that one needs to select
the first element of the vector b̂ =

(
b̂0, . . . , b̂k

)
in order to obtain f̂ (t0) = b̂0. Then, for

the fixed neighborhood t0, the deconvoluted local polynomial estimator of the regression
function can be written as

f̂ (t0; h) =
n
∑

i=1
ω1
′(ti
′Wniti)

−1ti
′Wni

(
y∗

iĜ
− x′iβ

)
= ω1

′(T’WnT
)−1T’Wn(y− Xβ) = Sh

(
y∗

Ĝ
− Xβ

) (11)

where Sh = ω1′
(
T’WnT

)−1T’Wn denotes the deconvoluted local polynomial smoother
matrix, ω1

′ = (1, t, . . . , tp) ∈ R(p+1) dimensional matrix having 1 in the first position and
0 otherwise, and the matrices T and Wn are as defined above.

After the theoretical confirmation by giving Equations (10) and (11), the cases of both
model parameters (β, f) are unknown. To obtain the local polynomial-based estimates
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(
^
βL,

^
fL

)
, the smoother matrix Sh given right after Equation (11) is used to calculate the

following partial residuals in matrix form:

~
X = (In − S)X = xi −

n

∑
i=1

ωi
′(ti
′Wniti

)−1ti
′Wnixi = x̃i (12)

and
~
y
∗
Ĝ = (In − S)y∗Ĝ = y∗iĜ i −

n

∑
i=1

ωi
′(ti
′Wniti

)−1ti
′Wniy∗iĜ = ỹ∗iĜ (13)

where

S =

(Sh)t1
...

(Sh)tn

 =


(1 0 . . . .0)

(
T′t1

Wt1Tt1

)−1
Tt1
′Wt1

...
(1 0 . . . .0)

(
T′tn

Wtn Ttn

)−1Ttn
′Wtn


Thus, we obtain a transformed set of data based on local residuals. Considering these

partial residuals for the vector β yields the following least squares instead of criterion (9):

min
β

n

∑
i=1

{
ỹ∗iĜ −

~
x
′
iβ
}2

=
∣∣∣|(~

y
∗
Ĝ − X̃β

)
|
∣∣∣2 (14)

where
~
x
′
i is the i.th row of the matrix

~
X. Under Assumptions 2–4, by applying the least

squares technique to (14), we obtain a “modified local polynomial estimator”
^
βL for the para-

metric part of the semiparametric model (3), given by

^
βL =

(
~
X
′ ~
X
)−1 ~

X
′~
y
∗
Ĝ (15)

Correspondingly, a “modified local polynomial estimator”
^
fL of the function f (.) for

the nonparametric part in the semiparametric model (3) is defined as

^
fL = S

(
y∗Ĝ − X

^
βL

)
(16)

The implementation details of the Equations (15) and (16) are given in Appendix A2.
We conclude this section with the following assumptions necessary to obtain the main
results. These assumptions are quite general and easily fulfilled.

Assumption 2. When the covariates (xij, ti) are fixed design points, there exist continuous functions
hj(.) defined on [0, 1] such that each component of xi satisfies

xij = hj(ti) + vij , 1 ≤ i ≤ n, 1 ≤ j ≤ k

where
{

vij
}

is a sequence of real numbers satisfying

lim
n→∞

1
n ∑n

i=1 visv′im = csm, 1 ≤ s ≤ k, 1 ≤ m ≤ k

and C = (csm) is a (k× k) dimensional nonsingular matrix.

Assumption 3. The functions f (.) and hj(.) are Lipschitz continuous of order 1 for = 1, . . . , k.

Note that Assumption 2 generalizes the conditions of [20,21], where (xij, ti) are fixed
design points for a partially linear model with uncensored data. Assumption 3 is required
to establish asymptotic normality with an observed value ti.



Entropy 2022, 24, 1833 6 of 26

Assumption 4. The weight functions Wn satisfy these conditions:

(i.) max1≤i≤n ∑n
j=1 Wni

(
tj
)
= O(1)

(ii.) max1≤i,j≤n ∑n
j=1 Wni

(
tj
)
= O

(
n−2/3

)
(iii.) max1≤i≤n ∑n

j=1 Wni
(
tj
)

I
(∣∣ti − tj

∣∣ > an
)
= O(bn),

where I(.) is an indicator function, an satisfies lim supn→∞na3
n < ∞, and bn satisfies

lim supn→∞nb3
n < ∞.

3.1. Ridge-Type Local Polynomial Estimator

In this paper, we confine ourselves to the local polynomial estimators of the vector
parameter β and the unknown smooth function f (.) in a semiparametric model. For a
given bandwidth parameter h, the corresponding estimators β and f based on model (2)
are described by (14) and (15), respectively. Multiplying both sides of model (2) by (In − S),
we obtain

~
Z =

~
Xβ+ ε̃ (17)

where
~
Z = (In − S)Z,

~
ε =

~
f + ε∗,

~
f = (In − S)f, and ε∗ = (In − S)ε, similar to (12) and

(13).
This consideration turns model (17) into an optimization problem to obtain the estima-

tor of the vector β corresponding parametric part of the semiparametric model in (2). In
this context, this model leads to the following penalized least squares (PLS) criterion for
the ridge regression problem:

PLSRL = arg min
β

(
~
Z−

~
Xβ
)′(~

Z−
~
Xβ
)
+ λβ’β (18)

where λ is a positive shrinkage parameter that controls the magnitude of the penalty. The
solution to this minimization problem (17) provides the following Theorem 1.

Theorem 1. Ridge-type local polynomial estimator for β is presented by
^
βRL and is expressed based

on the local polynomial smoothing matrix S by

^
βRL(λ) =

(
~
X
′ ~
X + λIk

)1 ~
X
′~
y
∗
Ĝ (19a)

where ỹ∗Ĝ is a vector of updated response observations, as defined in Equations (6) and (13).

A proof of Theorem 1 is given in Appendix A.3.
As shown in Theorem 1, when λ = 0, the ridge-type local polynomial estimate reduces

to an ordinary least squares estimate problem based on the local residuals defined in
Equations (12) and (13). It should be noted that in order to estimate the unknown function
f, we imitate Equation (16) and define

^
fRL = S

(
y∗Ĝ − X

^
βRL(λ)

)
(19b)

Thus, the estimator (19b) is stated as the ridge-type local polynomial estimator of the
unknown function f in the semiparametric model (1.2).

3.2. Penalty Estimation Strategies Based on Local Polynomial

Several penalty functions are discussed for linear and generalized regression models
in the literature (see [22]). In this paper, we study the minimax concave penalty (MCP),
the least absolute shrinkage and selection operation (lasso), the smoothly clipped absolute
deviation method (SCAD), the adaptive lasso, and the elasticnet method, which is a regu-
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larized regression technique that linearly combines the L1 and L2 penalties of the lasso and
the ridge regression methods, respectively.

In this paper, we suggest local polynomial estimators based on different penalties
for the components of the semiparametric regression model. For a given penalty function
Pλ(β) and tuning parameter λ, the general form of the penalized least squares (PLSG) of
penalty estimators can be expressed as

PLSG = arg min
β

{
n

∑
i=1

(
ỹ∗iĜ −

~
x
′
iβ
)2
}
+ Pλ(β) =

(
~
y
∗
Ĝ −

~
Xβ
)′(

~
y
∗
Ĝ −

~
Xβ
)
+ Pλ(β) (20)

Note that the vector
^
β that minimizes (20) for lasso and ridge penalties is known

as a bridge estimator, proposed by [23]. On the other hand, elasticnet, SCAD, MCP, and
adaptive lasso involve different penalties, which are inspected in the remainder of this
paper. It should be emphasized that in the mentioned four penalty functions, in the penalty
term Pλ(β) = λ ∑

∣∣∣∣∣∣β j

∣∣∣∣∣∣qq satisfies the Lq norm of the regression coefficients β j (see [24–26]).
Thus, the different penalty estimators corresponding to the parametric and nonparametric
components of the semiparametric model can be defined for different values of degree q
and shrinkage parameter λ.

3.2.1. Estimation Procedure for the Parametric Component

From (20), we see that for q = 2, ridge estimates corresponding to the parametric
component can be obtained by minimizing the following penalized residual sum of squares

^
βRL = arg min

β

{
n

∑
i=1

(
ỹ∗iĜ −

~
x
′
iβ
)2

+ λ
k

∑
j=1

∣∣β j
∣∣2} (21)

where ỹ∗
iĜ

is the ith synthetic observation of
~
y
∗
Ĝ and

~
x
′
i is the i.th row of the matrix

~
X. Notice

that the solution (21) has the same regularization estimate stated in (19a). It should also be
noted that when q = 1 in (20), we obtain the estimator known as the lasso.

Lasso: Proposed by [24], lasso, a penalized least squares method, is a regularization
method for simultaneous estimation and variable selection that estimates with the L1
penalty. The modified local polynomial estimators based on the lasso penalty can be
defined as

^
βLL = arg min

β

{
n

∑
i=1

(
ỹ∗iĜ −

~
x
′
iβ
)2

+ λ
k

∑
j=1

∣∣β j
∣∣} (22)

Although Equation (22) may seem subtle, the absolute penalty term makes it impossi-
ble to find an analytical solution for the lasso. Initially, lasso solutions are obtained through
quadratic programming.

Adaptive lasso: Zou [25] suggested modifying the lasso penalty by using adaptive
weights on L1 penalties on the regression coefficients. This weighted lasso, which has oracle

properties, is referred to as the adaptive lasso. The local polynomial estimator
^
βaLL using

the adaptive lasso penalty can be defined as follows:

^
βaLL = arg min

β

{
n

∑
i=1

(
ỹ∗iĜ −

~
x
′
iβ
)2

+ λ
k

∑
j=1

ŵj
∣∣β j
∣∣} (23)

where w is a weight function given by

ŵj =
1∣∣β̂∗∣∣q , q > 0
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It should be noted that β̂∗ is an appropriate estimator of β here. For example, an
ordinary least squares (OLS) estimate can be used as a reference value. To obtain the
adaptive lasso estimates in (23), it is necessary to choose q > 0 and compute the weights
after obtaining the OLS estimate.

SCAD: A disadvantage of the lasso method is that the penalty term is linear in the size
of the regression coefficient, so it tends to give highly biased estimates for large regression
coefficients. To account for this bias, [26] proposed a SCAD penalty obtained by replacing∣∣β j
∣∣ in (22) with Pα,λ

∣∣β j
∣∣. A modified local estimator

^
βSL based on the SCAD penalty can

be described as
^
βSL = arg min

β

{
n

∑
i=1

(
ỹ∗iĜ −

~
x
′
iβ
)2

+
k

∑
j=1

Pα,λ
∣∣β j
∣∣} (24a)

where Pα,λ(.) is the SCAD penalty defined by

Pα,λ = λ

{
I(|β|) ≤ λ +

(αλ− |β|)+
(α− 1)λ

I(|β| > λ)

}
, and for λ ≥ 0 (24b)

It should be stated that here λ > 0 and α > 2 are the penalty parameters, I(.) is the
indicator function, and (t)+ = max(t, 0). In addition, (24b) is equivalent to the L1 penalty
for α = ∞.

Elasticnet: The elastic net, proposed by [27], is a penalized least squares regression
technique that has been widely used in regularization and automatic variable selection to
select groups of correlated variables. Note that the elastic net method linearly combines the
L1 penalty term, which enforces the sparsity of the elastic net estimator, and the L2 penalty
term, which ensures appropriate selection of correlated variable groups. Accordingly, the

modified local estimator
^
βENL using an elasticnet penalty is the solution of the following

minimization problem:

^
βENL = arg min

β

{
n

∑
i=1

(
ỹ∗iĜ −

~
x
′
iβ
)2

+ λ1

k

∑
j=1

∣∣β j
∣∣2 + λ2

k

∑
j=1

∣∣β j
∣∣} (25)

where λ1 and λ2 are the postive regularization parameters. Equation (25) ensures the
estimates corresponding to the parametric part of the semiparametric regression model (2),
as in the other methods.

MCP: Introduced by [28], MCP is an alternative method to obtain less biased estimates
of the nonzero regression coefficients in a sparse model. For the given regularization

parameters λ > 0 and α > 0, the local polynomial estimator
^
βMCL based on the MCP

penalty can be defined as

^
βMCL = arg min

β

{
n

∑
i=1

(
ỹ∗iĜ −

~
x
′
iβ
)2

+
k

∑
j=1

Pα, λ

(∣∣β j
∣∣)} (26)

where Pα, λ(.) is the MCP penalty given by

Pα, λ(β) =
∫ |β|

0

(
λ− x

α

)
+

dx =

(
λ|β| − β2

2α

)
I(0 ≤ |β| < λα) +

λ2α

2
I(|β| ≥ λα)

3.2.2. The Estimation Procedure for the Nonparametric Component

Equations (21)–(26) provide modified local polynomial estimates based on different
penalties for the parametric part of the semiparametric model in (2). Similar in spirit

to (19b), the vector of estimated parametric coefficients
^
βLL given in (21) can be used to

construct the estimation of the nonparametric part in the same model. In this case, we
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obtain the modified local estimates based on the lasso penalty of the unknown function,
given by

^
fLL = S

(
y∗Ĝ − X

^
βLL

)
(27)

as defined in the previous section.

Note that when
^
βaLL defined in (23) is written instead of

^
βLL in Equation (27), local

estimates of the nonparametric part based on the adaptive lasso penalty are obtained and

are stated as
^
faLL symbolically. Similarly, replacing

^
βLL in (27) with

^
βSL,

^
βENL, and

^
βMCL

yields modified local polynomial estimators, denoted as
^
fSL,

^
fENL, and

^
fMCL based on

the SCAD, elasticnet, and MCP penalties, respectively, for the nonparametric part of the
right-censored semiparametric model (2).

3.2.3. Some Remarks on the Penalties

Remarks on the penalties can be stated as follows:

• The regularization based on the L1 norm produces sparse solutions as well as feature
selection. However, the L2 norm produces nonsparse solutions and does not have
feature selection.

• Although all of the regularization methods shrink most of the coefficients towards
zero, SCAD, MCP, and adaptive lasso apply less shrinkage to nonzero coefficients.
This is known as bias reduction.

• As noted earlier, the tuning parameter α, used for SCAD and MCP estimations, controls
how quickly the penalty rate goes to zero. This affects the bias and stability of the
estimates, in the sense that there is a greater chance for more than one local minimum
to exist as the penalty becomes more concave.

• As α→ ∞ , the MCP and SCAD penalties converge to the L1 norm penalty. Conversely,
as α→ 0 , the bias is minimized, but both MCP and SCAD estimates become unstable.
Note also that lower values of the tuning parameter α for SCAD and MCP produce
more highly variable, but less biased, estimates.

• The elasticnet penalty is designed to deal with highly correlated covariates more
intelligently than other sparse penalties, such as the lasso. Note that the lasso penalty
tends to choose one among highly correlated variables, while elasticnet uses them all.

4. Performance Indicators

Several performance measurements are described in this section with which to evalu-
ate the performance of the modified six semiparametric local polynomial estimators based
on penalty functions: ridge (RL), lasso (LL), adaptive lasso (aLL), SCAD (SL), MCP (MCL),
and elasticnet (ENL). Note that the abbreviations given in parentheses here denote the
estimators. The performance of the estimators are examined individually for the para-
metric component, nonparametric component, and overall estimated model. Accordingly,
evaluation metrics are given by:

4.1. Measures for the Parametric Component

Root mean squared error (RMSE) of estimated regression coefficients
(

β̂
)
. The calcu-

lation of RMSE is given by:

RMSE
(
β,

^
β

)
=

√
k−1
(
β−

^
β

)T(
β−

^
β

)
(28)

where
^
β is the obtained estimate of β by any of the introduced six methods. It is replaced

by
^
βRL,

^
βLL,

^
βaLL,

^
βSL,

^
βENL, and

^
βMCL to obtain the RMSE score for each estimator.
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Coefficient of determination
(
R2) for the estimated models. Note that R2 allows us

to see overall model performance of the six methods. It can be calculated as follows:

R2 = 1− ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 , i = 1, . . . , n (29)

Sensitivity, specificity, and accuracy scores obtained from a confusion matrix. If true
values of an interested variable are available, the confusion matrix can be obtained as
in Table 1. This matrix allows us to measure the performance of the penalty functions
for right-censored data. Accordingly, sensitivity, specificity, and accuracy values can be
calculated as follows:

acc = (a + d)/(a + b + c + d); sens = a/(a + b); spec = d/(c + d) (30)

Table 1. Confusion matrix for variable selection.

Covariate of Interest Irrelevant Covariate

Covariate of interest a: no. true selection of
covariate of interest

b: no. false selection of
covariate of interest

Irrelevant covariate c: no. false selection of
irrelevant covariate

d: no. true selection of
irrelevant covariate

G score calculated by geometric mean of sensitivity and specificity given in
Equation (31):

G =
√

sens× spec (31)

4.2. Measures for the Nonparametric Component

Mean squared error (MSE) is used to measure the performance of the estimated non-

parametric components by six methods:
^
fRL,

^
fLL,

^
faLL,

^
fSL,

^
fENL, and

^
fMCL. Assume that

^
f is the fitted nonparametric function obtained from any of the six methods. Accordingly,
the MSE is computed as follows:

MSE
(

^
f
)
= n−1

(
n

∑
i=1

f (ti)− f̂ (ti)

)2

= n−1
(

f−
^
f
)T(

f−
^
f
)

(32)

Relative MSE (ReMSE) is used to make a comparison between performances of the
six methods on the estimation of the nonparametric component. The calculation of the
ReMSE is given by

ReMSE
(

^
fi

)
= n−1

m

[
∑
i 6=j

MSE
(

^
fi

)
/MSE

(
^
f j

)]
(33)

where nm denotes the number of methods, which are six for this paper.

5. Simulation Study

We carried out an intense simulation study to evaluate the finite sample performance
of the introduced six semiparametric estimators for a right-censored partially linear model.
These estimators are compared with each other to evaluate their respective strengths and
weaknesses in handling the right-censored problem. To obtain reproducibility, simulation codes
with functions are provided in the following GitHub link: https://github.com/yilmazersin1
3?tab=repositories accessed on 31 August 2022. The estimators are computed using the

https://github.com/yilmazersin13?tab=repositories
https://github.com/yilmazersin13?tab=repositories


Entropy 2022, 24, 1833 11 of 26

formulations in Section 3. The simulation design and data generation are described as
follows:

Simulation Design: Two main scenarios are considered for generating the zero and
nonzero coefficients of the model because the focus of the penalty functions is on making
an accurate variable selection. In each scenario, simulation runs are made for

• Three sample sizes: n = 50, 150, 300
• Two censoring levels: CL = 10%, 30%
• Two numbers of parametric covariates k = 1540

All possible simulation configurations are repeated 1000 times. To evaluate the per-
formance of the methods, the performance indicators described in Section 4 are used. The
scenarios are defined in the data generation section below.

Data Generation: Regarding model (1), zi = x′iβ+ f (ti) + εi, 1 ≤ i ≤ n, each element
of the model obtained as

xi ∼ MN[µk×1, Σk×k]; ti = 2.4(i− 0.5)/n, f (ti) = −ti sin
(
−t2

i

)
The true values of regression coefficients are determined for both Scenarios 1 and 2 as

follows:

(Scenario 1) β j =


5 i f j = 1, . . . , 5
−3 i f j = 11, . . . , 15
0 otherwise

(Scenario 2) β j =


1 i f j = 1, . . . , 5
−0.5 i f j = 11, . . . , 15

0 otherwise

For both scenarios, there are 10 nonzero β j’s to be estimated and (k− 10) sparse
coefficients. The main purpose of using these two scenarios is that it allows us to measure
the capacity of the estimators on the selection of nonzero coefficients when β j’s are close
to zero. In addition, these scenarios make it possible to see how the censoring level (CL)
affects their performances. These scenarios allow us to inspect the convergence of the estimated
coefficients to the true ones when the sample size is becoming larger practically under censored data,
which can be counted as an important contribution of this paper.

Regarding the censoring data, the censoring variable ci is generated as ci ∼ N
(

µy, σ2
y

)
independently of the initially observed variable yi. An algorithm is provided by [29].
Another important point for this study is the selection of the shrinkage parameters and the
bandwidth parameter for the local polynomial approach for the introduced six estimators.
In this study, the improved Akaike information criterion (AICc), proposed by [30], is used.
It can be calculated as follows:

AICc(λ; h) = log
(

σ2
)
+ 1 +

(
2
(
∑r<k I

(
β̂r(λ, h) 6= 0

)
+ 1
)(

n−∑r<k I
(

β̂r((λ, h)) 6= 0
)
− 2
))

where β̂r(λ, h) is the estimated coefficient based on the shrinkage parameter λ > 0, and the
bandwidth h > 0 and σ2 is the variance of the model, and ∑

r<k
I
(

β̂r(λ, h) 6= 0
)

denotes the

number of nonzero regression coefficients. Note that, due to the projection (hat) matrix, the
introduced estimation procedures (except ridge regression) cannot be written; the number
of nonzero coefficients is used instead of the hat matrix.

The results of the simulation study are presented individually for parametric and
nonparametric components below. Before that, Figure 1 is presented to provide some
information about the generated data. Figure 1 is formed by four panels. Panels (a) and (b)
show the original, right-censored, and synthetic response values for CL = 10%. Panels (c)
and (d) show the same for CL = 30%.
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Figure 1. Overview for the generated data based on different simulation configurations.

In Figure 1, two plots (i− ii) are represented for the different configurations of Scenar-
ios 1 and 2. In plot (i), scatter plots of the data points for n = 50, CL = 10%, and k = 15 are
given. In panel (b) of (i), the working procedure of synthetic data transformation can be
seen clearly. It gives zero to right-censored observations and increases the magnitude of
observed data points. Thus, it makes equal the expected value of the synthetic response
variable and original response variable, as indicated in Section 2. Similarly, plot (ii) shows
the scatter plots of data points for n = 150, CL = 30%, and k = 40, which makes it possible
to see heavily censored cases. In panel (b) of (ii), due to heavy censorship, the magnitude of
the increments in the observed data points is larger than (i), which is the working principle
of the synthetic data. This is a disadvantage because it significantly manipulates the data
structure, although it still solves the censorship problem.

To describe the generated dataset further, Figure 2 shows the nonparametric com-
ponent of the right-censored semiparametric model. In panel (a), the smooth function
can be seen for the small sample size (n = 50), low censoring level (CL = 10%), and
low number of covariates (k = 15). Panel (b) shows the nonparametric smooth function
for n = 150, k = 15, and CL = 10%. It should be emphasized that the censoring level
or number of the parametric covariates does not affect the shape of the nonparametric
component. Thus, there is no need to show all possible generated functions here. Note
that the nonparametric component affects the number of covariates and the censoring level
indirectly in the estimation process.

As previously mentioned, this paper introduces six modified estimators based on
penalty and shrinkage strategies. In Figure 3, the shrinkage process of the estimators,
according to the shrinkage parameter “lambda,” is provided in panels (i) and (ii). In panel
(i), shrunk regression coefficients are shown for scenario 1, n = 150, CL = 30%, and k = 40.
Panel (ii) is drawn for scenario 2, n = 50, CL = 10%, and k = 15. When Figure 3 is
inspected carefully, it can be seen that in panel (i), due to a high censoring level and many
covariates, the shrinkage of the coefficients is more challenging than in panel (ii). One
of the reasons for that is, in Scenario 2, coefficients are determined as smaller than the
coefficients in Scenario 1 while generating data. For both panels, it can be observed that
the SCAD and MCP methods behave similarly. As expected, they shrunk the coefficients
quicker than the others. Additionally, lasso and ElasticNet seem close to each other for both
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panels. However, adaptive lasso differs from the others in both panels. The reason for this
is discussed with the results given in Section 5.1.
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5.1. Analysis of Parametric Component

In this section, the estimation of the parametric component of a right-censored semi-
parametric model is analyzed, and results are presented for all simulation scenarios in
Tables 2–5 and Figures 4–7. The performance of the estimators is evaluated using the
metrics given in Section 4: RMSE, R2, sensitivity, specificity, accuracy, and G-score. In
addition to the performance criteria, the selection ratio of the methods is calculated for the
estimators. The selection ratio can be defined as follows:

Selection Ratio: The ratio of the selected true nonzero coefficients by the correspond-
ing estimator in 1000 simulation repetitions. The formulation can be given by:

Selection Ratio
(

β̂ j
)
=

1
1000

1000

∑
i=1

I
(

β̂
(i)
j 6= 0

)
,

where β̂
(i)
j is the estimated coefficient for i.th simulation by any of the introduced estimators.

Results are given in Figures 6 and 7.
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Table 2. RMSE and R2 values obtained from all simulation runs (Scenario 1).

n CL k
^
βRL

^
βLL

^
βaLL

^
βSL

^
βMCL

^
βENL

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

50
0.1

15 0.779 0.908 0.782 0.905 0.758 * 0.906 0.743 0.909 0.787 0.908 0.777 0.907
40 1.414 0.879 0.777 * 0.875 0.730 0.884 0.952 0.880 1.536 0.876 0.784 0.881

0.3
15 1.602 * 0.653 1.630 0.646 1.670 0.640 1.620 0.651 1.617 0.651 1.581 0.653
40 2.779 0.617 1.387 * 0.610 1.547 0.590 2.264 0.618 3.234 0.608 1.367 0.625

150
0.1

15 0.410 0.949 0.410 0.948 0.386 * 0.948 0.381 0.949 0.409 0.949 0.411 0.948
40 0.423 0.942 0.312 0.945 0.236 0.950 0.294 * 0.950 0.423 0.942 0.379 0.944

0.3
15 0.830 0.811 0.864 0.805 0.814 0.810 0.822 * 0.811 0.830 0.810 0.834 0.809
40 0.854 0.780 0.692 * 0.787 0.621 0.799 0.783 0.789 0.855 0.778 0.741 0.791

300
0.1

15 0.263 0.968 0.267 0.967 0.237 0.968 0.239 * 0.969 0.261 0.968 0.262 0.968
40 0.276 0.965 0.213 0.968 0.154 0.971 0.177 * 0.970 0.273 0.965 0.258 0.966

0.3
15 0.562 0.895 0.583 0.893 0.550 * 0.895 0.545 0.896 0.562 0.895 0.568 0.895
40 0.545 0.878 0.469 * 0.884 0.363 0.897 0.464 0.889 0.545 0.878 0.512 0.882

Bold ones are the best performance scores; *: the second-best score in RMSE scores.

Table 3. RMSE and R2 values obtained for Scenario 2.

n CL k
^
βRL

^
βLL

^
βaLL

^
βSL

^
βMCL

^
βENL

RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2 RMSE R2

50
0.1

15 0.211 0.890 0.207 0.884 0.204 0.885 0.205 * 0.889 0.209 0.889 0.203 0.889
40 0.379 0.890 0.198 0.848 0.185 * 0.865 0.251 0.882 0.437 0.885 0.202 0.874

0.3
15 0.363 * 0.635 0.365 0.617 0.384 0.614 0.365 0.629 0.365 0.630 0.355 0.632
40 0.608 0.581 0.295 * 0.543 0.323 0.542 0.503 0.578 0.688 0.570 0.290 0.582

150
0.1

15 0.112 0.892 0.106 0.891 0.100 0.891 0.102 * 0.892 0.109 0.891 0.108 0.891
40 0.114 0.899 0.083 * 0.893 0.064 0.899 0.083 0.900 0.110 0.896 0.101 0.899

0.3
15 0.174 0.765 0.179 0.757 0.176 0.759 0.171 0.764 0.173 * 0.764 0.173 * 0.763
40 0.189 0.737 0.151 * 0.733 0.141 0.743 0.174 0.740 0.187 0.734 0.169 0.743

300
0.1

15 0.074 0.897 0.069 0.897 0.064 0.897 0.066 * 0.897 0.071 0.897 0.071 0.897
40 0.077 0.897 0.068 0.890 0.045 0.895 0.055 * 0.898 0.074 0.895 0.073 0.895

0.3
15 0.125 0.834 0.126 0.831 0.121 * 0.832 0.120 0.834 0.123 0.833 0.124 0.833
40 0.123 0.811 0.102 * 0.809 0.087 0.818 0.106 0.816 0.121 0.808 0.117 0.810

Bold ones are the best performance scores; *: the second-best score in RMSE scores.

Tables 1 and 2 include the RMSE scores for the estimated coefficients calculated from
(4.1) and R2 of the model for Scenarios 1 and 2. The best scores are indicated with bold
text. If the two tables are inspected carefully, two observations can be made about the
performance of the methods for both Scenarios 1 and 2. Regarding Scenario 1, when the
sample size is small (n = 50), ENL and SL estimators give smaller RMSE scores and higher
R2 values than the other four methods. On the other hand, when the sample size becomes
larger (n = 150, n = 300), aLL takes the lead in terms of estimation performance. The
results for different censoring levels show that aLL is less affected by censorship than SL
and the other methods. This can be observed in Table 1 clearly.
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Table 4. G-score and accuracy values obtained for all simulation combinations (Scenario 1).

n CL k
^
βRL

^
βLL

^
βaLL

^
βSL

^
βMCL

^
βENL

Acc G Acc G Acc G Acc G Acc G Acc G

50
0.1

15 0.667 0.082 0.772 0.699 0.859 0.874 * 0.845 * 0.900 0.715 0.455 0.679 0.190
40 0.250 0.050 0.767 0.724 * 0.828 0.797 0.717 0.688 0.439 0.548 0.576 0.612

0.3
15 0.667 0.082 0.759 * 0.753 0.761 0.728 * 0.735 0.646 0.673 0.215 0.687 0.311
40 0.250 0.050 0.756 0.694 * 0.746 * 0.713 0.561 0.549 0.338 0.470 0.656 0.628

150
0.1

15 0.667 0.082 0.772 0.734 0.916 0.905 * 0.859 * 0.912 0.716 0.472 0.676 0.131
40 0.250 0.050 0.707 0.690 0.952 0.930 0.722 * 0.698 * 0.377 0.527 0.343 0.481

0.3
15 0.667 0.082 0.780 * 0.752 0.843 0.815 0.771 0.805 * 0.692 0.357 0.672 0.143
40 0.250 0.050 0.712 * 0.692 * 0.868 0.826 0.536 0.593 0.313 0.472 0.388 0.531

300
0.1

15 0.667 0.082 0.768 0.572 0.963 0.976 0.911 * 0.943 * 0.725 0.549 0.669 0.112
40 0.250 0.050 0.700 0.687 0.967 0.948 0.805 * 0.768 * 0.400 0.543 0.322 0.440

0.3
15 0.667 0.082 0.768 0.673 0.887 0.844 0.809 * 0.855 * 0.696 0.388 0.668 0.097
40 0.250 0.050 0.670 * 0.668 * 0.936 0.906 0.595 0.621 0.319 0.482 0.339 0.516

Bold ones are the best performance scores; *: the second-best score in G-scores and accuracy.

Table 5. G-score and accuracy metrics for all simulation combinations (Scenario 2).

n CL k
^
βRL

^
βLL

^
βaLL

^
βSL

^
βMCL

^
βENL

Acc G Acc G Acc G Acc G Acc G Acc G

50
0.1

15 0.667 0.082 0.740 0.489 0.837 0.823 * 0.809 * 0.838 0.692 0.299 0.671 0.127
40 0.250 0.050 0.785 * 0.721 * 0.793 0.751 0.668 0.642 0.378 0.505 0.516 0.571

0.3
15 0.667 0.082 0.705 0.585 0.723 * 0.656 0.729 0.642 * 0.679 0.283 0.675 0.286
40 0.250 0.050 0.752 0.585 * 0.731* 0.843 0.526 0.525 0.326 0.462 0.580 0.272

150
0.1

15 0.667 0.082 0.699 0.433 0.895 0.890 0.841 * 0.873 * 0.701 0.435 0.667 0.082
40 0.250 0.050 0.757 * 0.729 * 0.928 0.895 0.665 0.660 0.343 0.517 0.296 0.404

0.3
15 0.667 0.082 0.749 0.546 0.837 0.796 0.767 * 0.714 * 0.692 0.371 0.668 0.097
40 0.250 0.050 0.721 * 0.693 * 0.859 0.816 0.517 0.585 0.307 0.470 0.316 0.472

300
0.1

15 0.667 0.082 0.709 0.512 0.953 0.969 0.860 * 0.897 * 0.724 0.592 0.668 0.097
40 0.250 0.050 0.625 0.679 * 0.951 0.927 0.696 * 0.679 * 0.358 0.521 0.292 0.255

0.3
15 0.667 0.082 0.709 0.353 0.892 0.916 0.788 * 0.800 * 0.688 0.311 0.667 0.082
40 0.250 0.050 0.719 * 0.690 * 0.912 0.877 0.572 0.609 0.313 0.472 0.277 0.327

Bold ones are the best performance scores; *: the second-best score in G-scores and accuracy.
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Together with the RMSE scores, one other important metric to evaluate the perfor-

mance of the parametric component estimation is 𝐺-score, which measures the true selec-
tion made by the estimators for the sparse and nonzero subsets based on the confusion 
matrix given in Table 1. In this context, Figure 5 is drawn to illustrate the 𝐺-scores of the 
methods for all simulation combinations using line plots. Note that the 𝐺-score changes 
between the range [0,1] and the lines of methods that are close to 1 are notated as better 
than the others in terms of successful determination of sparsity. 
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Table 4. 𝐺-score and 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 values obtained for all simulation combinations (Scenario 1). 𝒏 𝑪𝑳 𝒌 𝛃෡𝑹𝑳 𝛃෡𝑳𝑳 𝛃෡𝒂𝑳𝑳 𝛃෡𝑺𝑳 𝛃෡𝑴𝑪𝑳 𝛃෡𝑬𝑵𝑳 𝑨𝒄𝒄. 𝑮 𝑨𝒄𝒄. 𝑮 𝑨𝒄𝒄. 𝑮 𝑨𝒄𝒄. 𝑮 𝑨𝒄𝒄. 𝑮 𝑨𝒄𝒄. 𝑮 

50 
0.1 

15 0.667 0.082 0.772 0.699 0.859 0.874 * 0.845 * 0.900 0.715 0.455 0.679 0.190 
40 0.250 0.050 0.767 0.724 * 0.828 0.797 0.717 0.688 0.439 0.548 0.576 0.612 

0.3 
15 0.667 0.082 0.759 * 0.753 0.761 0.728 * 0.735 0.646 0.673 0.215 0.687 0.311 
40 0.250 0.050 0.756 0.694 * 0.746 * 0.713 0.561 0.549 0.338 0.470 0.656 0.628 

150 
0.1 

15 0.667 0.082 0.772 0.734 0.916 0.905 * 0.859 * 0.912 0.716 0.472 0.676 0.131 
40 0.250 0.050 0.707 0.690 0.952 0.930 0.722 * 0.698 * 0.377 0.527 0.343 0.481 

0.3 
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300 
0.1 

15 0.667 0.082 0.768 0.572 0.963 0.976 0.911 * 0.943 * 0.725 0.549 0.669 0.112 
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40 0.250 0.050 0.670 * 0.668 * 0.936 0.906 0.595 0.621 0.319 0.482 0.339 0.516 

Bold ones are the best performance scores; *: the second-best score in 𝐺-scores and accuracy. 

Tables 4 and 5 present the accuracy rates and 𝐺-scores for all methods and simula-
tion configurations for both Scenarios 1 and 2. Note that, because the ridge penalty is un-
able to shrink the estimated coefficients towards zero, the specificity of RL is always cal-
culated as zero. Thus, RL does not have a 𝐺-score. When the tables are examined, it can 
be clearly seen that the prominent methods are aLL, LL, and SL. The aLL produces satis-
factory results for each simulation configuration. On the other hand, the other two meth-
ods, LL and SL, give good results under different conditions. When this situation is exam-
ined in detail, it can be seen that the SL method produces better results when 𝑘 = 15, and 
the LL method when 𝑘 = 40 with aLL. In addition, it can be said that the level of censor-
ship and the sample size do not affect this situation, except for an increase or decrease in 
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Unlike the evaluation criteria given in Section 4, the frequency of choosing the correct 
coefficients for each method in the simulation study is analyzed, and the results are pre-
sented for both scenarios in Figures 6 and 7 with bar plots. Figure 6 presents two panels 
(i and ii), which demonstrate the impact of censorship, one of the main purposes of this 
article. As expected, as censorship increases, the frequency of selection decreases for the 
nonzero coefficients. The point here is to reveal which methods are less affected by this. It 
can be observed in Figure 6 that the MCL and ENL methods are less affected by censorship 
in terms of the frequency of selection of nonzero coefficients. However, since these meth-
ods are less efficient than the SL, LL, and aLL methods in determining ineffective coeffi-
cients, their overall performance is lower (see Tables 4 and 5). On the other hand, the SL, 
LL, and aLL methods make a balanced selection for both subsets (no effect-non-zero), 
which indirectly makes them more resistant to censorship. 

(i) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1, 𝑛 = 50, 𝐶𝐿 = 10%, 𝑘 = 15 (ii) 𝑆𝑐𝑒𝑛𝑎𝑟𝑖𝑜 1, 𝑛 = 50, 𝐶𝐿 = 30%, 𝑘 = 15 

  
Figure 6. Comparison of the modified estimators regarding deciding the true coefficient for all sim-
ulation runs. The dark-colored bars denote the selection ratios of nonzero regression coefficients, and the 
gray-colored ones represent the ratios for sparse coefficients. 

Figure 6. Comparison of the modified estimators regarding deciding the true coefficient for all
simulation runs. The dark-colored bars denote the selection ratios of nonzero regression coefficients, and
the gray-colored ones represent the ratios for sparse coefficients.
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components by the introduced six estimators. Performance scores of the methods are 
given in Tables 6 and 7, and 𝑀𝑆𝐸 and 𝑅𝑒𝑀𝑆𝐸 metrics are used. Additionally, Figures 8 
and 9 are provided to show the real smooth function versus all estimated curves for indi-
vidual simulation repeats. These figures can provide information about the variation of 
the estimates according to both scenarios and censoring effects. Finally, in Figure 10, esti-
mated curves obtained from all methods are inspected with four different configurations. 

Table 6. Performance scores of fitted curves by the modified estimators for Scenario 1. 𝒏 𝑪𝑳 𝒌 𝐟መ𝑹𝑳 𝐟መ𝑳𝑳 𝐟መ𝒂𝑳𝑳 𝐟መ𝑺𝑳 𝐟መ𝑴𝑪𝑳 𝐟መ𝑬𝑵𝑳 𝑴𝑺𝑬 𝑹𝒆𝑴𝑺𝑬 𝑴𝑺𝑬 𝑹𝒆𝑴𝑺𝑬 𝑴𝑺𝑬 𝑹𝒆𝑴𝑺𝑬 𝑴𝑺𝑬 𝑹𝒆𝑴𝑺𝑬 𝑴𝑺𝑬 𝑹𝒆𝑴𝑺𝑬 𝑴𝑺𝑬 𝑹𝒆𝑴𝑺𝑬 

50 
0.1 

15 1.26 1.06 1.21 1.01 1.19 0.98 1.17 0.97 1.21 1.01 1.18 0.98 
40 1.26 0.97 1.50 1.20 1.14 0.84 1.22 0.94 1.50 1.20 1.20 0.92 

0.3 
15 4.17 1.00 4.29 1.04 4.11 0.98 4.15 1.00 4.13 0.99 4.14 0.99 
40 4.73 1.12 4.59 1.08 4.17 0.90 3.50 0.77 5.26 1.26 4.07 0.93 

150 
0.1 

15 0.75 1.12 0.67 0.98 0.62 0.89 0.68 1.00 0.69 1.02 0.69 1.02 
40 0.60 1.04 0.60 1.04 0.61 1.04 0.54 0.91 0.57 0.97 0.58 1.00 

0.3 
15 2.38 1.08 2.22 0.99 2.19 0.97 2.20 0.98 2.20 0.98 2.20 0.98 
40 1.87 1.04 2.13 1.21 1.65 0.88 1.75 0.96 1.72 0.94 1.81 1.00 

300 
0.1 

15 0.45 1.07 0.43 1.01 0.41 0.95 0.43 1.01 0.42 0.98 0.42 0.98 
40 0.39 1.07 0.35 0.94 0.36 0.97 0.36 0.97 0.37 1.01 0.38 1.04 

0.3 
15 1.29 1.01 1.28 1.00 1.24 0.97 1.29 1.01 1.28 1.00 1.27 1.00 
40 1.12 1.06 1.14 1.08 1.01 0.93 1.06 0.99 1.04 0.97 1.06 0.99 

Bold ones are the best performance scores. 

Tables 6 and 7 include the MSE and ReMSE values for the two scenarios. For Scenario 
1, the aLL method gives more dominant values than others, followed by SL and LL. As 

Figure 7. Comparison of the modified estimators as in Figure 6 but for different simulation configura-
tions when k = 40.

In Table 2, RMSE and R2 scores are provided for all simulation configurations of
Scenario 2. The results can be distinguished from the results in Table 1 by the higher R2

values obtained from the modified ridge estimator. However, the RMSE scores of the
modified ridge estimator are the largest. This can be explained by the fact that the ridge
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penalty uses all covariates, whether sparse or nonsparse. Therefore, the estimated model
based on the ridge penalty has larger R2 values. On the other hand, the RMSE scores prove
that for small sample sizes (n = 50), ENL and aLL perform satisfactorily. Moreover, as in
the case of Scenario 1, when the sample size becomes larger, aLL gives the most satisfying
performance. SL- and LL-based estimators also show good performances in the general
frame. If Table 2 is inspected in detail, it can be seen that when k = 15, the SL method
comes to the front for both low (CL = 10%) and high (CL = 30%) censoring levels. The
same is true for the aLL method regarding strength against censorship.

Figure 4 presents the line plots of the RMSE scores for all simulation cases. As expected,
the negative effects of increment on the censoring level and the positive effect of growth
on the sample size can be clearly observed from panels (a) and (b). For both scenarios, a
peak can be seen when the sample size is small (n = 50) and the censorship level increases
from 10% to 30%. The methods most affected by censorship are MCL, RL, and SL. The
least affected are aLL, lasso, and ENL. Thus, Figure 4 supports the results and inferences
obtained from Tables 2 and 3.

Together with the RMSE scores, one other important metric to evaluate the perfor-
mance of the parametric component estimation is G-score, which measures the true selection
made by the estimators for the sparse and nonzero subsets based on the confusion matrix
given in Table 1. In this context, Figure 5 is drawn to illustrate the G-scores of the methods
for all simulation combinations using line plots. Note that the G-score changes between the
range [0,1] and the lines of methods that are close to 1 are notated as better than the others
in terms of successful determination of sparsity.

Figure 5 is formed by two panels: Scenario 1 (left) and Scenario 2 (right). As expected,
for all methods except for RL (which does not involve any sparse subset and is therefore
not shown in Figure 5 and Table 4), the G-scores diminish when the censoring level is high,
and the number of covariates (k) is large. In addition, there is an increasing trend from the
small to large sample sizes for LL, aLL, SL, and MCL. This trend is most evident for the
aLL line, which makes aLL distinguishable. However, interestingly, ENL is not influenced
by the change in sample size, and the G-scores of ENL do not take a value greater than 0.5.
In general, aLL, SL, and LL provide the highest G-scores. All G-scores for the simulation
study are provided in Tables 4 and 5 together with the accuracy values of the methods.

Tables 4 and 5 present the accuracy rates and G-scores for all methods and simulation
configurations for both Scenarios 1 and 2. Note that, because the ridge penalty is unable to
shrink the estimated coefficients towards zero, the specificity of RL is always calculated as
zero. Thus, RL does not have a G-score. When the tables are examined, it can be clearly
seen that the prominent methods are aLL, LL, and SL. The aLL produces satisfactory results
for each simulation configuration. On the other hand, the other two methods, LL and SL,
give good results under different conditions. When this situation is examined in detail, it
can be seen that the SL method produces better results when k = 15, and the LL method
when k = 40 with aLL. In addition, it can be said that the level of censorship and the sample
size do not affect this situation, except for an increase or decrease in the values. These
inferences apply to both scenarios. Here, the difference between the scenarios emerges in
the size of the G-scores and accuracy values obtained. It can be said that they are slightly
less than the values obtained for Scenario 2.

Unlike the evaluation criteria given in Section 4, the frequency of choosing the correct
coefficients for each method in the simulation study is analyzed, and the results are pre-
sented for both scenarios in Figures 6 and 7 with bar plots. Figure 6 presents two panels
(I and ii), which demonstrate the impact of censorship, one of the main purposes of this
article. As expected, as censorship increases, the frequency of selection decreases for the
nonzero coefficients. The point here is to reveal which methods are less affected by this. It
can be observed in Figure 6 that the MCL and ENL methods are less affected by censorship
in terms of the frequency of selection of nonzero coefficients. However, since these methods
are less efficient than the SL, LL, and aLL methods in determining ineffective coefficients,
their overall performance is lower (see Tables 4 and 5). On the other hand, the SL, LL,
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and aLL methods make a balanced selection for both subsets (no effect-non-zero), which
indirectly makes them more resistant to censorship.

Figure 7 presents the different configurations for Scenario 2. It shows both effects of
sample size and censoring level increment and bar plots for k = 40. The detection perfor-
mance of the methods of nonzero coefficients is less affected than in Figure 6. However, the
selection of the ineffective set plays a decisive role in terms of the performance of each of
the methods. For example, MCL and ENL performed poorly in the correct determination
of ineffective coefficients when the censorship level increased, but LL, aLL, and SL were
able to make the right choice under heavy censorship.

5.2. Analysis of Nonparametric Component

This section is prepared to show the behaviors of the estimation of nonparametric
components by the introduced six estimators. Performance scores of the methods are given
in Tables 6 and 7, and MSE and ReMSE metrics are used. Additionally, Figures 8 and 9
are provided to show the real smooth function versus all estimated curves for individual
simulation repeats. These figures can provide information about the variation of the
estimates according to both scenarios and censoring effects. Finally, in Figure 10, estimated
curves obtained from all methods are inspected with four different configurations.

Table 6. Performance scores of fitted curves by the modified estimators for Scenario 1.

n CL k
^
fRL

^
fLL

^
faLL

^
fSL

^
fMCL

^
fENL

MSE ReMSE MSE ReMSE MSE ReMSE MSE ReMSE MSE ReMSE MSE ReMSE

50
0.1

15 1.26 1.06 1.21 1.01 1.19 0.98 1.17 0.97 1.21 1.01 1.18 0.98
40 1.26 0.97 1.50 1.20 1.14 0.84 1.22 0.94 1.50 1.20 1.20 0.92

0.3
15 4.17 1.00 4.29 1.04 4.11 0.98 4.15 1.00 4.13 0.99 4.14 0.99
40 4.73 1.12 4.59 1.08 4.17 0.90 3.50 0.77 5.26 1.26 4.07 0.93

150
0.1

15 0.75 1.12 0.67 0.98 0.62 0.89 0.68 1.00 0.69 1.02 0.69 1.02
40 0.60 1.04 0.60 1.04 0.61 1.04 0.54 0.91 0.57 0.97 0.58 1.00

0.3
15 2.38 1.08 2.22 0.99 2.19 0.97 2.20 0.98 2.20 0.98 2.20 0.98
40 1.87 1.04 2.13 1.21 1.65 0.88 1.75 0.96 1.72 0.94 1.81 1.00

300
0.1

15 0.45 1.07 0.43 1.01 0.41 0.95 0.43 1.01 0.42 0.98 0.42 0.98
40 0.39 1.07 0.35 0.94 0.36 0.97 0.36 0.97 0.37 1.01 0.38 1.04

0.3
15 1.29 1.01 1.28 1.00 1.24 0.97 1.29 1.01 1.28 1.00 1.27 1.00
40 1.12 1.06 1.14 1.08 1.01 0.93 1.06 0.99 1.04 0.97 1.06 0.99

Bold ones are the best performance scores.

Tables 6 and 7 include the MSE and ReMSE values for the two scenarios. For Scenario 1,
the aLL method gives more dominant values than others, followed by SL and LL. As
expected, RL shows the worst performance; however, the difference from the others is
small. Note that, when the sample size becomes larger, all methods begin to give similar
results. Dependent on this similarity, the ReMSE scores become closer to one, which is an
expected result. Thus, even if the censoring level increases, ReMSE scores may decrease. If
the tables are inspected carefully, as mentioned in Section 5.1, aLL overcomes the censorship
problem better than the others regarding Scenario 1, which means that contributions of
covariates are high. However, in Scenario 2, SL shows better performance in high censoring
levels, especially in small and medium sample sizes. Additionally, it is clearly observed
that the number of covariates (k) affects the performances. In Table 7, when k = 15, the LL
and SL methods show good performances.
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Table 7. Performance scores of fitted curves by the modified estimators for Scenario 2.

n CL k
^
fRL

^
fLL

^
faLL

^
fSL

^
fMCL

^
fENL

MSE ReMSE MSE ReMSE MSE ReMSE MSE ReMSE MSE MSE ReMSE MSE

50
0.1

15 0.85 1.02 0.83 0.99 0.81 0.95 0.78 0.92 0.87 1.05 0.88 1.06
40 0.99 1.12 1.18 1.38 0.72 0.71 0.74 0.79 1.09 1.26 0.85 0.94

0.3
15 2.14 0.94 2.27 1.01 2.30 1.03 2.22 0.99 2.29 1.02 2.25 1.00
40 2.52 1.13 2.67 1.21 2.08 0.86 1.98 0.84 2.48 1.11 2.10 0.91

150
0.1

15 0.54 0.98 0.56 1.02 0.52 0.94 0.57 1.04 0.56 1.02 0.56 1.02
40 0.56 1.21 0.50 1.06 0.41 0.81 0.45 0.93 0.48 1.01 0.49 1.03

0.3
15 1.33 1.06 1.29 1.02 1.21 0.94 1.26 0.99 1.26 0.99 1.26 0.99
40 1.14 1.09 1.04 0.98 1.06 0.97 0.94 0.86 1.09 1.03 1.12 1.07

300
0.1

15 0.52 1.02 0.50 0.98 0.51 1.00 0.50 0.98 0.52 1.02 0.51 1.00
40 0.41 1.05 0.39 0.99 0.35 0.84 0.37 0.93 0.43 1.11 0.43 1.11

0.3
15 0.87 1.02 0.84 0.98 0.85 0.99 0.85 0.99 0.87 1.02 0.86 1.00
40 0.81 1.03 0.77 0.97 0.76 0.95 0.80 1.01 0.81 1.03 0.80 1.01

Bold ones are the best performance scores.
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and they are relatively less affected by censorship in this scenario. 

Figure 8. Obtained fitted curves for the methods from all simulation runs for Scenario 1.

Figure 8 shows two different simulation configurations for Scenario 1. The purpose of
this figure is to illustrate the effect of censorship in curve estimation. Therefore, panel (i) is
obtained for 10% censorship, and panel (ii) for 30% censorship. As can be seen at a glance,
the minimum and maximum points of the prediction points obtained from all simulations
around the real curve are shown with vertical lines. This reveals the range of variation of
the estimators. Accordingly, when the difference between the effect of censorship panel (i)
and panel (ii) is examined, it can be seen how the range of variation widens. It can be said,
with the help of the values in Table 6, that the estimator with the least expansion is aLL and
the method with the most is RL. It should also be noted that the SL and LL methods also
showed satisfactory results.
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(4) show the synthetic response values (t vs. YĜ − X
^
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points t vs. f (t).

Figure 9 shows the effect of censorship on the estimated curves for Scenario 2 with a
large sample size and relatively few covariates (k = 15). Because there are too many data
points, the lines appear as a black area. Compared with Figure 8, the effect of censorship is
less, and the estimators obtain curves closer to the true curve. In addition, due to the large
sample size, each method estimated very close curves. This can be clearly seen in Table 7.
The obtained performance values were very close to each other. It can therefore be said
that the introduced six estimators produce satisfactory results in high samples, and they
are relatively less affected by censorship in this scenario.
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Figure 10 consists of four panels (a)–(d) containing four different simulation cases. The
first two panels (a and b) show the estimated curves of Scenario 1 for different sample sizes,
different censorship levels, and different numbers of explanatory variables. It can be clearly
seen that the curves in panel (a) are smoother than in panel (b). This can be explained by
the messy scattering of synthetic data, which can be observed in all panels. The censorship
level increases the corruption of the data structure. Similarly, panels (c) and (d) are obtained
for Scenario 2, but only to observe the effect of the change in censorship level. However,
the effect of the large sample size is clearly visible, and the curves appear smooth in panel
(d), despite the deterioration in the data structure. If examined carefully, the aLL method
gives the closest curve to the true curve. At the same time, the other methods have shown
satisfactory results in representing the data.

6. Hepatocellular Carcinoma Dataset

This section contains the estimation of a right-censored partially linear model for
real data, the Hepatocellular carcinoma dataset, by the introduced six estimators (RL, LL,
aLL, SL, MCL, and ENL). Their performances are compared, and the results are presented
in Table 8 and Figures 11–14. The dataset was collected by [31] to study CXCL17 gene
expression for hepatocellular carcinoma.

Table 8. Scores of the evaluation metrics obtained from the hepatocellular carcinoma dataset.

RL LL aLL SL MCL ENL n CL k

R2 0.406 0.356 0.355 * 0.357 * 0.363 0.362

227 37% 12
No.

(
β̂ = 0

)
0 3 5 4 3 1

No.
(

β̂ 6= 0
)

12 9 7 8 9 11

MSE
(

f̂
)

3.562 3.646 3.554 * 3.541 3.609 3.613

Bold ones are the best performance scores; *: the second-best scores.
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Figure 11. Descriptive plots for the right-censored hepatocellular carcinoma dataset.

The aforementioned dataset involves 227 data points and 13 explanatory variables, in-
cluding age, recurrence-free survival (RFSi), gender (Geni), and HBsAg (sur f ace antigen o f
the hepatitis B virus−HBi). Some variables that were obtained from blood tests to measure
liver damage include ALTi (alanine aminotrans f erase), ASTi (aspartate aminotrans f erase),
and AFPi (apha− f etoprotein). The covariates of tumors detected in the liver are tumor size
(TSi), TNMi (tumor node and metastasis), BCLCi (Barcelona Clinic Liver Cancer Staging
System) and values of genes related to liver cancer: CXCL17T (CXCTi), CXCL17P (CXCPi),
and CXCL17N (CXCNi). Note that the logarithm of the overall survival time (OSi) is used
as a response variable. Note also that the age variable is used as a nonparametric covariate
because of its nonlinear structure. The remaining 12 explanatory variables are added to the
parametric component of the model. Accordingly, the right-censored partially linear model
can be written as follows:

log(OSi) = XT
i β+ f (agei) + εi, 1 ≤ i ≤ 227 (34)
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where

XT
i = [RFSi, Geni, HBi, ALTi, ASTi, AFPi, TSi, TNMi, BCLCi, CXCTi, CXCPi, CXCNi]

is the (228× 12)-dimensional covariate matrix for the parametric component of the model,
and β = (β1, . . . , β12)

T is the (12× 1)-dimensional vector of the regression coefficients to
be estimated. Note that in the estimation process, log(OSi) cannot be used directly because
of censoring. Therefore, synthetic data transformation is applied to log(OSi) as in (6).
Note also that the dataset includes 84 right-censored survival times, which means that the
censoring level is CL = 37%. This ratio can be interpreted as a heavy censoring level in the
simulation study. Therefore, it is expected that the results of the real data example should
be in harmony with the results of corresponding simulation configurations (n = 150, 300,
k = 15, CL = 30%).
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Figure 14. Fitted curves for a nonparametric component of the model obtained from the six modified
estimators.

To describe the hepatocellular carcinoma dataset, Figures 11 and 12 are provided.
Figure 11 is constructed by two panels, (a) and (b). In panel (a), a scatter plot of the data
points can be seen with censored and noncensored points. As can be observed, there
are a lot of right-censored points in the dataset. To solve this problem, synthetic data
transformation is realized and is shown in panel (b). The synthetic data give zero value
to right-censored points and increase the magnitude of the remaining data. Thus, it aims
to make equal the expected values of YiĜ and completely observed response Y (but we do
not know in real cases). Figure 12 presents the plot for response variable log(OS) versus
nonparametric covariate age to show the nonlinear relationship between them. Accordingly,
a hypothetical curve is presented, which proves our claim on the nonlinear relationship.

General outcomes for the analysis of the hepatocellular carcinoma dataset are pre-
sented in Table 8, which involves the performance scores of the six estimators. Note that,
here, G-score cannot be calculated due to real regression coefficients being unknown. In
Table 8, RL gives the highest R2 value because it uses all 12 covariates in model estimation,
and sparse and nonzero subsets are considered. The aLL and SL methods provide satisfying
values with fewer covariates, especially aLL. Regarding the estimation of the nonparametric
component, SL gives the best estimation, which supports our inference given before. In
addition, aLL gives a smaller MSE value than the other four estimators.

The estimated coefficients are shown with bar plots in Figure 13 to illustrate how the
methods work and to make a healthy comparison. In panels (b) and (c), the similar process
of aLL and SL can be observed clearly. The ENL and RL methods also look similar to each
other, which can be understood from Table 8.

Figure 14 involves the six fitted curves obtained by the introduced estimators. At first
glance, all the fitted curves are very close to each other, which can be monitored in the MSE
scores given in Table 8. However, the difference between RL and the other five methods can
be easily observed. Due to the data structure having excessive variation, in the modeling
process, the local polynomial method gains importance because it takes into account the
local densities. This case can be counted as one of the important contributions of this paper.

7. Conclusions

The results of the paper obtained from the simulation study are given in Tables 2–7
and Figures 4–10. The analysis is made for both parametric and nonparametric components
of the model individually. The advantage of the simulation study is knowing the real
values of the regression coefficients; the accuracy and sensitivity of the estimators are
thus evaluated, using the confusion matrix in Table 1. From the results, the aLL and
SL estimators showed the best performance and gave satisfactory results for the model
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estimation. In addition, the behaviors of the methods are inspected for three cases, which
are sample sizes (n = 50, 150, 300), number of covariates (k = 1540), and censoring level
(CL = 10%, 30%). These effects are also observed by the figures. A real data example using
the hepatocellular carcinoma dataset is analyzed using the introduced estimators. The
results of that dataset are compared with the related simulation configurations. By using
the mentioned results, concluding remarks are given as follows:

• From the simulation results regarding the parametric component estimation,
Tables 2–5 prove that the aLL and SL methods give satisfying results in terms of
the metrics RMSE, R2, accuracy, and G-score. In more detail, for small sample sizes
and low censoring levels, SL generally shows better performance than the other five
methods. However, for the problematic scenarios, the aLL estimator is the best in
both estimation performance and making a true selection between zero and nonzero
subsets. Figures 4 and 5 support these inferences.

• In addition to introduced evaluation metrics, the selection frequency of the estimators
is inspected for the simulation study, and results are shown in bar plots given in
Figures 6 and 7. These figures demonstrate the consistency of the estimators in terms
of their selection of the sparse and nonzero subsets for each coefficient. Under heavy
censorship, it can be seen that LL, aLL, and SL gave the best performances. The ENL
and MCL estimators did not show a good performance in this case.

• The introduced six estimators provide closer performances on the estimation of the
nonparametric component. Corresponding results are given in Tables 6 and 7 and
Figures 8–10. Note that Figures 8 and 9 are drawn to show the individual fitted curves
obtained from each simulation, which provides information about the variation of the
estimators. Although the estimators give similar evaluation scores and closer fitted
curves (which is seen in Figure 10), aLL and SL are the best.

• In the hepatocellular carcinoma dataset analysis, the outcomes are found in harmony
with the corresponding simulation scenarios. The results are provided in Table 8
and Figures 13 and 14. Similar to the simulation study, SL and aLL show the best
performance. However, from Figure 14, it can be seen that the fitted curves are very
close to each other, which can be explained by the large sample size. The real data
study demonstrates that all six estimators show considerably good model estimates,
which makes valuable the contribution of the paper.

Finally, from the results of both the simulation and real data studies, the introduced six
estimators for the right-censored partially linear models based on penalty and shrinkage
strategies are compared, and results are presented. It is found that the adaptive lasso
(aLL) and SCAD (SL) methods are more resistant than the other four estimators against
the effects of censorship and the number of covariates. In general, the ridge (RL) estimator
showed poor performance. On the other hand, the lasso (LL), MCP (MCL), and elasticnet
(ENL) methods provided good performance for both the parametric and nonparametric
components. This study recommends the aLL and SL estimators for the problematic
scenarios.
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Appendix A

Appendix A.1. Proof of Lemma 1

Proof. From A(i) and A(ii) given in Assumption 1, we obtain

E
(
y∗iG|X, t

)
= E

[
δiYi

G(Yi)
|X, t]

]
= E

[
I(Zi ≤Ci) min(Zi , Ci)

G[min(Zi , Ci)]
|X, t

]
= E

[
I(Zi ≤ Ci)

Zi
G(yi)

|X, t
]

= E
[

E
[

Zi
G(yi)

I(Zi ≤ Ci) |X, t, Z
]
|X, t

]
= E

[
Zi

G(yi)
G(yi)|X, t

]
= E(Zi|X, t )

This result shows that Lemma 1 has been proven. �

Appendix A.2. Derivation of Equations (15) and (16)

From Equation (14), the minimum criterion is rewritten as

L =
[
(I− S)y∗Ĝ − (I− S)Xβ

]T[
(I− S)y∗Ĝ − (I− S)Xβ

]
(A1)

By solving this equation with a partial derivative of (A1) with respect to β,
Equation (15) can be obtained as follows:

L = y∗Ĝ
T(I− S)y∗Ĝ − y∗Ĝ

T(I− S)Xβ−βTy∗Ĝ
T(I− S)X +βTXT(I− S)Xβ

∂L
∂β

= −2y∗Ĝ
T(I− S)X + 2XT(I− S)Xβ = 0

XT(I− S)Xβ = y∗Ĝ
T(I− S)X

^
βL =

(
XT(I− S)X

)−1
XT(I− S)y∗Ĝ

Thus, Equation (15) is obtained. By using
^
β, and the corresponding smoothing matrix

Sh, a modified local polynomial estimator of f is given by Equation (16).

Appendix A.3. Proof of Theorem 1

To obtain the ridge-penalty-based local polynomial estimators, the key point is to calcu-
late the partial residuals and minimize (18). From that, as mentioned before,
~
X = (I− S)X and

~
y
∗
Ĝ = (I− S)

^
y
∗
Ĝ are calculated, and the minimization of (18) is real-

ized based on the synthetic response variable
~
y
∗
Ĝ as below:

PLSRL =

(
~
y
∗
Ĝ −

~
Xβ
)′(

~
y
∗
Ĝ −

~
Xβ
)
+ λβ’β

=
~
y
∗T
Ĝ

~
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Ĝ −βT

~
X

T ~
y
∗
Ĝ −βT

~
X

T ~
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Ĝ +βT

~
X

T ~
Xβ+ λβ’β

I f , ∂L
∂β = 0

− 2
~
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T ~
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Ĝ + 2

~
X

T ~
Xβ+ 2λβ = 0
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~
X

T ~
Xβ+ λβ =

~
y
∗T
Ĝ

~
X

^
βRL =

(
~
X

T ~
X
)−1 ~

X
T ~

y
∗
Ĝ
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