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Abstract: Heartbeat characteristic points are the main features of an electrocardiogram (ECG), which
can provide important information for ECG-based cardiac diagnosis. In this manuscript, we propose a
self-supervised deep learning framework with modified Densenet to detect ECG characteristic points,
including the onset, peak and termination points of P-wave, QRS complex wave and T-wave. We
extracted high-level features of ECG heartbeats from the QT Database (QTDB) and two other larger
datasets, MIT-BIH Arrhythmia Database (MITDB) and MIT-BIH Normal Sinus Rhythm Database
(NSRDB) with no human-annotated labels as pre-training. By applying different transformations to
ECG signals, the task of discriminating signals before and after transformation was defined as the
pretext task. Subsequently, the convolutional layer was frozen and the weights of the self-supervised
network were transferred to the downstream task of characteristic point localizations on heart beats
in the QT dataset. Finally, the mean ± standard deviation of the detection errors of our proposed
self-supervised learning method in QTDB for detecting the onset, peak, and termination points of
P-waves, the onset and termination points of QRS waves, and the peak and termination points of
T-waves were −0.24 ± 10.04, −0.48 ± 11.69, −0.28 ± 10.19, −3.72 ± 8.18, −4.12 ± 13.54, −0.68 ± 20.42,
and 1.34 ± 21.04. The results show that the deep learning network based on the self-supervised
framework constructed in this manuscript can accurately detect the feature points of a heartbeat,
laying the foundation for automatic extraction of key information related to ECG-based diagnosis.

Keywords: self-supervised learning; deep learning; electrocardiogram; ECG characteristic points

1. Introduction

Electrocardiogram (ECG) is an important tool in the diagnosis of cardiovascular
diseases. With the widespread use of various ECG detection devices in the clinic, a large
amount of ECG data is generated. Combining clinical ECG with computer technology to
accomplish automatic identification of arrhythmia types can effectively diagnose heart
diseases and reduce mortality [1]. ECG reflects the course of electrical activity of heart
excitement. Each heartbeat contains P waves, QRS complex waves and T waves. The ECG
physician draws diagnostic conclusions by observing the width, amplitude, morphology,
and interrelationship of each wave and line segment of the ECG. This method of analysis
is based on identifying characteristic points such as the onset, peak and termination of
each wave of the ECG signal [2]. However, the variety of arrhythmia types and the
richness of ECG morphology in different patients often make the clinical assessment
workload of the professional enormous and sometimes physicians has a tendency to be
subjective. In recent years, as deep-learning-based neural network models have achieved
great success in a variety of fields such as natural language processing, computer vision, and
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biomedical signal processing. Deep learning research works for ECG data have gradually
become popular, and these works have achieved comparable or even better classification
performance than traditional methods. The main advantage of deep learning methods over
machine learning is that there is no need for manual feature extraction, and deep learning
models are able to perform feature extraction automatically and implicitly based on large
raw data sets.

However, this automatic analysis method based on deep learning usually gives dis-
criminative results directly after inputting ECG signals. Despite the high discriminative
accuracy of some studies, it is not in line with the idea of evidence-based medicine due
to the lack of interpretability. For this reason, our experiments are based on enhancing
the interpretability of deep learning to process ECG signal operations, aiming to identify
characteristic points such as the onset and termination points of each wave, and the peak
of the ECG signal.

Traditional methods for detecting ECG characteristic points include wavelet transform,
hidden Markov model, adaptive filtering, etc. Li [3] detected the position of QRS waves
based on wavelet transform by calculating the relationship between their wavelet modulus
maximum pairs. Juan et al. [4] used wavelet transformation to detect the onset and
termination points of complex waves of heartbeats, the peaks of single waves, and the onset
and termination points of P and T waves one by one. Martinez [5] proposed an algorithm
based on phase volume transformation to calculate the mean ± standard deviation of
P-wave onset, peak and termination points, QRS-wave onset and termination points, T-
wave peak and termination points on a public ECG database. Furthermore, the results
were 2.6 ± 14.5 ms, 32 ± 25.7 ms, 0.7 ± 14.7 ms, −0.2 ± 7.2 ms, 2.5 ± 8.9 ms, 5.3 ± 12.9 ms,
5.8 ± 22.7 ms. Clavier et al. [6] used the Hidden Markov method to represent a beat of
the P-wave. Then, a set of parameters was calculated from the P-wave to detect patients
prone to atrial fibrillation(AF) with a sensitivity of approximately 65% to 70%. Traditional
method may perform poorly on large datasets, and deep learning is a branch of machine
learning that is often used for detection of medium or large datasets. Camps et al. [7] used a
CNN-based approach to localize QRS onset and termination points with root mean square
error (RMSE) of 12.1 ± 0.5 ms and 18.5 ± 1.1 ms, respectively. Guillermo et al. [8] used
a U-Net network structure for localization of P-wave, QRS-wave and T-wave onset and
termination points. By segmenting a heartbeat into different regions and then performing
characteristic point localization, the mean ± standard deviation of detection errors were
1.54 ± 22.89 ms, 0.32 ± 4.01 ms, −0.07 ± 8.37 ms, 3.64 ± 12.55 ms, 21.57 ± 66.29 ms, and
4.55 ± 31.11 ms, respectively. Abrishami et al. [9] used LSTM-based segmentation method
for P-wave, QRS-wave, T-wave and other waves with an accuracy of more than 90%.

However, fully supervised learning of deep learning requires a large amount of
manually labeled data, which is very time-consuming and labor-intensive. At the same time,
training the network from scratch requires large computational resources. Self-supervised
learning focuses on mining its own supervised information from large-scale unsupervised
data using auxiliary tasks, and training the network with this constructed supervised
information so that it can learn representations that are valuable for downstream tasks.
Such representations are usually generic [10], which not only improves the performance of
the network, but also allows pre-training and preserving the model parameters to reduce the
computation time. To this end, we first conducted heartbeat segmentation on QT Database
(QTDB), MIT-BIH Arrhythmia Database (MITDB) and MIT-BIH Normal Sinus Rhythm
Database (NSRDB). After preprocessing, three signal transformations were performed
on the heartbeat signal, and the unlabeled original heartbeat and the three transformed
heartbeats were fed into the base network together for self-supervised learning. The base
network is optimized by Densenet [11] as the backbone, introducing attention module and
feature pyramid module. Subsequently, the convolutional layer, which is contributed for
high-level feature learning of ECG, was frozen and transferred to the downstream task
network and further learned the labeled signals to complete the training of the localization
network of ECG characteristic points.
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2. Materials and Methods
2.1. Architecture
2.1.1. Base Model

Our base network used a modified Densenet network to fully extract the features of
ECG heartbeats using hopping layer connection structure. We incorporated convolutional
block attention modules (CBAM) to discriminate and detect more subtle position features by
combining spatial attention and channel attention mechanisms together. We also conducted
feature scaling at different scales by introducing feature pyramid pooling (FPP) structure to
improve detection accuracy.

2.1.2. Self-Supervised Learning Structure

Our proposed self-supervised learning framework consisted of two learning phases.
Step 1: Pretext task stage. Referring to [12], different signal transformations were applied
to segmented heartbeats, respectively. Then we conducted the recognition task, which was
called pretext task, discriminating the difference between the original and transformed
signals. During this process, our model could fully learn the advanced features of ECG
heartbeat signal. Then we froze the convolutional layer and saved the model parameters.
Step2: Downstream task stage. The model parameters saved in the first stage were used
to initialize the finetuned network. Then the data and labels from the QT dataset were
fed into the finetuned network for learning and fine-tuning of the fully connected layer to
finally complete the task of characteristic point localization. Figure 1 illustrates our network
framework for self-supervised learning.

Figure 1. The framework of the proposed self−supervised network.

2.2. Datasets
2.2.1. Data for Pretext Task

The MIT-BIH Arrhythmia Database(MITDB) contains 48 records of half-hour ambula-
tory ECG signals from 47 subjects, with each record annotated by two or more cardiologists
for beat type. The recordings were digitized at 360 samples per second [13].

The MIT-BIH Normal Sinus Rhythm Database(NSRDB) includes 18 long-term ECG
recordings of subjects. Subjects included in this database were found to have had no
significant arrhythmias. The recordings were digitized at 128 samples per second [13].

There is no annotation for the position of characteristic points in both above-mentioned
datasets. In our study, MITDB and NSRDB are suitable for self-supervised learning in the
pretext task due to the presence of a large number of beats of the same type (type ‘N’) in it
as in QT Database(QTDB) which has similar amplitude and waveform characteristics.

Since the pretext task did not require characteristic point labels, we only needed to
cut out all heartbeats from QTDB in this stage. So did the heartbeats of type ‘N’ from
MITDB and NSRDB. Then we resampled all of them to ensure a fixed signal length of 300.
Referring to the segmentation approach of [14], we used the peak position of QRS wave as
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the reference point for heartbeat cutting. Finally, we obtained 79,643 heartbeats of type ‘N’
from MITDB and 309,384 heartbeats of type ‘N’ from NSRDB.

We performed three signal transformations including noise addition, scaling, and
temporal inversion on the original heartbeats for data preparation of pretext task. After the
transformations, four signals including the original signal are stacked to construct the input
matrix X. We set the original signal as category 0, and the remaining three transformed
signals correspond to categories 1∼3 in turn as labels Y for the multi-classification task.
These category tags are so called ‘pseudo-labels’ for the whole self-supervised learning task.
These labels are generated automatically in the order of transformations applied on the
origin signal, without providing any manual annotations. Referring to [15] in which similar
way was used to identify human activities, we fed tuples of inputs and pseudo-labels
(Xi, Yi) into the pretext network, where i denotes the ith transformation on the signal. By
optimizing the loss function of this classification task, we can improve the ability of our self-
supervised network to discriminate these four signals, during which the self-supervised
network can fully learn the features of the original signals. Figure 2 shows signals before
and after transformation and their automatically generated labels.

Figure 2. The original signal and the transformed signal, corresponding to the labels automatically
generated by the transformation order. (a) Original signal, corresponding to label 0. (b) Noise
Addition transformation, corresponding to label 1. (c) Scaling transformation, corresponding to label
2. (d) Temporal Inversion transformation, corresponding to label 3.

2.2.2. Data for Downstream Task

Our study used QTDB for downstream tasks. QTDB consists of 105 2-lead recordings
sampled at 250 Hz. It includes normal sinus rhythm, ischaemic and non-ischaemic ST
segments, slow ST-segment drift, transient ST-segment depression and sudden cardiac
death. At least 30 heartbeats in each record (3623 in total) were manually annotated by
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two experts. The specific annotations are shown in Figure 3, where “P” and “T” represent
the peak of P and T waves, respectively, and “N” represents the normal heartbeat. The
symbols “(” and “)” represent the onset and termination points of each wave, respectively,
with the onset point of the T wave is not annotated. In our study, a large number of beats of
the same type (type ‘N’) as in QTDB with similar amplitude and waveform characteristics
are suitable for the self-supervised learning in the previous task due to the presence of a
large number of beats of the same type (type ‘N’) in the MIT-BIH database. In our study,
due to the presence of a large number of beats of the same type (type ‘N’) with QTDB
in MITDB and NSRDB, which have similar amplitude and waveform characteristics, it’s
suitable of the two datasets to be used for the self-supervised learning in the previous task.

We manually eliminated the records that did not contain all 8 characteristic points
from the 105 records in QTDB, and ended up with 97 records. The above signals were
passed through discrete wavelet transform (DWT) to reduce the noise of ECG signals.
Referring to [16], we chose the sixth-order Daubechies wavelet function as the mother
wavelet to decompose the ECG signal and to perform reconstruction. After denoising we
conducted the segmentation of the heartbeats. We took 100 sampling points before the QRS
peak points and 200 sampling points after the QRS peak points annotated by the experts,
respectively. The time span of each heartbeat is 1.2 s (the sampling rate of QTDB is 250 Hz).
The cut heartbeats were then upsampled to 325 sampling points to generate X, a 1D matrix
of 1 × 325. At the same time, we processed the expert’s annotations into Y, a 1D matrix of
1 × 8. The tuples (X,Y) were then fed into the model as pairs for training.

Figure 3. Annotations of each heart beat in the QT dataset. (a) Annotations of heartbeat 1, (b) Anno-
tations of heartbeat 2.

2.3. Methodology

Our model consists of three main components: dense hop layer connection, convolu-
tional block attention module (CBAM), and feature pyramid pooling module (FPP).

2.3.1. Dense Hop-Layer Connection

Deeper deep learning networks imply better nonlinear representation and can fit more
complex feature inputs. However, as the network deepens, it can lead to instability of the
gradients along with gradient disappearance or gradient explosion. This situation leads
to the degradation of the network performance, which is called degradation problem. It
was ResNet that first introduced skip connection to solve the degradation problem. ResNet
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transmits the information from the initial layer to deeper layers by matrix addition. The
main difference between DenseNet and ResNet is that DenseNet concats the output feature
map of a layer with the next layer instead of summing up, which is so called feature
reusability. The formula of Dense hop-layer connection is shown in Equation (1).

X(t) = H
([

X0, X1, X2, . . . , Xi, . . . , X(t−1)

])
(1)

which denotes the output X(t) of a t−layer network. Xi is the output of the ith layer of the
feed forward neural network; [X0, X1, X2, . . . , X(t−1)] denotes the stitching of the output
feature maps from layer 0 to layer t − 1, and H(·) denotes the non-linear transformation,
including a combination of BN, ReLu, and convolutional layers.

Since the 1× 1 convolutional kernel of each dense layer can reduce the number of input
feature maps, DenseNet can learn the feature maps with fewer parameters than ResNet.

2.3.2. Convolutional Block Attention Module

In this subsection, we will introduce the CBAM, which is an attention mechanism
module combining spatial and channel attention. It was proposed by Woo et al. The specific
structure of CBAM is shown in Figure 4.

Figure 4. Convolutional block attention module (CBAM) structure. The input features are multiplied
by the channel attention map output from the channel attention module. The multiplied features
are then processed by the spatial attention module to obtain a spatial attention map. The spatial
attention map is then multiplied by input features from the spatial attention module to obtain the
refined features. Conv(3, 1) denotes a convolutional layer with a convolutional kernel size of 3 and
an output channel number of 1. ‘+’ denotes the corresponding element summation and ‘

∫
’ denotes

the sigmoid function.

The emphasis of the channel attention module is focusing on what is the key informa-
tion of input features. Our study aimed to focus on the onset, peak and termination points
of different wavelets in heartbeat signal. In this module, input features were first passed
through average pooling layer and maximum pooling layer before being fed together into
a multilayer perceptron (MLP) network. The output of MLP was then passed through the
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sigmoid function to obtain the final weights Mc of the channel attention. The expression of
Mc is shown in Equation (2).

Mc(X) = σ(MLP(AvgPool(X)) + MLP(MaxPool(X)))

= σ
(

W1

(
W0

(
Xc

avg

))
+ W1(W0(Xc

max))
)

(2)

where X denotes the feature map fed to the attention module, σ represents the sigmoid
function. W0 ∈ RC/r×C,W1 ∈ RC×C/r; XC

avg and XC
max denote the channel context descrip-

tors generated by average pooling and maximum pooling, respectively. C is the number
of channels.

The spatial attention module, on the other hand, focuses on the location of key in-
formation. Our study aimed to focus on the temporal characteristics of ECG wavelets,
which means that the order of characteristic points of different wavelets could be correctly
discriminated, suppressing possible errors due to the close position of adjacent points. In
this module, input features were sequentially passed through average pooling layer and
maximum pooling layer, and then the results were concatenated together as the input to
the convolution layer. The expression of the weights Ms of spatial attention is:

Ms(X) = σ
(

f 3×3([AvgPool(X); MaxPool(X)])
)

= σ
(

f 3×3
([

Xs
avg; Xs

max

]))
(3)

where X denotes the feature map fed to the attention module, σ represents the sigmoid
function, XS

avg and XS
max denote the spatial context descriptors generated by average pooling

and maximum pooling, respectively. 3× 3 denotes the size of the convolution kernel.

2.3.3. Feature Pyramid Pooling Module

After conducting multiple convolutional and pooling operations on the input ECG
signal, we introduced a feature pyramid module for heartbeat signal in order to extract more
information from feature map at multiple scales, as shown in Figure 5. We downsampled the
feature maps generated by the intermediate layer twice and passed them uniformly through
a fully connected layer (1 × 256) with the same output dimension. After concatenating
the results of the multiscale deflation with the original features and sending it to the fully
connected layer, we accomplished the prediction of the characteristic point detection results.

Figure 5. Feature Pyramid Structure (FPN).

Finally, we constructed the detection network as shown in Figure 6. After the heart-
beats were preprocessed, they were fed into the repetitive stacked convolution layer and
Dense Block module with CBAM module introduced into the middle of each repetitive
unit. After the features were fully extracted by the hopping layer structure and attention
mechanism, the generated intermediate features were fed into the FPP module for multi-
scale feature extraction, and then the final fully connected layer predicted the positions of
the eight characteristic points. Table 1 details the structure and relative parameters of our
detection network.
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Figure 6. The proposed detection network.

Table 1. Details of the Detection Network Structure.

Type Input Shapes Output Shapes

Input (324, 1) (324, 1)
Conv (324, 1) (324, 64)

Pooling (324, 64) (162, 64)
Dense Block (162, 64) (162, 320)

TransitionLayer (162, 320) (81, 160)
Dense Block (81, 160) (81, 288)

TransitionLayer (81, 288) (40, 144)
Dense Block (40, 144) (40, 208)

TransitionLayer (40, 208) (20, 104)
Pooling (20, 104) (21, 104)

Conv (21, 104) (20, 128)
Dropout (20, 128) (20, 128)
Flatten (20, 128) 2560

Fully-connected 2560 256
Pooling

(downsampling 2×)
(20, 128) (10, 128)

Flatten (10, 128) 1280
Fully-connected 1280 256

Pooling
(downsampling 4×)

(10, 128) (5, 128)

Flatten (5, 128) 640
Fully-connected 640 256
Concatenation 256 × 3 768

Fully-connected 768 256
Fully-connected 256 8

2.4. Experiments
2.4.1. Pretext Task

We conducted a five-fold cross-validation on MITDB and NSRDB separately when
training the datasets of pretext task. First, we divided the dataset into five subsets of
data with equal amount of data. In each iteration, one of these subsets was sequentially
selected as the validation set during training, and our pretext task model was trained on
the remaining four subsets. The final accuracy of our model was obtained by averaging the
accuracy of each iteration. The specific division method of the five-fold cross-validation is
shown in Figure 7. We used cross-entropy as the loss function and chose Adam optimizer
for the training of our pretext task model.
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Figure 7. Division of 5-fold cross-validation data.

2.4.2. Downstream Task

We set the ratio of training set and testing set for downstream task to be 8:2 and used
the 5-fold cross-validation method to train the proposed model. Referring to [15], we
used He initialization technique to initialize the network parameters. We used stochastic
gradient descent with a fixed learning rate of 0.001 and a momentum parameter of 0.9.

We used L1 loss (i.e., mean absolute error (MAE)), calculating the mean deviation
between the predicted position of each characteristic point and experts’ annotations as
the loss function for the downstream task. Since the experts had 2 ECG leads available
during annotation and the input of our network is one-lead, both leads were processed
independently. The one with the smaller mean deviation was selected when processing
the results. For each ECG recording, we used the mean deviation and standard deviation
(m ± sd) as measure for all samples. We also used early stopping method to prevent
over-training of our proposed model.

2.5. Experimental Environment

Operating system: Ubuntu; processor: NVIDIA GeForce RTX 3090; memory size: 24 G;
programming platform: Pycharm, Python version 3.8.

3. Results

The results of our study are shown in Table 2. Referring to [17], since the peak position
of QRS complex wave was the segmentation criterion of the input heartbeats in our study,
the QRS peak points were not taken into account in the result statistics. Figure 8 shows
the regression results of the fully supervised network and the self-supervised network for
different morphologies of some heartbeat characteristic points. Figure 8a,c both show the
predicted positions of the fully supervised network proposed in our previous study [18],
and Figure 8b,d corresponds to the positions predicted by our self-supervised network for
the same heartbeat.
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Figure 8. Predicted positions of fully supervised network and self-supervised network on the same
heartbeat. (a) Predicted positions of fully supervised network on heartbeat 1. (b) predicted positions
of self-supervised network on heartbeat 1. (c) Predicted positions of fully supervised network on
heartbeat 2. (d) Predicted positions of self-supervised network on heartbeat 2.

Table 2. Results of Our Model on Public Database.

Method Pretext Task
Database

P-On m ± s
(ms)

P-Peak m ± s
(ms)

P-Off m ± s
(ms)

QRS-On
m ± s (ms)

QRS-Off
m ± s (ms)

T-Peak m ± s
(ms)

T-Off m ± s
(ms)

Fully
Supervised [18] / −0.32 ± 18.08 −0.56 ± 17.6 −5.96 ± 16.84 −5.8 ± 14.12 −6.24 ± 18.76 −0.2 ± 31.36 0.84 ± 27.24

Self-Supervised MITDB 0.12 ± 20.96 0.26 ± 16.16 −0.8 ± 15.28 2.36 ± 9.36 −2.72 ± 19.2 −0.8 ± 20.56 −2.8 ± 23.28
Self-Supervised NSRDB −0.08 ± 11.56 −0.04 ± 11.24 0.92 ± 12.36 −2.2 ± 8.32 0.48 ± 9.16 −2.36 ± 27.24 −0.68 ± 21.64
Self-Supervised QTDB −0.24 ± 10.04 −0.48 ± 11.69 −0.28 ± 10.19 −3.72 ± 8.18 −4.12 ± 13.54 −0.68 ± 20.42 1.34 ± 21.04

We can see from the comparison that the self-supervised network predicts the position
of characteristic points more accurately than the fully supervised network. The mean
value of the deviation of the position prediction of characteristic points does not exceed
two samples and the standard deviation does not exceed six samples for both the fully
supervised network and the self-supervised network.

4. Discussion
4.1. Comparative Analysis of Fully Supervised Network and Self-Supervised network

For a more explicit comparison, we calculated the absolute deviations of the models
fully supervised trained and self-supervised trained based on the QT dataset, as shown in
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Table 3. It can be seen that the self-supervised model has better performance compared to
the fully supervised model when trained on the same dataset. We used regression analysis
and Bland–Altman plots to visualize the detection results of the two models. The regression
plots allow to observe the approximation of the predicted positions and the annotated
positions with the help of trend lines. When the trend line fits closely to the straight-line
y = x, it means the model performs well in regression detection. Figures 9 and 10 represent
the regression results of the positions of the seven characteristic points predicted by the fully
supervised model and the self-supervised model, respectively, where the x-axis represents
the positions of the annotated characteristic points and the y-axis represents the predicted
positions of the model. We can see that the self-supervised model fits more closely to
the straight line y = x for each characteristic point, while the fully supervised model fits
significantly worse at the whole P-wave and T-wave peak points. Bland–Altman plots
were used to evaluate the correlations between the measured values. With Bland–Altman
plots, we can see the 95% limit of agreement (LOA) of the data, of which smaller value
indicates better performance of the model [19]. We used the positions annotated by the
experts as the criterion comparing with those of the fully supervised and self-supervised
models, respectively. Figures 11 and 12 represent the Bland–Altman plots of the positions
of the seven characteristic points predicted by the fully supervised network and the self-
supervised network, respectively, where the x-axis represents the mean sequence order of
predicted positions and annotated positions, and the y-axis represents the difference of
predicted positions and annotated positions. It can be seen that the confidence intervals of
the Bland–Altman plots of the self-supervised model are smaller, except for the less obvious
result of the termination point of the P-wave, which means that the standard deviation of
the predicted positions of the self-supervised model is smaller.

Table 3. Comparison of models on mean absolute deviation.

Method Pretext Task
Database

P-On m ± s
(ms)

P-Peak m ± s
(ms)

P-Off m ± s
(ms)

QRS-On
m ± s (ms)

QRS-Off
m ± s (ms)

T-Peak m ± s
(ms)

T-Off m ± s
(ms)

Fully
Supervised [18] / 8.52 ± 8.48 8.32 ± 8.22 10.16 ± 8.61 7.35 ± 5.94 8.09 ± 7.29 12.76 ± 12.92 8.45 ± 8.74

Self-Supervised QTDB 7.75 ± 8.18 7.52 ± 7.01 8.89 ± 7.88 6.63 ± 5.42 7.19 ± 6.6 11.47 ± 11.32 8.26 ± 8.53
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Figure 9. Regression plot of fully supervised network. (a–g) Correspond to the onset, peak, and
termination points of P-waves, the onset and termination points of QRS waves, and the peak and
termination points of T-waves, respectively.
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Figure 10. Regression plot of self-supervised network. (a–g) Correspond to the onset, peak, and
termination points of P-waves, the onset and termination points of QRS waves, and the peak and
termination points of T-waves, respectively.
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Figure 11. Bland–Altman plot of fully supervised network. (a–g) Correspond to the onset, peak, and
termination points of P-waves, the onset and termination points of QRS waves, and the peak and
termination points of T-waves, respectively.
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Figure 12. Bland–Altman plot of self-supervised network. (a–g) Correspond to the onset, peak, and
termination points of P-waves, the onset and termination points of QRS waves, and the peak and
termination points of T-waves, respectively.
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4.2. Comparative Analysis of Self-Supervised Network Pretrained on Different Database

As can be seen in Table 2, the results of the characteristic point localization based on
the MITDB and NSRDB have less bias, but more variance compared to those on QTDB,
which is unavoidable when using different datasets for self-supervised pre-training. This is
due to the MITDB and NSRDB has a larger amount of same type heartbeats, and thus more
heartbeat features can be extracted. So the mean of deviation is small. In contrast, QTDB
has a small fraction of abnormal heartbeats compared to those selected from the MITDB
and NSRDB, which ultimately leads to a larger variance of deviation for self-supervised
learning using MITDB and NSRDB. In the meanwhile, the model pre-trained on NSRDB
predicted more accurately than the model pre-trained on MITDB, with smaller standard
deviations of the predicted positions except for that of the T-wave peak. This may owe to
the fact that NSRDB has a larger amount of data compared to MITDB, which allowed the
model to learn features adequately.

4.3. Comparative Analysis with Other Heartbeat Characteristic Points Detection Results

In order to compare the performance of our method and other methods, we list
several traditional and deep learning methods in Table 4. In order to make the role of
each module in this study stand out, we implemented a baseline network simple-dense,
which used the same number of dense blocks and transition layers as our model without
the CBAM and FPP modules. We calculated the mean absolute error of mean values of
all points for each method, as shown in Table 4. It can be seen that the self-supervised
model proposed in this manuscript has a significant performance improvement from the
perspective of mean deviation, especially for the detection of p-wave onset, peak and
termination points. However, the self-supervised model has poorer predictions at the
T-peak and T-off positions compared to our previously published fully supervised network.
We speculate that this may be due to the fact that QTDB contains some ST-segment drifting,
transient ST-segment depression heartbeats [20], and the self-supervised model was trained
with normal heartbeats in both MITDB and NSRDB in pretext task, resulting in a bias
in the detection of the downstream task. According to our mean absolute error of mean
deviation calculated in Table 4, our self-supervised model has smaller mean and standard
deviation compared to MP-EKF [21], which used the traditional algorithm. Compared
with the deep learning model U-Net [8], our detection deviation in P-wave and T-wave are
smaller. The above shows that our proposed model has significant advantages in detecting
ECG characteristic points, especially in P-wave.

Table 4. Comparative Analysis of Results with Other Heartbeat Characteristic Points Detection.

Method Database P-On m ± s (ms) P-Peak m ± s (ms) P-Off m ± s (ms) QRS-On m ± s
(ms)

QRS-Off m ± s
(ms)

T-Peak m ± s
(ms) T-Off m ± s (ms) MAE of Mean

Deviation (ms)

Fully Supervised [18] QTDB −0.32 ± 18.08 −0.56 ± 17.6 −5.96 ± 16.84 −5.8 ± 14.12 −6.24 ± 18.76 −0.2 ± 31.36 0.84 ± 27.24 2.84
Self-Supervised QTDB −0.24 ± 10.04 −0.48 ± 11.69 −0.28 ± 10.19 −3.72 ± 8.18 −4.12 ± 13.54 −0.68 ± 20.42 1.34 ± 21.04 1.55
Simple-Dense

(baseline) QTDB 2.2 ± 18.16 4.6 ± 18.08 −2.04 ± 13.11 3.72 ± 15.24 −8.78 ± 18.32 −1.12 ± 30.27 1.68 ± 22.2 3.45

TWA QTDB N/A N/A N/A 2.8 ± 7.7 2.7 ± 9.7 −2.6 ± 12.2 −2.7 ± 20.7 2.7
MsPE QTDB 0.5 ± 15.1 5.1 ± 10.9 0.5 ± 15.0 0.9 ± 8.5 −0.4 ± 9.6 −4.5 ± 14.7 0.6 ± 20.3 1.79

MP-EKF QTDB 16 ± 37 5 ± 34 −10 ± 34 NA NA −3 ± 24 −16 ± 35 10.0
U-Net QTDB 1.54 ± 22.89 N/A 0.32 ± 4.01 −0.07 ± 8.37 3.64 ± 12.55 N/A 4.55 ± 31.11 2.02

4.4. Analysis of the Validity of the Model Construction

To further validate the effectiveness of the main modules of the model in this manuscript,
we conducted control experiments for each module introduced in our work. The experi-
mental results are shown in Table 5. We defined our previously published fully supervised-
based network as model 1, the self-supervised model pre-trained on QTDB as model 2, the
model with the CBAM module removed in model 2 as model 3, the model with the feature
pyramid module removed in model 2 as model 4, and the model with both the CBAM
module and the feature pyramid module removed in model 2 as model 5. By comparing
model 3 with model 2, it was found that the model performance decreases significantly
without the CBAM module, and the mean absolute error of mean deviation expands to
4.52 ms. We speculate that this is due to the lack of channel attention module to focus on
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the important parts of the input, such as the amplitude and morphology of each wavelet
and the lack of spatial attention to focus on the order of characteristic points. It is appar-
ent that both the mean and standard deviation are substantially larger when comparing
model 2 and model 4, which indicates a decrease in model performance. We speculate that
without the feature pyramid pooling module, the model cannot use the relative positions
of the waves and the spacing scales of the different waves for feature point identification.
Figure 13 shows the positions of the characteristic points corresponding to the feature
maps at different scales of FPP structure of multiple morphological heartbeats. It can be
seen that both the self-supervised network structure and the fully supervised network
structure with FPP have better detection results. Model 5 performed poorly in both mean
and standard deviation, which confirmed the performance improvement of our proposed
module. Figure 14 shows the loss curve of the comparison experiment.

Figure 13. Position of characteristic points corresponding to feature maps at different scales, where
the blue solid circle and purple upper triangle denote the predicted positions of fully supervised
network and self-supervised network, respectively. Furthermore, the orange star, green rhombus and
red fork sign indicate the original feature map, the predicted positions obtained by the feature maps
downsampled by a factor of two and four, respectively. The predicted positions of fully supervised
network without FPP module are marked with aqua blue square. (a) Regression results for heartbeat
1, (b) regression results for heartbeat 2, (c) Regression results for heartbeat 3 and (d) regression results
for heartbeat 4.
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Figure 14. Loss curve of comparison experiment.

Table 5. Results of the Control Experiment.

Method P-On m ± s
(ms)

P-Peak m ± s
(ms)

P-Off m ± s
(ms)

QRS-On m ± s
(ms)

QRS-Off m ±
s (ms)

T-Peak m ± s
(ms)

T-Off m ± s
(ms)

MAE of Mean
Deviation

model 1 1 −0.32 ± 18.08 −0.56 ± 17.6 −5.96 ± 16.84 −5.8 ± 14.12 −6.24 ± 18.76 −0.2 ± 31.36 0.84 ± 27.24 2.84
model 2 −0.24 ± 10.04 −0.48 ± 11.69 −0.28 ± 10.19 −3.72 ± 8.18 −4.12 ± 13.54 −0.68 ± 20.42 1.34 ± 21.04 1.17
model 3 2.12 ± 13.36 6.24 ± 13.72 4.92 ± 15.04 5.24 ± 11.72 −6.4 ± 14.52 1.16 ± 24.36 −4.92 ± 27.8 4.43
model 4 −1.76 ± 12.36 −2.60 ± 11.4 −4.16 ± 12.92 −4.36 ± 9.28 −6.27 ± 14.0 −2.2 ± 29.64 −1.52 ± 23.6 3.27
model 5 −2.32 ± 14.24 −4.36 ± 13.24 −6.08 ± 14.46 −7.4 ± 10.52 −7.24 ± 16.6 8.84 ± 26.28 3.52 ± 24.76 5.68

1 model 1: Fully Supervised Model [18]; model 2: Self-Supervised Model trained on QTdb; model 3: Self-
Supervised w/o CBAM; model 4: Self-Supervised w/o Feature-pyramid; model 5: Self-Supervised w/o Both
CBAM and Feature-pyramid.

4.5. Limitations of Our Research

Our study also needs further exploration under the current constraints. On the one
hand, since the public dataset for characteristic point detections is not large enough, both
the number of patients and the types of ECG heartbeats need to be expanded more broadly.
On the other hand, methods to improve the accuracy of cutting complete heartbeats are
also the focus of our future research. Since the results of the self-supervised pretext task
vary widely on different datasets, this also presents an issue that we hope to improve in the
future, and which requires us to propose some strategies for personalized features in our
future work.

5. Conclusions

In this manuscript, we propose a new deep-learning-based method with self-supervised
learning for detecting the characteristic points of ECG beats. We selected QTDB, MITDB and
NSRDB as the downstream task and pretext task database, respectively. After preprocessing
and different morphological feature transformations, unlabeled heartbeat signals were fed
into the base network for self-supervised learning. We saved the convolutional parameters
to initialize the network for the downstream tasks and successfully completed the task
of characteristic point localization of the ECG signals. DenseNet is employed as the base
network, the CBAM module is added to enhance the extraction of valid information, and the
feature map is multi-scaling deflated to improve information extraction. The experimental
results show that the mean error of the characteristic point detections is less than one
sample point (except the QRS-peak) and the standard deviation is less than five sample
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points (except for the QRS-peak). The obtained results in our manuscript suggest that
compared with the fully supervised model, our proposed deep learning model based on
self-supervised learning has smaller detection deviation. The results of this study provide
a basis for ECG-information extraction based on characteristic points of the heart beat.
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