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Abstract: This paper proposed an image algorithm based on a cascaded chaotic system to improve 

the performance of the encryption algorithm. Firstly, this paper proposed an improved cascaded 

two-dimensional map 2D-Cosine-Logistic-Sine map (2D-CLSM). Cascade chaotic system offers 

good advantages in terms of key space, complexity and sensitivity to initial conditions. By using the 

control parameters and initial values associated with the plaintext, the system generates two chaotic 

sequences associated with the plaintext image. Then, an S-box construction method is proposed, 

and an encryption method is designed based on the S-box. Encryption is divided into bit-level en-

cryption and pixel-level encryption, and a diffusion method was devised to improve security and 

efficiency in bit-level encryption. Performance analysis shows that the encryption algorithm has 

good security and is easily resistant to various attacks. 
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1. Introduction 

After decades of development, digital information has grown extensively in capacity, 

and various electronic devices are changing gradually, accompanied by a large amount 

of data for transmission and communication [1], which brings various kinds of security 

risks in this background, especially image data and video. While traditional encryption 

techniques such as DES and AES have achieved good results in text encryption, they are 

not ideal for encrypting large amounts of modern image data [2,3].  

Due to chaotic sensitivity to initial state and control value, good pseudo-randomness, 

ergodicity and unpredictable trajectory [4], the combination of chaos and encryption tech-

nology has produced many different chaos and applications: The chaotic system that has 

the property crosses a pre-define cylinder repeatedly and proposes the XOR approach for 

diffusion encryption of images. Despite receiving good encryption performance, this 

scheme lacks the appropriate scrambling operations, and the encryption scheme is inde-

pendent of the plaintext image, making it difficult to resist chosen-plaintext attacks [5]. 

The encryption algorithm uses 3Dchua’s system with a combination of DWT transform 

and compressed sensing [6], and its experiments have shown its good encryption effect. 

The method NCCS, which generates new maps by combining methods, is able to over-

come the shortcomings of a traditional one-dimensional chaotic map and gives a bit-level 

confusion and diffusion scheme while incorporating plaintexts in the keys used, which 

are shown to be well secured. However, when operating on the bit level, a large number 

of chaotic sequences are required, which creates some time consumption [7]. In addition, 

a cascaded chaotic system, as a form of chaos, is also a research hotspot; different chaos 

and encryption schemes are proposed: Zheng et al. [8] used an encryption scheme based 
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on cascaded chaos, which generates new chaos through a cascaded one-dimensional cha-

otic map, so as to improve the performance of chaos and be used in encryption. Encryp-

tion methods based on DNA and dual chaotic systems are also proposed, but the overall 

encryption is not associated with the plaintext and lacks an efficient scrambling process. 

Lan et al. [9] proposed a composite integrated chaotic system, which integrated cascading, 

nonlinear combination and other operations, and then proposed an encryption scheme 

ICST with bit-level substitution and transform, but the overall lack of an effective diffu-

sion process. Wang et al. [10] proposed a cascaded chaos model for CMCS to generate 

new chaos maps by using two-dimensional chaos mappings and one-dimensional chaos 

mappings, and demonstrated the good performance of the new chaos map through rele-

vant experiments, an encryption method for chunking images and performing different 

operations on different blocks is also given, including bit-level transformations, shuffling 

algorithms, DNA encoding and V-shaped diffusion, etc. At the same time, in order to im-

prove the security of the algorithm, people started to introduce some other techniques 

into chaotic encryption, and S-boxes is one of them. 

Two types of cryptosystems can be classified: stream ciphers, which are converted 

bit-by-bit, and packet ciphers, which convert n-bit inputs into m-bit outputs. At the core 

of this conversion is the static S-box, which gives the cryptosystem the obfuscation prop-

erties described by Shannon [11]. An S-box is considered to be a well-performing S-box if 

it satisfies some of the following conditions [12]: bijection, nonlinearity, strict avalanche 

criterion (SAC) and output bit independence criterion (BIC). According to the way the S-

box is generated, we can also classify it into static S-boxes and dynamic S-boxes. The se-

curity of the ciphertext is not guaranteed [13]. Dynamic S-boxes are based on key genera-

tion, and different keys can generate different S-boxes; all of these can improve the secu-

rity of the encryption system [14]. Currently, S-boxes are the only nonlinear component 

of many packet ciphers, and the performance of S-boxes largely determines the security 

strength of encryption algorithms. In [15], Zhou et al. proposed a randomized approach to 

S-box generation by using DNA encoding and showed that the S-boxes generated by this 

method are resistant to different types of attacks. In addition, many researchers have ap-

plied knowledge from other fields to the generation of S-boxes, but some of these methods 

are still not efficient enough to meet today’s cryptographic efficiency requirements, so 

most of them cannot be practically applied in the encryption process. With the develop-

ment of chaotic applications, many research results have been achieved in chaos-based S-

box generation. Wang et al. [16] used LDCML to construct new S-boxes by dividing the 

interval of [0, 1] into 256 equal intervals, iterating LDCML to generate chaotic sequences, 

and generating non-repeating numbers between 0 and 255 according to the interval in 

which the generated values fall, and verifying that this method can generate S-boxes that 

satisfy the S-box criteria. Belazi et al. [17] used a map method to generate values between 

0 and 255 and randomly place the mapped values through the sinusoidal map. In [18], 

Beg et al. finished S-box construction by expanding the remaining random values, gener-

ating chaotic sequences by iterating a chaotic map and expanding the remainder to con-

tinuously generate non-repeating values between 0 and 255 to add to the array. 

As the security strength of the entire encryption algorithm is determined by the cryp-

tographic strength of the S-box, the researcher has proposed many methods to enhance 

the S-box’s performance, such as using the high-dimensional chaotic system, and multiple 

chaotic systems to generate S-boxes have become solutions. Liu et al. [19] used a high-

performance S-box construction using 3D chaotic systems and gave the corresponding 

encryption algorithm, iterating the high-dimensional chaotic systems to complete the S-

box construction; however, the high-dimensional chaotic system then takes much time in 

computation, and although the security is improved, it becomes less efficient in terms of 

efficiency. Zheng et al.[20] proposed a multi-chaotic method for constructing dynamic S-

boxes with improved efficiency and security and gave a corresponding encryption algo-

rithm, which was shown to be feasible in experimental results. Özkaynak [21] proposed 

to use two S-boxes from the Henon map and Chen system, which are chosen at random 
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to increase the encryption’s security. Wang et al. proposed to generate three S-boxes by 

the 3D chaotic map and perform one round of permutation for encryption [22], but the 

generation process generates a large number of useless chaotic sequences, which perform 

slightly worse in terms of real-time performance, and the key of the encryption algorithm 

is fixed, which means that the S-boxes generated by each encryption iteration are the same. 

Wang et al. proposed a cascade chaotic map and used it to generate S-box [23], followed 

by a diffusion operation after substituting with S-boxes, and this algorithm has good ad-

vantages in terms of security and complexity. 

Based on the above analysis, a cascade chaotic map 2D-Cosine-Logistic-Sine map 

(2D-CLSM) is proposed in this paper. The initial values and parameters of the chaotic map 

are combined with the original image to resist known plaintext attacks. Then, an S-box 

construction method is proposed, and an S-box-based encryption method is designed. The 

encryption method is divided into four stages: key generation, S-box generation, bit-level 

encryption and pixel-level encryption. In bit-level encryption, a bit-level operation is per-

formed on the plaintext pixel values, converting the original decimal plaintext image pix-

els to eight-bit binary, then permuting the lower four bits and using a proposed new di-

agonal diffusion method for the higher four bits. In the pixel-level encryption part, one 

diffusion is completed by a three-number XOR (by using the chaotic sequence value, the 

current pixel value to be encrypted and the previously encrypted pixel value), and the 

resulting value calculates the row and column index of the S-box for pixel value replace-

ment. Through experimental analysis, the encryption algorithm in this paper has good 

security performance. 

The remainder of this essay is structured as follows: Section 2 introduces the chaotic 

map; Section 3 describes the design of the encryption algorithm; Section 4 gives the simu-

lation experiments and analysis of the results of the method titled in this paper; Finally, 

Section 5 gives conclusion remarks and further research work. 

2. Introduction of Chaotic Map 

In nonlinear dynamic systems, chaos is a stochastic process that is frequently em-

ployed in cryptography research [24]. One-dimensional Logistic and Sine map is classical 

chaotic map with a simple structure. They are defined as follows. 

 1 4 1n n nt t t     (1)

 1n nt ksin t    (2)

with the control parameters , [0,1]k  . 

The chaotic behavior of a chaotic system can be measured by the bifurcation diagram 

and the Lyapunov exponent. Figure 1a,b shows that the chaotic range of the one-dimen-

sional Logistic chaotic map is restricted. From Figure 1b, we are able to find that   is in 

the range of [0.89, 1], and its Lyapunov exponent is greater than 0. Figure 1c,d show that 

the chaotic range of the one-dimensional Sine map is similarly constrained, with k  in 

Figure 1d in the range [0.87, 1] before its Lyapunov exponent is greater than 0 to be chaotic. 

Hence the classical Logistic and Sine maps are limited in terms of key space and are not 

resistant to brute force cracking. 
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(a) (b) 

  
(c) (d) 

Figure 1. Chaotic bifurcation diagrams and Lyapunov exponents: (a) bifurcation diagram of Logistic 

map; (b) Lyapunov exponent of Logistic map; (c) bifurcation diagram of Sine map; (d) Lyapunov 

exponent of Sine map. 

2.1. Cascade Chaotic Map 

A cascade map is a form of a chaotic map; the use of cascades can effectively improve 

the performance of chaotic systems. In order to solve the problem of small chaotic inter-

vals and uneven distribution, we designed a two-dimensional cascade chaotic map, which 

has a more complex chaotic behavior than one-dimensional chaos and a faster iteration 

speed than two-dimensional chaos. The cascade system is shown in Figure 2, where 

   1 2,n nf x f x  are two different subsystems. 

 1 nf x  2 nf x

  1 2 1n nx f f x 

Subsystem 1 Subsystem 2

Cascade system

 

Figure 2. Cascade system. 

The essence of cascading is that the output of a certain initial value after the iteration 

of system 1 is taken as the iterative output of system 2, and the iterative output of system 

2 is taken as the iterative output of system 1, thus forming a circular iteration between two 

subsystems. Chaotic systems are generated by the cascade method, where the Lyapunov 

value of the system is the sum of the Lyapunov exponents of the cascaded subsystems, 

and the sequential trajectory of the system output deviates sharply as the number of iter-

ations increases [25]. 
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Using cosine functions is proposed and demonstrated in [26], where existing chaotic 

maps are cascaded by using cosine functions to improve their chaotic performance and 

extend the chaotic space, the expression as shown in Equation (3): 

 ( )
1 2 ih F x

ix G 
    (3)

where  G   is the subsystem 2 and  F   is the subsystem 1. In order to extend it to two 

dimensions, the general form expression is shown in Equation (4): 

   ( , ), 2 i ih F x y
i iS x y G    (4)

where ,i ix y  are two variables and G  is the cosine that it can be represented as Equa-

tion (5): 

     
     

, ,

1

, ,

1

2 2

2 2

i i i i

i i i i

h A x y h A x y

i

h B x y h B x y

i

x G cos

y G cos

 



 



  



 


  (5)

In Equation (3), to increase the chaotic complexity of the cosine function-based sys-

tem, a new control parameter h is introduced as part of the exponential function. When 

the angle of the cosine function is large enough that even small differences can lead to 

large output differences such as  10 0.00015576362cos   and  10.00001 0.9873552035042cos 

, also reducing the complexity of the calculation to make [10,24]h . 

   1 14 1i i if x k x x   and    2 2 sini if x k x  are Logistic map and Sine map, re-

spectively, and      1 2,i i i iA x y f x f y  ,      1 2,i i i iB x y f y f x  . We made them as 

subsystem 1 of Equation (4) and used it as the argument of subsystem 2, and then we 

derived Equation (6): 

          
          

1 21 2

1 2 11 2 1

4 1 sin

1

4 1 sin

1

2 2

2 2

i i ii i

i i ii i

h k x x k yh f x f y

i

h k y y k xh f y f x

i

x cos cos

y cos cos



 

   



   



  


  


  (6)

Further, controlling the value of the parameter   enables Logistic and Sine to be in 

chaos, which, according to Figure 1, makes 1 2

1
1

9
k k     [27], and when using mod1 

to control the iteration value between (0, 1), the chaotic map 2D-CLSM expression is 

shown in Equation (7): 

    

    1

1
(1 ) 4 1 sin

9
1

1
(1 ) 4 1 sin

9
1

2 mod1

2 mod1

i i i

i i i

h x x y

i

h y y x

i

x cos

y cos

 

  

   



   



   
   
    


  

   
   

  (7)

where (0,1)ix  , (0,1)iy   are the control parameters [10,24]h , [0,1]  . 

2.2. Performance Evaluation 

In order to analyze the 2D-CLSM’s performance, we compared it with another exist-

ing 2D chaotic map for image encryption, i.e., the 2D Logistic-Sine-Coupling Map (2D-

LSCM) [28]. 
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1

1 1

sin 4 1 (1 )sin

sin 4 1 (1 )sin

i i i i

i i i i

x x x y

y y y x

   

   



 

     


    

  (8)

2.2.1. Chaotic Trajectory 

The trajectory of a 2D-CLSM shows how motion increases over time from a specific 

initial state. In the case of periodic motion, the trajectory would be a closed curve, whereas 

the trajectory of chaotic behavior would theoretically never close or repeat. Therefore, 

chaotic trajectories usually occupy a part of the phase space and can reflect the random-

ness of the chaotic system output. If a chaotic trajectory can occupy a larger portion of the 

phase space, the chaotic system has a better stochastic output. 

From Figure 3a–f, we can see that the 2D-CLSM is able to occupy the full phase plane 

for all trajectories within the parameter range, and the ability to occupy the full phase 

plane with both different   and h  indicates that the improved chaotic system has a 

better random output. On the contrary, 2D-LSCM is influenced by control parameters, 

which are not able to occupy full space. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3. The trajectory of chaotic systems: (a) the trajectory of 2D-CLSM with 0.71, 15h   ; (b) 

the trajectory of 2D-CLSM with 0.3, 15h   ; (c) the trajectory of 2D-CLSM with 

0.71, 20h   ; (d) the trajectory of 2D-CLSM with 0.3, 20h   ; (e) the trajectory of 2D-LSCM 

with 0.3  ; (f) 2D-LSCM with 0.71  . 

2.2.2. Bifurcation Diagram 

We set initial value as 0 00.4, 0.3x y   and the 2D-CLSM 15h  . As shown in Fig-

ure 4a–d, 2D-CLSM is in a chaotic state in the whole parameter domain, and it is more 

uniform. On the contrary, the 2D-LSCM does not occupy the entire plane, where the con-

trol parameters are at [0.3, 0.43], and values between [0, 0.1] cannot be generated itera-

tively. 
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(a) (b) 

  
(c) (d) 

Figure 4. Bifurcation diagram of chaotic system: (a) bifurcation diagram of 2D-CLSM x  ; 

(b) bifurcation diagram of 2D-CLSM y  ; (c) bifurcation diagram of 2D-LSCM x  ; (d) bifur-

cation diagram of 2D-LSCM y  . 

2.2.3. Lyapunov Exponent 

The LE (Lyapunov exponent) describes the sensitivity of a chaotic mapping to initial 

values. In general, a chaotic map is in a chaotic state when 0   indicates that two ad-

jacent phase points are about to separate and the chaotic map is in a chaotic state. For a 

two-dimensional map, the system of difference equations is assumed to be: 

 

 
1 1

1 2

,

,

i i i

i i i

x f x y

y f x y









  (9)

Its Jacobian matrix at the point 
( ) ix ( , )i ix y  is as follows: 

f   ( )ix
1 1

2 2

( , )i i

f f

x y

f f

x y
x y

 

 

 

 

 
  
  

  (10)

Let �� = �′(�(�))�′(�(�))⋯�′(�(���)), then the eigenvalue of iJ  may be expressed as 

   
1 2,
i i  . The Lyapunov exponents of system (9) can be expressed as Equation (11): 

 1
lim

i

k k
i

ln
i

 


   (11)

The larger the value of  , the faster the separation of point phase points in the phase 

space and the greater the sensitivity of chaos to initial values. Figure 5 shows the Lya-

punov exponent of 2D-CLSM and 2D-LSCM; it is clear that the 2D-CLSM has a better 

chaotic behavior than 2D-LSCM. 
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(a) (b) 

Figure 5. Lyapunov exponents for chaotic systems: (a) Lyapunov exponent of 2D-CLSM; (b) Lya-

punov exponent of 2D-LSCM. 

2.2.4. NIST Test 

In this paper, 15 NIST tests were used to test the randomness of the generated se-

quences, and 15 correspond to p-values to show the test result. The sequence is considered 

random when the p-value is over 0.01. Table 1 contains the NIST test results for the 2D-

LSCM map and the 2D-CLSM map. The NIST test results for the 2D-CLSM map are all 

“Success”, as shown in Table 1, and 11 of the 2D-CLSM test results are higher than 2D-

LSCM, demonstrating 2D-CLSM map can generate pseudo-random sequences with good 

random performance. 

Table 1. NIST test results. 

Serial Number Test Items 

2D-CLSM 2D-LSCM 

p Value 
Test 

Results 
p Value Test Results 

1 Frequency 0.1422 Success 0.0767 Success 

2 Block Frequency 0.7165 Success 0.9936 Success 

3 Cumulative Sums 0.2472 Success 0.0692 Success 

4 Runs 0.8561 Success 0.7405 Success 

5 Longest Run of Ones 0.7310 Success 0.4477 Success 

6 Rank 0.1691 Success 0.1514 Success 

7 Discrete Fourier Transform 0.8330 Success 0.1766 Success 

8 
Nonperiodic Template 

Matchings 
0.6254 Success 0.4721 Success 

9 
Overlapping Template 

Matchings 
0.6886 Success 0.9365 Success 

10 Universal 0.9992 Success 0.9583 Success 

11 Approximate Entropy 0.9309 Success 0.7040 Success 

12 Random Excursions 0.1319 Success 0.2175 Success 

13 Random Excursion Variant 0.1025 Success 0.4166 Success 

14 Serial 0.9068 Success 0.1638 Success 

15 Linear Complexity 0.9250 Success 0.5041 Success 

2.2.5. Information Entropy 

In information theory, information entropy is used to quantify the uncertainty of the 

information content. It can be used to evaluate how random a set of data is. We trans-

formed the chaotic sequence obtained by iteration into values between 0 and 255 and ob-

tain the information entropy according to Equation (12): 
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12

2
0

log

N

i i
i

H X Pr x Pr x





    (12)

where X  is a data sequence, ix  is the ith  possible value in X  and  iPr x  is the 

probability of ix . A bigger information entropy value means better randomness; for a set 

with 256 states, its maximum expected value is 256
2log 8 . 

Better randomness is correlated with larger information entropy values, and Figure 

6 shows the information entropy of the output sequences generated by 2D-CLSM for dif-

ferent parameter settings. From Figure 6, the mean information entropy value of 2D-

CLSM is bigger than 2D-LSCM, and it is close to 8, which means good randomness. 

  
(a) (b) 

Figure 6. The information entropy of the sequences: (a) information entropy of 2D-CLSM; (b) infor-

mation entropy of 2D-LSCM. 

3. New Encryption Algorithm Design 

There are four main stages in our encryption algorithm: key generation, S-box gen-

eration, bit-level encryption and pixel-level encryption. The size of the plaintext image P  

is M N , and , , , , ,t x y m    are the initial keys. The overall process is shown in Figure 

7. 

Key 
generation

S-box 
generation

Bit-level 
manipulation

Pixel-level 

manipulation
Cipher imagePlain image

 

Figure 7. Overall process. 

Two different chaotic maps are used in our algorithm: Logistic and 2D-CLSM, which 

are used in different stages of encryption. In the S-box generation stage, a Logistic map is 

used to generate the chaotic sequence needed to generate the S-box; a 2D-CLSM map is 

used in the bit-level operation and pixel-level operation phases. By using the different 

chaotic maps in different stages to expand the key space, a more complex encryption al-

gorithm is generated. 
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3.1. Keys Generation 

If the key stream used for encryption is only related to the key and not related to the 

plaintext image, the designed algorithm is not safe for chosen/known plaintext attack. In 

order to ensure the security of encryption, the encryption key is generated from the initial 

key and the plaintext image. 

Initial encryption keys contain six decimal numbers, , , , , ,t x y m   . Six decimal en-

cryption keys, 0 0 0
ˆˆˆ, , , , ,t x y h  , are generated by combining the plaintext images, which 

are used as initial values and control parameters of the chaotic system. Using 0m   as 

a scrambling value prevents an attacker from attacking the key with a black or white im-

age. The encryption key is generated by Algorithm 1, where 0
ˆ,t   is used as the initial 

value and control parameter of the Logistic map; 0 0
ˆ ˆ, , ,x y h   is set as the initial value, 

control parameter and variables h of 2D-CLSM. 

Algorithm 1 Generation of the encryption keys 

Input: Plain image P , initial keys , , , , ,t x y m     

Output: The encryption keys 0 0 0
ˆˆˆ, , , , ,t x y h   

1: Read the size: [ ,M N ] = size (P ) 

2: Obtain the sum of all pixels and add scramble number 

 
1 1

0 0

,
M N

i j

sum P i j m
 

 

    

3: Calculate the mean of the all pixels  /m sum M N   

4:  15
0 2 mod1tt cos m    

5:  15ˆ 1 2 mod0.1cos m      

6:  20ˆ 2 mod1cos m     

7:  20
0 2 mod1xx cos m    

8:  20
0 2 mod1yy cos m    

9:   0 0 20ˆ 2 mod1 14 10x yh cos m        0 0 20ˆ 2 mod1 14 10x yh cos m       

3.2. S-Box Generation 

3.2.1. S-Box Generation Algorithm 

In the construction method of a chaotic S-box, there is the problem of generating use-

less chaotic sequences that affect efficiency. Wang et al. proposed in [15] to use a three-

dimensional chaotic map to iterate chaotic sequences and expand the modulo operation 

to generate values between 0 and 255 to generate S-boxes, and the algorithm only ends 

when all 256 values are generated, this method generates a large number of useless chaotic 

sequences, and if a value cannot be generated all the time, the efficiency of the algorithm 

is affected, and the real-time performance becomes poor. In some methods, there are im-

mobile points in the generated S-boxes [29], which can become attackable points. Table 2 

gives the generation times of existing S-box generation methods, the presence of fixed 

points and the number of fixed points before and after the Fisher–Yates shuffling algo-

rithm is applied to the S-box. 

The Fisher–Yates shuffling algorithm is an algorithm proposed by R. Fisher and F. 

Yates for generating random permutations of finite linear arrays [30]. The most important 

feature of this approach is that it generates an unbiased result so that the probability of 

each value being at any position is equally likely, essentially generating a finite set of ran-

dom permutations. Thus, by using the Fisher–Yates random shuffle algorithm, we are able 
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to make the encryption scheme more complex and secure by enabling us to quickly gen-

erate different S-boxes and reduce the presence of fixed points during each encryption. 

The steps are as follows: 

Step 1: Obtain the length m  of the sequence P  that needs to be shuffled; 

Step 2: Generate a random number n  with a value between [0, 1]m ; 

Step 3: Shuffle the values of the two positions according to n  and m , then ex-

change the values of ( )P n  and ( )P m ; 

Step 4: Subtract 1 from m  to obtain the new position; 

Step 5: Repeat step1~step4 until 1m  . 

Table 2. Generation time and fix point. 

S-Box Generate Time Fixed Point After Fisher–Yates 

Ref. [17] 0.9415 2, 17, C7, CB None 

Ref. [21] 0.0487 0D, 33, 77, 95 None 

Ref. [22] 0.7593 None None 

Algorithm 2 describes the generation process of the S-box. 0
ˆ,t  , generated by algo-

rithm 1, is taken as the initial value and control parameter of Logistic, iteratively generat-

ing a chaotic sequence Q  with a length of 512 bits, and then divided into two sequences 

1, 2Q Q  with a length of 256 bits, respectively, calculating and obtaining the ascending 

index 1 [0,255]q  , 2 [0,255]q   of 1Q  and 2Q . Then 2q  is taken as the random 

number sequence of the shuffling algorithm, shuffling 1q  and finally, 1q  is converted 

into a 16 bits × 16 matrix to obtain the S-box s . 

Algorithm 2 Generation of S-box 

Input: encryption keys 0
ˆ,t   

Output: S-box s  

1: for i  from 1 to 1512: 

Substituting 0
ˆ,t   into Equation (1) 

      if i >1000: 

obtain the 512-length chaotic sequences Q  

2: Divide Q  into two subsequences of length 256 1Q , 2Q ; obtain the ascending 

sort index of the 1Q , 2Q ; and assign it to  1 arg 1q sort Q  and 

 2 arg 2q sort Q  

3: Read the size: ( 1)m size q  

4: while 1m : 

Obtain a random number  2q m  

Swap the value of  1( 2 ), 1( )q q m q m  

Set 1m m   

5: If 1m   transform 1q  into 16×16 matrix and assign it to s  

6: Obtain S-box s  

3.2.2. Performance Test of the Proposed S-Box 

In order to verify the performance and strength of the generated S-boxes, we used 

the general criteria for S-box performance evaluation to be able to test them [31]. In this 

thesis, the nonlinearity of the S-box, the strict avalanche criterion SAC, the output bit in-

dependence criterion BIC and the differential approximate probability DP are verified, 

respectively. Table 3 displays the S-box matrix that we produced. 
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Table 3. The generated S-box by proposed algorithm. 

i\j. 0 1 2 3 4 5 6 7 8 9 A B C D E F 

0 100 62 60 203 217 27 159 103 77 112 134 236 2 167 219 96 

1 228 29 18 170 113 39 64 127 87 90 1 160 94 183 7 125 

2 199 54 55 193 104 246 146 129 79 14 162 137 237 63 191 174 

3 148 115 109 99 225 13 202 187 17 250 185 41 110 25 139 177 

4 50 15 76 238 114 34 12 107 207 222 45 102 249 75 220 200 

5 98 195 47 0 151 51 67 3 82 230 184 204 241 117 35 130 

6 36 254 156 196 227 178 248 68 145 31 126 149 153 5 43 181 

7 19 157 30 154 121 231 86 201 239 101 189 72 69 71 119 37 

8 131 11 118 10 83 24 215 140 247 74 38 152 46 206 8 106 

9 59 208 164 150 136 192 255 9 84 235 229 88 213 171 147 92 

A 166 48 97 28 224 180 23 144 85 4 190 122 111 173 108 243 

B 52 188 210 209 197 58 182 233 143 40 26 163 33 244 218 211 

C 120 89 20 16 124 57 53 232 142 179 73 172 22 44 175 70 

D 176 212 32 216 91 194 49 245 155 80 161 234 141 42 226 198 

E 186 135 205 61 240 123 223 251 105 21 95 133 253 221 252 242 

F 66 93 169 116 81 165 78 128 138 132 214 56 65 6 168 158 

(I) Nonlinearity In the process of encryption, if the given S-box makes a linear map-

ping between the input (plaintext) and the output (ciphertext) [32], then a decipherer can 

easily deduce and break the ciphertext when the cryptographic strength of the S-box is 

very small, but if the S-box can map the input to the output in a nonlinear way, then it is 

considered a reliable S-box that can protect the plaintext data and can help us resist the 

attacks of linear cryptanalysis, and we can calculate the nonlinear value of the 8-bit Bool-

ean function S by using Equation (13). 

(2 )

1
128 max ( )

2 nf f
GF

NL WH





    (13)

where fNL  is the 8-bit Boolean function,  fWH   is the Walsh–Hadamard transform 

of the eight-bit Boolean function S. The values of the S-box nonlinearity obtained accord-

ing to the above are shown in Table 4, where the maximum value is 110, the minimum 

value is 106 and the average value is 107.5 

Table 4. S-box nonlinear values. 

 S1 S2 S3 S4 S5 S6 S7 S8 

NL(s) 108 106 108 106 108 108 110 106 

(II) Strict Avalanche Criterion (SAC) Webster and Tavares used the strict avalanche 

criterion as an important feature of the performance of an S-box [33]. The strict avalanche 

criterion ensures that if one bit is changed in the input, it causes at least 50% of the output 

to change, and an S-box is considered to be a strong S-box if the value of SAC is approxi-

mately equal to 0.5. We propose that the S box has a SAC value that satisfies the strict 

avalanche criterion. The SAC dependency matrix of our generated S-boxes is shown in 

Table 5. The table shows the average SAC of the generated S-boxes is 0.4996, which is very 

close to the desired value of 0.5, and shows that the generated S-boxes satisfy the SAC 

criteria. 
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Table 5. Generating S-box SAC values. 

0.4196 0.4235 0.4196 0.5647 0.4823 0.5137 0.5450 0.5294 

0.4549 0.5019 0.4509 0.5019 0.5490 0.4705 0.4352 0.5176 

0.5960 0.4862 0.4980 0.5137 0.5607 0.5333 0.5607 0.5176 

0.4980 0.5137 0.5490 0.4980 0.4392 0.4862 0.5450 0.5490 

0.5019 0.5294 0.5294 0.4980 0.4392 0.4862 0.5450 0.5490 

0.5019 0.4509 0.5647 0.5176 0.5137 0.4980 0.5137 0.4392 

0.4666 0.5333 0.4823 0.4235 0.4549 0.5450 0.5294 0.4235 

0.4705 0.5333 0.4823 0.4549 0.5490 0.5294 0.5019 0.4980 

(III) Output Bits Independence Criterion (BIC) This criterion was introduced by 

Webster et al. as one of the important properties of S-box evaluation, a property that en-

sures that there is no dependence on the change of any two output bits when a single 

input bit is changed, a property that makes any Boolean function must be independent 

and highly nonlinear. For two output bit Boolean functions if  and jf  in an S-box, if 

i jf f  is highly nonlinear and satisfies the SAC as close as possible, then it is guaranteed 

that when one input bit is inverted, the correlation coefficient of each output bit is close to 

0, i.e., the BIC is satisfied. 

Through experimental tests, the average BIC nonlinearity value of the proposed S-

box is 104.5, and the BIC-SAC test result is 0.5009, which satisfies the BIC criterion. 

(IV) Difference Approximation Probability (DP) differential cryptanalysis, intro-

duced by Biham and Shamir [34], is able to obtain the input differential from the output 

differential while being able to attempt to obtain from it modifications to the plaintext and 

changes to the ciphertext data, combined with the difference between the two changes an 

attacker is able to use the resulting small differences to identify complete or partial 

plaintexts and keys, and in the process of designing the S-box, there is a need to minimize 

both changes The difference between the two needs to be minimized in the design of the 

S-box. The designer calculates the difference by differential uniformity, which is checked 

right by the differential approximation probability, as shown in Equation (14): 

0,

#{ (2 ) | ( ) ( ) }
( ) max

2

n

nx y

x GF f x f x x y
DP f

  

     
  

 
  (14)

where x  and y  are the input difference and output difference, and DPdenotes the 

maximum probability that the output of each given difference x  is equal to y . The 

maximum DP value of our proposed generated S-box is 10, indicating that our S-box can 

resist differential. 

In comparison with the other four methods, the results show in Table 6 that the S-

box nonlinearity produced by the algorithm in this paper is higher than the other four 

solutions. The SAC  value of S box 0.4996 is closest to the ideal value of 0.5 in five meth-

ods, and the BIC  value also meets the test requirements. The BIC  of the S-box also 

meets the test requirements based on the DP value of the test and has a good ability to 

resist the differential password attack based on the DP value of the test. In terms of S-

box generation time, the algorithm in this paper has a good advantage. Although our non-

linear value is still some distance from the ideal value, we believe that the performance of 

the generated S-box needs to meet the performance requirements, and the efficiency and 

space cost of S-box generation also need to be considered. 
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Table 6. S-box performance test results. 

S-Box 
Nonlinearity 

SAC BIC-SAC 
BIC-

Nonlinearity 
DP 

Generate 

Time Min Max Avg 

ours 106 110 107.5 0.4996 0.5009 104 10 0.0066 

Ref. [18] 100 106 104 0.4988 0.5006 104 10 0.3071 

Ref. [19] 102 108 104 0.4988 0.5052 104 10 0.0091 

Ref. [20] 106 108 106 0.4916 0.5058 104.14 10 0.0160 

Ref. [22] 99 106 103.5 0.5065 0.5013 103.357 12 0.7593 

3.3. Bit-Level Encryption 

Traditional image encryption generally falls into one of three categories: permuta-

tion-only, diffusion-only, or combined forms. Due to its simpler computational complex-

ity, the permutation-only type of these is more efficient, but the security is not very strong. 

Due to the substantial computational load required for real arithmetic operations, the dif-

fusion type is a time-consuming process. The pixel values and random numbers are used 

to perform an XOR operation, and the calculated numbers are used to determine the ranks 

of the S-boxes and substitute the original pixels with the values in the S-boxes, but the 

overall encryption efficiency is low due to the lack of permutation and diffusion opera-

tions on the plaintext image and the low efficiency of S-box generation [15]. 

In this stage, by separating the eight-bit pixel values into upper four bits and lower 

four bits, different operations are performed on the two parts, respectively, and a new 

diagonal diffusion method for irregular matrices is proposed to be applied to the high 

four-bit matrix. The bit-level encryption process is shown in Figure 8. 

Convert pixel 
values to 

8-bit binary

Upper 4 bits of 
pixel value

Lower 4 bits of 
pixel value

Rearrange 
matrix

Upper 4 bits of 
pixel value

Iterative 
2D-CLSM 
mapping

Permutation

Adaptive 
diagonal 
diffusion

Plain image

Images for 
completing bit-
level operations

Chao
sequence

 

Figure 8. Bit-level encryption process. 

3.3.1. Pixel Value Split 

We converted the original pixel value of the plaintext image into a binary represen-

tation and extracted it into two parts for different operations. The upper four bits P1 of 

the pixel value and the lower four bits P2 of the pixel value are shown in Figure 9. 

101 200

46 89 58

97

69 73 255

0110
0101

1100
1000

0010
1110

0101
1001

0011
1010

0110
0001

0100
0101

0100
1001

1111
1111

0110 1100 0110 0010 0101 0011 0100 0100 1111

0101 1000 0001 1110 1001 1010 0101 1001 1111

Upper 4-bit P1

Lower 4-bit P2

 

Figure 9. Plaintext image processing. 
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3.3.2. Improved Diagonal Diffusion 

In order to make the information of pixel points have a good diffusion effect, many 

diffusion methods, such as V-diffusion, zigzag diffusion and chunk diffusion, were pro-

posed. A zigzag algorithm was used in [35] and improved to rearrange the pixel values, 

but the transformation law of zigzag is relatively single, traversing from the upper left 

foot to the lower right corner in a Z-shaped order, as shown in Figure 10. 

1 2

4 5 6

3

7 8 9

1 2 4 7 5 3 6 8 9

1 2

7 5 3

4

6 8 9

 

Figure 10. Zigzag transform. 

However, the security of the zigzag is not guaranteed due to the fact that it is extremely 

easy to be broken by a single variation. 

In order to obtain faster diffusion speed and diffusion effect, this paper proposes a new 

diagonal diffusion method by randomly and irregularly rearranging the image matrix 

through a chaotic sequence. The number of pixel values in each row is controlled by the ran-

dom sequence, there may be no pixel values at some positions of the diagonal, and the matrix 

presents an irregular arrangement. Through the proposed new diagonal diffusion, it can com-

plete the diagonal of diffusion. Through the comparative analysis of the relevant experiments 

in Section 4, this scheme has good performance. 

In this paper, after obtaining the upper four-bit matrix, we changed its alignment through 

a random sequence to generate different irregular matrices, performed diagonal diffusion on 

the matrix according to the changed alignment and changed its alignment, as shown in Figure 

11. Algorithm 3 describes the transformation process. 

1 2 3 4 5 6 7 8 9

1 2

3 4 5 6

7 8 9

1

2 3

4 5 6 7 8 9

Different random 
sequences

1 2 3 4

5

6 7 8

9

 

Figure 11. Matrix rearrangement. 

Algorithm 3 Matrix rearrange 

Input: upper 4-bits sequence 1P ，random sequence X i   

Output: irregular matrices 1P   
1: Obtain the size of 1P , m = size ( 1P ) 

2: Set an empty list 1P   and 0, 0i j   

3: While ( 0m X i    ): 

            1 1( : )P i P j j X i       

            1i i   

 j j X i    

 m m X i    

4:    1 1 :P j P j   
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Where  1 :P i j  denotes from the ith  to the jth  digit of 1P , and  1 :P i  denotes 

from the ith  to the last digit of 1P . 

Based on the rearranged matrices, we proposed a diagonal diffusion to perform dif-

fusion operations on upper 4-bit matrices capable of new diagonal diffusion operations 

based on different irregular matrices, as shown in Figure 12, where the arrows represent 

the order and direction. 

1 2

3 4 5 6

7 8 9

1

2 3

4 5 6 7 8 9

1 2 3 4

5

6 7 8

9

 

Figure 12. Diagonal diffusion of different matrices. 

According to the irregular matrix obtained by Algorithm 3, we need to diffuse ac-

cording to the diagonal, but the shape of the matrix is irregular, so given Algorithm 4 used 

to obtain the order of the pixel values of the diagonal of the irregular matrix, sequentially 

traversing the diagonal to obtain its diffusion order matrix for diffusion, according to dif-

ferent irregular matrices for the order of diagonal diffusions, such as the first: (1- > 3- > 2- 

> 7- > 4- > 8- > 5- > 9- > 6), the second: (1- > 2- > 4- > 3- > 5- > 6- > 7- > 8- > 9) and the third: 

(1- > 5- > 2- > 6- > 3- > 9- > 7- > 4- > 8), if we use the normal zigzag, then the order of each 

diffusion is fixed in a 3 × 3 matrix, and the result is (1- > 2- > 4- > 7- > 5- > 3- > 6- > 8- > 9) 

each time, which is not guaranteed in terms of security. 

Algorithm 4 Diagonal diffusion order 

Input: irregular matrices 1P   
Output: order sequence D  

1: Obtain the size of 1P   m  = size ( 1P  ) 
2: Set tow empty list D , sub  

3: for i  from 1 to m : 

        Obtain the size of 1P   ( 1 ( ))n size P i   

        for i  from 1 to n : 

                  ( ). 0, 1 ,sub i j insert P i j   

4: Obtain the size of sub  ( )m size sub  

5: for i  from 1 to m : 

         Obtain the size of  sub i  n  = size (  sub i ) 

         for i from 1 to n : 

                   . ,D insert sub i j  

Where   ( ). 0, 1 ,sub i j insert P i j   means adding  1 ,P i j  to the head of the array 

 sub i j  and   . ,D insert sub i j  means adding ( , )sub i j  to the end of the array D . 
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3.3.3. Permutation and Diffusion Process 

Step 1: Generate S-boxes s  according to the S-box generation method proposed in 

Section 3.2.; 

Step 2: Generate the encryption key 
0 0

ˆ, , ,x y h  and process the image to obtain 

1, 2P P  according to Algorithm 1 and , ,x y ; 

Step 3: Iterate over 
0 0

ˆ, , ,x y h  as the control parameter and initial value of the 2D-

CLSM chaos map to generate two chaotic sequences 

1 2 1 2{ , ,..., }, { , ,..., }M N M NX x x x Y y y y    of length M N ; 

Step 4: Process the chaotic sequence to obtain the random numbers for array rear-

rangement; 

     1310 mod +1, 1, 2,...,X i floor X i N i M N    
  

(15)

Step 5: Based on the resulting upper 4-bit matrix 1P  and the random sequence 

 X i , the upper 4-bit matrix is rearranged by Algorithm 3 to obtain a new irregular ma-

trix 1P  ; 
Step 6: Perform a diffusion operation on the irregular matrix 1P   obtained in step 

4. For computational convenience, we first transform the irregular matrix into a one-di-

mensional matrix D  by means of Algorithm 4; 

Step 7: Diffusion operation based on the 1D matrix D  obtained in step 6 to obtain 

D ; 

      

     

1 mod16 , 1
  

1 , 2,3,...,

D i X D i i

D i D i D i i M N

     

      

  (16)

Step 8: Process the chaotic sequence to obtain chaotic values for the lower four posi-

tions; 

    1310 mod65536 1,2,...,Y i floor Y i i M N       (17)

Step 9: Based on the resulting  Y i  the lower four bits of the matrix are permutated. 

  
    

 

2

2 2 ,  1,2,...,

2

temp P Y i

P Y i P i i M N

P i temp

  


   




  (18)

3.3.4. Pixel-Level Encryption 

At the end of the bit-level encryption, pixel-level encryption is performed by the re-

sulting pixel values using the S-box. It mainly includes pixel value diffusion and substi-

tution. The main process is shown in Figure 13. 
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Figure 13. Pixel-level encryption process. 

Generate an empty matrix C  of size M N . Based on the matrix , 2D P  after 

completing the diffusion and permutation, reorganize , 2D P  by replacing the original 

upper four bits as lower four bits and the original lower four bits as upper four bits to 

obtain 8-bit values between 0 and 255, calculate the row index r and column index c of 

the S-box and complete the pixel value substitution using the S-box s  generated in the 

second stage. 

      

 

dec 2 ( 1)

%16
, 1,2,...,

/16

( ) ( , )

temp P i D i X i C i

c temp
i M N

r temp c

C i s r c

         
 

 
 




  (19)

where 1,  ( 1) 0i C i   ;  ,  ( 1) 1i M N C i C    .  dec a b    is the reconfiguration 

of two four-bit binary numbers ,a b  into an eight-bit binary number, and ( , )s r c  repre-

sent obtaining the value at row r  and column c  from the S-box s . 

Finally, C  is converted to an M N  ciphertext image. 

4. Simulation Experiments 

The simulation results of the proposed method are presented in this section by run-

ning PyCharm software under Windows 10 64-bit system. By using the method in this 

paper, 10 images were both encrypted and decrypted. The results of encrypting and de-

crypting several grey-scale images such as Baboon.png, House.png, Cameraman.png and 

Peppers.png pixels are shown here, respectively. The initial keys used for encryption/de-

cryption are shown in Table 7, and generated keys are shown in Table 8, where 0
ˆ,t   are 

used as initial values and control parameters for the Logistic. 0 0
ˆ ˆ, , ,x y h   are used as con-

trol parameters, initial values and variables h for the 2D-CLSM. 

Table 7. Initial key. 

t µ θ x y Δm 

0.9 0.5 0.2 0.5 0.2 5001 
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Table 8. Generated encryption keys. 

Image Baboon House Cameraman Peppers 

0t  0.1202650498467574 0.9477909907361988 0.2160499006239973 0.0961937648047185 

̂ 0.9349678430636638 0.9505574749633823 0.9210123850695779 0.9032945073229159 

̂  0.0664003944646814 0.6920508714375233 0.2309975836114158 0.977565451998436 

0x  0.0264462005880243 0.4490902428109265 0.1811279735456482 0.1440190683132808 

0y  0.0664003944646814 0.6920508714375233 0.2309975836114158 0.977565451998436 

ĥ 20.512754134641057 16.49739814853646 22.592144200059774 11.400485742889497 

From Table 8, we can clearly see that the encryption keys generated by the algorithm 

in this paper have good plaintext correlation, can generate completely different encryp-

tion keys depending on the plaintext, have good plaintext sensitivity and can effectively 

resist selective plaintext/known plaintext attacks. 

Figure 14a–c shows the experimental results of Baboon, Figure 14d–f shows the ex-

perimental results of House, Figure 14g–i shows the experimental results of Cameraman 

and Figure 14j–l shows the experimental results of Peppers. It is clear from the Figure 14 

that the encrypted image can still be fully restored, which verifies the effectiveness of the 

algorithm in this paper, which can obtain good encryption and decryption results. 

   

(a) Original Baboon (b) Cipher Baboon (c) Decrypted Baboon 

   

(d) Original House (e) Cipher House (f) Decrypted House 

   

(g) Original Cameraman  (h) Cipher Cameraman (i) Decrypted Cameraman 
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(j) Original Peppers (k) Cipher Peppers (l) Decrypted Peppers 

Figure 14. Encryption and decryption results: (a) plaintext image Baboon; (b) encrypted image Ba-

boon; (c) decrypted image Baboon; (d) plaintext image House; (e) encrypted image House; (f) de-

crypted image House; (g) plaintext image Cameraman; (h) encrypted image Cameraman; (i) de-

crypted image Cameraman; (j) plaintext image Peppers; (k) encrypted image Peppers; (l) decrypted 

image Peppers. 

4.1. Security Analysis 

4.1.1. Key Space Analysis 

Assuming that the accuracy of the computer is 1610  , in order to make the key suf-

ficiently resistant to brute-force attacks, the key space of the encryption system must be 

more than 1002 , and the parameters of the encryption system are 0 0 0
ˆˆˆ, , , , ,t x y h , 

0 0 0
ˆˆˆ[0,1], [0.89,1], [0,1], [0,1], [0,1], [10.24]t x y h       , so the key space is calcu-

lated as in Equation (20). The key space is larger than 10 02 , so the algorithm in this paper 

has sufficient key space to resist brute-force cracking attacks. 

16 16 16 16 16 16 1000.11 10 10 10 10 10 14 10 2          (20)

4.1.2. Key Sensitivity Analysis 

In a secure encryption system, a mirror change in the key can cause a complete 

change in the ciphertext obtained from the encryption. Through testing, the encryption 

key ,t   of the Peppers graph was increased by 1610  to the original one, respectively, 

and the rest of the keys were left unchanged, and the Peppers were encrypted with the 

modified key and the original key, respectively, and the results obtained are shown in 

Figure 15a–f. 

   

(a) Original keys � 
(b) Changed keys  � +

10���  
(c)Difference diagram 
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(d) Original keys � 
(e) Changed keys  � +

10��� 
(f) Difference diagram 

Figure 15. Key sensitivity analysis: (a) image encrypted with original key �;  (b) image encrypted 

with original key � + 10���;  (c) the difference between (a ,b);  (d) image encrypted with orig-

inal key �;  (e) image encrypted with original key � + 10���;  (f) the difference between (d ,e).  

As shown in Figure 15, when the initial key is slightly changed, the resulting en-

crypted image is completely changed, which shows that the algorithm has good key sen-

sitivity and only the correct key can decrypt the ciphertext. 

4.1.3. Histogram Analysis 

The distribution of the image’s pixel values can be directly described by the histo-

gram. A secure encryption system should ensure that pixel values of the obtained cipher-

text image are uniformly distributed in order to reduce readability, improve security and 

provide effective protection against statistical attacks. 

Figure 16 shows the histogram of plaintext and ciphertext pixel frequencies for Ba-

boon, House, Cameraman and Peppers, from which we can see that the pixel of ciphertext 

images is uniformly distributed. The statistical properties of the images were altered so 

that they are well resistant to statistical analysis attacks. 

  

(a) Original Baboon (b) Cipher Baboon 

  

(c) Original House (d) Cipher House 
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(e) Original Cameraman (f) Cipher Cameraman 

  
(g) Original Peppers (h) Cipher Peppers 

Figure 16. Plain text image histogram and Ciphertext image histogram analysis: (a) plaintext Baboon 

histogram; (b) Ciphertext Baboon histogram; (c) plaintext House histogram; (d) Ciphertext House 

histogram; (e) plaintext Cameraman histogram; (f) Ciphertext Cameraman histogram; (g) plaintext 

Peppers histogram; (h) Ciphertext Peppers histogram. 

The variance of the histogram can be used to specifically describe the distribution of 

pixel values. The calculation equation is shown in (21), and the result shows in Table 9. 

1 1
2

2
0 0

1 1
( ) ( )

N N

i j
i j

var z z z
N z

 

 

    (21)

Where z  represents histogram values; N  represents the total number of samples ( N

for an image with a grey level of 8 is 256); iz , jz  are number of pixels with grey values 

at i , j . The smaller the histogram’s variance, the more evenly distributed the histo-

gram. 

Table 9. Variance of histograms of encrypted images. 

Image 
Plain 

Image 
Ours Ref. [18] 

Ref. 

[19] 
Ref. [20] Ref. [22] 

Baboon 47,065.25 233.35 270.33 270.68 271.31 237.31 

House 28,706.41 217.75 255.35 263.38 246.16 246.76 

Cameraman 10,5149.27 247.92 269.91 249.93 265.32 259.79 

Peppers 35,550.14 246.04 234.49 242.46 240.74 242.06 

Average 54,513.19 236.26 257.52 256.61 255.88 246.48 

Table 9 compares the variance of histograms with methods in Refs. [18–22], from 

which we can see that our encrypted Baboon, House, and Cameraman have the lowest 

variance of all the schemes, and Peppers is slightly higher than the others. The average 

variance of the four images is 236.26, which is the lowest of the four methods, so it per-

forms better in resisting statistical attacks. 
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4.1.4. Plaintext Sensitivity Analysis 

A differential attack is a common form of attack in cryptography, in which an attacker 

usually selects to encrypt the plaintext and a slightly altered plaintext and analyses them 

to find a specific relationship. In order to be effective against differential attacks, the en-

cryption algorithm should be sensitive enough to the plaintext that a diffusion operation 

during encryption can cause small changes in the plaintext to affect all pixels, and we 

usually evaluate the sensitivity of the algorithm using the pixel change rate NPCR and the 

normalized pixel average change intensity UACI, their ideal expectations are 99.6094% 

and 33.4635%, respectively. We obtained NPCR and UACI values by randomly modifying 

two pixel points of the plaintext image. In this paper, we choose to modify pixel points (2, 

2) and (236, 207). In Table 10, we give the corresponding experimental results as well as 

the corresponding results for the other four scenarios. The calculation expressions are 

shown in Equations (22)–(24). 

1 1

0 0

1
( , ) 100%

M N

i j

NPCR D i j
M N

 

 

 

   (22)
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   (24)

where 0,1,..., 1, 0,1,..., 1i M j N    , C, C  are original encrypted image and the en-

crypted image with the plaintext modified, respectively; M  and N  make the height 

and length of the image, respectively; and  ,C i j  denotes the pixel values at coordinates 

 ,i j  of the encrypted image C . 

Table 10. NPCR and UACI values. 

Image  NPCR UACI 

Baboon Ours 99.6246% 33.4949% 

 Ref. [18] 99.4863% 32.1574% 

 Ref. [19] 99.5616% 33.0145% 

 Ref. [20] 99.6551% 33.4146% 

 Ref. [22] 99.5256% 33.3324% 

House Ours 99.6292% 33.5274% 

 Ref. [18] 99.4515% 33.1501% 

 Ref. [19] 99.5849% 33.3829% 

 Ref. [20] 99.6149% 33.5051% 

 Ref. [22] 99.5951% 33.1216% 

Cameraman Ours 99.6231% 33.4488% 

 Ref. [18] 99.5987% 33.2151% 

 Ref. [19] 99.5739% 33.3015% 

 Ref. [20] 99.6032% 33.5028% 

 Ref. [22] 99.5897% 32.7981% 

Peppers Ours 99.5941% 33.5739 % 

 Ref. [18] 99.4782% 33.4131% 

 Ref. [19] 99.5801% 33.4466% 

 Ref. [20] 99.6337% 33.5884% 

 Ref. [22] 99.6111% 33.0147% 
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Table 10 compares the NPCR and UACI values of our scheme with the methods in 

Refs. [18–22]. In our method, the NPCR and UACI values of Baboon, House and Camera-

man images exceed the expected values, and the NPCR values of Peppers are close to the 

expected values. Of the other methods, only the Cameraman plot of Ref. [20] achieved the 

desired values for both NPCR and UACI values. In contrast, our encryption algorithm has 

better sensitivity to plaintext. 

4.1.5. Correlation Analysis 

When the image is not encrypted, there is a strong correlation between the pixel val-

ues of the images; the encryption operation on the plaintext allows us to break this corre-

lation. We calculated the correlation coefficient by randomly selecting n  pair of adjacent 

pixels ( , )i ia b  from the image for which the correlation is to be calculated using the fol-

lowing Equation (25). Table 11 shows the experimental results for a random selection of 

3000 pairs of pixel values. 

1

2 2

1 1
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i i
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  (25)

where abr  represents the correlation coefficients, a, b is the mean value. 

The closer the calculated correlation coefficient is to 1, the stronger the correlation is, 

and the closer it is to 0, the weaker the correlation is. As shown in Table 11, take baboon 

as an example; we are able to see in Table 11 that it has a horizontal correlation of 0.0007, 

a vertical correlation of −0.003 and a diagonal correlation of 0.008, with a correlation index 

very close to 0 in three directions, indicating that the high correlation between pixels is 

broken. 

In addition, from Figure 17, we can clearly see that for the plaintext image, most of 

the points are close to the diagonal of the axes, whereas, for the encrypted image, these 

points are randomly distributed throughout the space, with significantly lower inter-pixel 

correlation. Both illustrate the effectiveness of our algorithm in removing intra-pixel cor-

relations. 

Table 11. Correlation coefficients. 

Image Directions Ours Ref. [18] Ref. [19] Ref. [20] Ref. [22] 

 Horizontal 0.0007 −0.0284 −0.0027 0.0039 0.0034 

Baboon Vertical −0.0030 0.0147 0.0023 0.0103 −0.0019 

 Diagonal 0.0080 0.0459 0.0088 −0.0070 0.0005 

 Horizontal −0.0020 0.0497 0.0047 −0.0063 0.0098 

House Vertical −0.0147 0.0327 0.0030 0.0035 −0.0342 

 Diagonal 0.0086 −0.0154 −0.0039 0.0103 0.0196 

 Horizontal −0.0055 0.0120 −0.0027 0.0047 0.0023 

Cameraman Vertical −0.0008 0.0478 0.00025 0.0018 0.0044 

 Diagonal −0.0005 0.0354 0.0039 −0.0019 −0.0048 

 Horizontal −0.0029 −0.0654 −0.0008 0.0028 0.0051 

Peppers Vertical 0.0089 −0.0259 0.0083 −0.0017 −0.0049 

 Diagonal −0.0088 −0.0351 −0.0012 −0.0103 0.0078 
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(a) Original Baboon (b) Cipher Baboon 

  

(c) Original House (d) Cipher House 

  

(e) Original Cameraman  (f) Cipher Cameraman 

  

(g) Original Peppers (h) Cipher Peppers 

Figure 17. Plain text image correlation and Ciphertext image correlation analysis: (a) plaintext Ba-

boon diagonal direction; (b) Ciphertext Baboon diagonal direction; (c) plaintext House diagonal di-

rection; (d) Ciphertext House diagonal direction; (e) plaintext Cameraman diagonal direction; (f) 

Ciphertext Cameraman diagonal direction; (g) plaintext Peppers diagonal direction; (h) Ciphertext 

Peppers diagonal direction. 

4.1.6. Information Entropy Analysis 

Information entropy is another metric for evaluating the security of a ciphertext and 

represents the strength of the uncertainty of the image information, which is expressed in 

Equation (12). 

For a grey-scale image with 256 states, it has a maximum expectation value of 8, Table 

12 shows the test results we obtained and the comparison of the other four schemes, where 

the result of the three encrypted images of House, Baboon and Peppers are higher than 

the other schemes, and the results of all four images are close to the ideal value of 8. It can 
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be said that the image results processed by our encryption scheme are close to the random 

images, with good uncertainty, and can effectively resist statistical analysis attacks. 

Table 12. Comparison of ciphertext information entropy. 

Methods Baboon House Cameraman Peppers 

Ours 7.9974 7.9976 7.9972 7.9972 

Ref. [18] 7.9865 7.9907 7.9716 7.9930 

Ref. [19] 7.9609 7.9611 7.9581 7.9592 

Ref. [20] 7.9974 7.9969 7.9974 7.9967 

Ref. [22] 7.9672 7.9858 7.9773 7.9668 

4.1.7. Anti-Cropping Attack Analysis 

During the transmission of information, information may be lost due to humans or 

some uncontrollable factors. If the encryption algorithm is able to restore the plaintext 

image in this case, then the encryption algorithm is valid. In Figure 18, we add a 5% loss 

of pixel values to the Peppers. From the perspective of the decrypted image, even though 

the image has lost some data, it is still possible to decrypt the basic information and be 

able to recover it basically, so the algorithm is resistant to basic cropping attacks. 

   

(a) Original Peppers 
(b) 5% loss cipher 

Peppers 
(c) Decrypted Peppers 

Figure 18. The cropped encrypted image and the corresponding decrypted image. (a) The plain 

image of Peppers. (b) The cipher image of Peppers with 5% loss. (c) The decrypted image of (b). 

4.1.8. Speed Analysis 

Running speed is an important index to evaluate the encryption algorithm; we sim-

ulated it in Python 3.7 environment on a PC with a 2.2 GHz CPU and 8G RAM. As can be 

seen from Table 13, this paper’s encryption efficiency is superior to that of Refs. [11–13] 

while being slightly slower than that of Ref. [15]. This shows that our proposed encryption 

algorithm performs well in terms of efficiency and is capable of being applied in practical 

applications. Because we used a round of bitrate encryption and a round of pixel-level 

encryption, the efficiency is reduced, but the security is improved. 

Table 13. Comparison of encryption algorithm runtimes (seconds). 

Ref. [18] Ref. [19] Ref. [20] Ref. [22] Ours 

1.84 1.69 1.91 0.83 1.12 

5. Conclusions 

In this paper, we propose an improved cascaded chaotic map 2D-CLSM and design 

a novel encryption scheme based on it and S-box. By generating a key associated with the 

plaintext, the whole encryption process is associated with the plaintext, effectively resist-

ing the chosen/known plaintext attack. An S-box encryption scheme is designed and ap-

plied to our encryption, increasing the overall security of the algorithm. Dividing the en-

cryption into bit-level encryption and pixel-level encryption improves the complexity and 

security of the encryption to a certain extent but reduces its efficiency. The encryption 
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method in this paper can be applied to different image types, such as grey-scale images, 

grey-scale medical images, etc., while the algorithm is able to meet everyday encryption 

requirements, both in terms of efficiency and security. The experimental results show that 

the algorithm has sufficient key space, is resistant to brute force attacks and performs well 

against statistical analysis attacks, clipping attacks and differential attacks. However, alt-

hough we improved the efficiency of S-box generation, we used two rounds of encryption, 

one at the bit level and one at the pixel level, which makes us less efficient overall, so the 

next step is to improve the efficiency of encryption in both rounds. 
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