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Abstract: Time series data are usually characterized by having missing values, high dimensionality,
and large data volume. To solve the problem of high-dimensional time series with missing values,
this paper proposes an attention-based sequence-to-sequence model to imputation missing values
in time series (ASSM), which is a sequence-to-sequence model based on the combination of feature
learning and data computation. The model consists of two parts, encoder and decoder. The encoder
part is a BIGRU recurrent neural network and incorporates a self-attentive mechanism to make the
model more capable of handling long-range time series; The decoder part is a GRU recurrent neural
network and incorporates a cross-attentive mechanism into associate with the encoder part. The
relationship weights between the generated sequences in the decoder part and the known sequences
in the encoder part are calculated to achieve the purpose of focusing on the sequences with a high
degree of correlation. In this paper, we conduct comparison experiments with four evaluation metrics
and six models on four real datasets. The experimental results show that the model proposed in this
paper outperforms the six comparative missing value interpolation algorithms.

Keywords: deep learning; time series; missing value imputation; sequence-to-sequence; self-attention

1. Introduction

Time series data, which have the characteristics of high dimensionality and massive
data volume, are data that are recorded and retained over time in production and life. A
breakdown in equipment or incorrect human operation may result in missing data. In
many industries, operational data are collected over time. From these data, we can gain
experience and guidance for future research. The presence of missing values impacts
the features and information extracted from the data [1], which may lead to erroneous
decisions. For instance, in the medical area, there might not be any monitoring of patient
blood glucose or blood pressure data, which might be thought to be needless or unexpected.
Similarly, manufacturing industries do not temporarily have access to data about the air
quality of their workshops. There is a risk that poor air quality assessment could result in
health issues for employees or even factory safety incidents.

The following categories can be made based on the characteristics of missing data:

(1) Missing at random (MAR): Missing data in the dataset depend on the observed data.
(2) Missing completely at random (MCAR): The data are independent of external factors.

The term “missing completely at random” refers to data where the missingness
mechanism does not depend on the variable of interest, or any other variable, which
is observed in the dataset.

(3) Neither missing at random nor missing completely at random (MNAR): The data are
missing not at random if the missingness is neither MCAR nor MAR (more specifically,
the data are MNAR if the missingness depends on both observed variables and the
unobserved variables).

Time series preprocessing methods significantly impact the final results of missing
values [2,3]. A variety of approaches have been used in the past to handle missing values,
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such as discarding rows containing them, substituting them with zeros, or computing the
missing values using the row mean or median. Nevertheless, these techniques decrease the
variance of the data, while resulting in significant bias to the covariance and correlation
of the data. Deleting data would be losing the diversity of data, and there is no universal
metric to evaluate the algorithm’s efficiency. For the estimation of missing values, there are
two traditional methods: regression estimation and nearest neighbor estimation. Regres-
sion estimation can be divided into two categories: deterministic regression and random
regression. A deterministic regression estimation uses the average of the known values in
a dataset. In contrast, a random regression estimation utilizes the average of the known
values combined with a random value. In nearest neighbor estimation, all known values of
the nearest neighbors are averaged to impute the missing values. The accuracy of the above-
mentioned approaches decreases sharply as the missing ratio increases. Typically, they can
only be used when missing data are low, which limits their application. As a result, early
and traditional missing-value processing approaches have steadily lost their applicability.

Most existing time series data mining methods are often developed without taking into
account missing values. The performance of the methods may be significantly degraded or
rendered unusable when there are missing values in the data. Research on missing values
for time series is therefore required.

For time series data, data loss is a prevalent issue. Since most data analysis techniques
rely on complete data [4,5], using incomplete data could lead to inaccurate results. In
light of this circumstance, this paper proposes an attention-based sequence-to-sequence
model to address missing values in three time series. In order to predict the missing values,
our model explores data from the past and the future while also figuring out the inherent
structure and regularities of the sequences.

As discussed above, several issues with missing values can be summarized as follows:

(1) Traditional methods of missing value imputation have many shortcomings, such as
the difficulty in dealing with high-dimensional and large-scale time series data and
the ease of modifying the internal structure.

(2) Most methods for missing-value imputation appear helpless when dealing with
multivariate and variable-length data.

(3) Some existing models have no ability to capture the intrinsic information of long-range
time series well enough or find the key objects of interest, thus wasting computational
time and reducing model performance.

This paper proposes a sequence-to-sequence (Seq2Seq) deep learning model with an
additional attention mechanism, called an attention-based sequence-to-sequence model
(ASSM), to address the problems above. Further, we aim to develop an Seq2Seq model with
attention mechanisms to address the limitations of existing computational and predictive
models. The following are the main contributions of this paper:

(1) We propose a framework for missing value imputation in multivariate variable-length
time series.

(2) Bi-directional GRU is designed as a technique for capturing forward and backward
features along with imputation values of time series.

(3) The encoder–decoder structure is used to extract features from high-dimensional data
to retain critical information while reducing noisy and worthless data.

The rest of the paper is structured as follows: Section 2 mainly outlines existing methods
for dealing with incomplete data, Section 3 introduces some of the models and mechanisms
used in our framework, Section 4 presents the proposed method, Section 5 analyzes the
experimental data and experimental results, and Section 6 concludes the paper.

2. Related Work

Concerning the research area of missing value estimation, discarding the traditional
techniques of missing value estimation, prior authors have completed some related research
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works. Based on their characteristics, these works can be grouped into three categories:
data statistics, models, and machine learning methodologies.

Methods based on data statistics: The two main categories of missing value imputation
techniques are single and multiple missing value imputation methods. There are three types
of single imputation approaches: mean [6,7], median, and linear. Multivariate missing value
filling methods involve chain equations with multiple variables. However, these methods
for estimating missing values make the unrealistic assumption that the dataset’s missing
values are uniformly and randomly distributed, which is implausible in the actual dataset.
Due to the emergence of artificial intelligence, machine learning modeling techniques have
taken the place of statistically based missing value padding techniques.

Methods based on the model: K-nearest neighbor (KNN), random forest imputa-
tion (miss forest), expectation maximization (EM) [8,9], linear regression (LR) [9,10], and
least squares (LS) [11,12]. However, these machine learning models do not consider the
relationship between various parameters. Since current estimation approaches cannot
distinguish between estimated and real values from output values of computational mod-
els, the estimation of missing values may be impacted. In addition, they do not forecast
future values.

Methods based on machine learning: Clustering [13–17], KNN [18,19], and
LSTM [20,21] are used to reconstruct missing values. Due to the high dimensionality
of the data, clustering typically loses the structure and informativeness of the data when
used to estimate missing values. Additionally, most clustering algorithms require a known
number of k cluster classes. This is typically impossible when it comes to real-time series
data, and performing the labeling manually is usually time consuming. Thus, these tech-
niques appear powerless when faced with high-dimensional data or are less applicable to
real-life situations.

Deep learning models have outperformed machine learning models in domains such
as sequential modeling, human detection, and medical image classification due to the
rapid development of deep learning in recent years. Deep learning models have been
instrumental in the fields of sequence and natural language, along with recurrent neural
networks (RNN) [22], long short-term memory networks (LSTM) [23,24], gated recurrent
unit (GRU) [23,25], bidirectional LSTM (BILSTM) [26], bidirectional GRU (BIGRU) [25],
convolutional neural network (CNN) [27], generative adversarial networks (GAN) [28],
generative adversarial imputation networks (GAIN) [29], dual-head sequence-to-sequence
imputation model (Dual-SSIM) [30], and so on. Even though these models deliver superior
estimation results, there are still some issues that need to be resolved. For instance, these
models are difficult to build and test, require training on numerous complex parameters,
and do not address missing values or prediction aspects during individual training. The
work proposed in this paper is an extension of dual-SSIM. The main difference between the
dual-SSIM and ours is the way they distinguish sequences. The dual-SSIM cannot focus
well on the most relevant parts of the missing sequence. In contrast, this paper applies
the self-attention and cross-attention mechanisms to better capture the strong correlation
between time series.

3. Preparation

BiGRU: The gate recurrent unit (GRU) is a recurrent neural network (RNN) with
a more straightforward structure than the long short-term memory (LSTM), has fewer
parameters, and is capable of saving more time during training. Additionally, it can
efficiently handle the RNNs’ long-term memory and gradient backpropagation concerns. It
may choose which information to remember or forget selectively. As part of this process,
only data with distinct features should be kept, and unnecessary noise or data with minimal
information on the features should be eliminated. Due to the characteristics of the model,
it is well suited for processing and predicting time series data. However, one issue with
using GRU to model time series data is that it can only capture information from front to
back and cannot learn information about the data features from back to front. Bi-GRU, a
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combination of forwarding and backward GRU, has been proposed as a solution to this
drawback. The model is applied twice in different directions, and the results obtained
in the two opposite directions are then concatenated as the final output. As a result of
this method, both forward and backward time series characteristics can be captured, or
alternatively, a better prediction of missing values can be made.

Autoencoder: An autoencoder is a kind of neural network consisting of two parts,
an encoder, and a decoder [31]. The encoder can convert the input high-dimensional
data x into a low-dimensional hidden vector z, where z is a compressed representation
of the input data, in which the structure of the original data is completely preserved,
and the most significant and influential information of the original data is preserved as
well. The decoder decodes the encoded low-dimensional z into a high-dimensional x’,
called the reconstruction of the data; the closer it is to the original input data x represents,
the better performance of the autoencoder. The overall process can be represented by
Equations (1) and (2). An autoencoder neural network can be used to extract nonlinear
features more effectively than linear feature extraction methods such as PCA since it can
learn from the input data.

z = σ(Wx + b), (1)

x′ = σ′(W ′z + b′). (2)

Automatic encoders can be divided into four different categories:

(1) Standard Autoencoder: It consists of three layers: the input layer, the hidden layer,
and the output layer. The input layer’s neuron size |x| equals the shape of the input
data, the hidden layer’s neuron size |h|<|x|, which is the dimension of the extracted
features, and the output layer’s neuron size |r|=|x|.

(2) Multilayer Autoencoder: A multilayer autoencoder is established when the number of
hidden layers becomes multiple, and the encoder and decoder work together to form
a symmetric structure. The multilayer autoencoder is typically used for training and
extracting hidden features when dealing with high-dimensional and complex data.

(3) Convolution Autoencoder: These autoencoders are typically used to convert 3D data
to smaller images.

(4) Sparse Autoencoder: Typically employed for classification-related tasks, this au-
toencoder learns a sparse representation of the data by adding constraints to the
loss function.

Seq2Seq: Sequence-to-sequence models refer to models that map sequence to another
sequence, built based on the encoder–decoder framework, as Figure 1 shows, such as
transformer. Additionally, to be used in Seq2Seq scenes, encoder–decoder structures can
also be used for feature extraction and dimension reduction. The basic Seq2Seq model
consists of three components: an encoder, a decoder, and a linking intermediate state vector
C. During the encoding process, the encoder learns the input, which is then converted
into a fixed-size state vector C and sent to the decoder. The decoder then proceeds to
output the corresponding sequence by learning from the state vector C; however, basic
Seq2Seq has several disadvantages, starting with the fact that the encoder encodes the input
into a predetermined size state vector (hidden state), a process of “loss compression of
information”. In this process of transforming vectors, the more significant the information,
the greater the loss of information. The RNN model will also exhibit gradient dispersion as
the sequence length increases, indicating that the sequence has been prolonged in the time
dimension. The decoder cannot respond directly to more specific input information since
the component of the underlying model that connects the encoder and decoder is just a
fixed-size state vector. As a result of the drawbacks of basic Seq2Seq, this paper aims to
improve performance by using the concepts of attention and a bidirectional encoder layer.
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Figure 1. Seq2Seq model.

Transformer: In the majority of earlier studies, sequence modeling models such as
RNN and CNN. Even though RNN models such as LSTM encode sequences can capture
good long-range associations, they can only be modeled sequentially and chronologically,
and the time required is relatively high. On the other hand, CNN models rely on a convolu-
tional kernel with a windowing mechanism that moves by the step size to extract features,
making them more localized and less capable of capturing long-distance correlations.

With Transformer, modeling can be performed concurrently while focusing on
long-range relationships. The model encodes inputs and outputs using a global atten-
tion mechanism, enhances sequence parallelism, and enables the capture of arbitrary
positional relations with a multi-head self-attention mechanism. Attention makes the
model focus more on what is critical in the sequence, so it is an excellent solution to the
following problems:

(1) Computing power restrictions. Recurrent neural networks (RNNs) typically increase
the number of layers and the number of neurons in the hidden layer to complicate the
model when a lot of information needs to be remembered, particularly long sequences,
such as time sequences. Nevertheless, computational power is still the bottleneck that
restricts the development of neural networks.

(2) Optimization algorithm limitations. In the face of challenges with long distances,
recurrent neural networks do not have a high information memory capacity.

Transformer, the overall structure consists of four parts: the input layer, output layer,
encoder, and decoder. The input layer consists of embedding and position encoding for
input and target data. The input layer maps the input time series data to a vector of
dimension dmodel through a fully connected network, and this step is to adopt multi-head
self-attention later.

The encoded vector is fed to the encoder layer with the same structure, and the
number of stacked layers can be chosen freely. The encoder layer consists of N encoders
stacked with the same structure, and each encoder can be regarded as a block composed
of two sublayer structure connections. The first sublayer is a multi-head self-attention
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layer, a residual connection layer, and a normalized layer. The second is a fully con-
nected feed-forward neural network, a residual connection layer, and a normalized layer.
The decoder also consists of N blocks of the same structure, and each block is composed of
three connected sublayers. The first sublayer is a multi-head self-attention layer, a residual
connection layer, and a normalization layer. The second sublayer is a cross-attention layer, a
residual connection layer, and a normalization layer. The third sublayer is a fully connected
feed-forward neural network, a residual connection layer, and a normalization layer. The
output layers include a linear layer and a SoftMax layer. The overall structure of Figure 2 is
as follows.

Add&Norm

Feed Forward

Add&Norm

Multi-Head 
Attention

Encoder 
Layer2

Encoder 
Layer1

Encoder

Position 
Encoding

Input Layer

T1 T2 T4T3Encoder Input

T5 T6 Decoder output

Linear 
Mapping

Decoder

T4 T5

Decoder 
Layer2

Decoder 
Layer1

Input Layer

Add&Norm

Feed Forward

Add&Norm

Masked Multi-
Head Attention

Add&Norm

Encoder-Decoder 
Attention

Position 
Encoding

Softmax

Figure 2. Transformer model.

The transformer is a framework proposed by Ashish Vaswani [32]. An upgraded
version of Seq2Seq consists of an encoder and a decoder. The encoder encodes the in-
put sequence X = (x0, x1, x2, . . . , xT) into H = (h0, h1, h2, . . . , hT); the decoder decodes
H = (h0, h1, h2, . . . , hT) to obtain Y = (y0, y1, y2, . . . , yT); however, what is amazing about
it is that neither the encoder nor decoder uses RNNs but replaces them with multiple
attention.

Transformerś solution to the issue offered:

(1) Parallel computation and faster training. The transformer takes the place of the
original RNN with attention. When the RNN is trained, the calculation of the current
step depends on the hidden state of the previous step, which means that it is a
sequential procedure. Each computation has to wait for the completion of the previous
one before it can be started. In contrast, the training speed can be increased by using
parallel computations because the transformer does not employ RNN.

(2) Establishing direct long-distance reliance. The data in the first frame of the original
RNN should pass through the second, third, fourth, and fifth . . . frames if the first
frame depends on the tenth frame. The accuracy and speed of the interaction are
not guaranteed because the first frame data may have been influenced throughout
the transmission procedure. On the other hand, the transformer establishes a direct
dependency between any two frames, regardless of how far apart they are, because
of self-attention.
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Classification of Attention: The commonly used types are generally divided into two
categories, soft attention and hard attention. Soft attention means that each word in the
encoder will have a calculated probability of gaining attention, while hard attention is to
find a word from the input directly that corresponds to a word in the output. Still, the
time series are often linked and not just one word, so hard attention is not introduced here.
Global attention means that the weight is calculated using all the encoder output, while
local attention means that the weight is calculated using some encoder output. Global
attention is not very different from soft attention, and local attention is between soft and
hard attention. Soft attention is often seen in studies—for example, Bahdanau Attention
was proposed by Bahdanau [33] and Luong presented Luong Attention [34].

The calculation process is for attention:

(1) Calculate attention weight: hidden states and encoder outputs are calculated (cosine,
DNN, matrix multiplication) to obtain the score of each data point and then after
SoftMax to obtain the weight result.

(2) The context vector: attention weight and encoder outputs are computed, and the
weighted sum is obtained.

(3) The final result: the previous output and the context vector are concatenated, including
pass shape transformation, and tanh processing; it is used as the input of the current
time step.

4. Proposed Model
4.1. Notations and Definitions

Time series: Let X = {x1
T , . . . , xd

T} ∈ Rd×T , where X represents the dataset of time
series data, d represents the number of variables in the dataset, and T is the length of the
time series. xi = {xi

1, . . . , xi
t} ∈ RT denotes the ith time series data, where t ≤ T, the size of

each time series data in a dataset can be inconsistent. xt = {x1
t , . . . , xd

t } ∈ Rd represents d
time vectors at time point t.

Missing values in time series: The number of input sample features is denoted as
r, the number of output sample features is denoted as k, and the length of the missing
sequence is denoted as l. If the sequence is missing from the time point m + 1, the missing
sequence M is expressed as Equation (3).

M = {xi
m+1, . . . , xi

m+l} ∈ Ri×l , (3)

The sequences around the missing sequence are represented by Lseq for the data on the
left and Rseq for the data on the right, respectively. The mathematical formulas are shown
in Equations (4) and (5).

Lseq = {x1, . . . , xm} ∈ Rr×m, (4)

Rseq = {xm+l+1, . . . , xm+l+n} ∈ Rr×n. (5)

The variables m and n represent the length of relevant data individually.
Model input values: The missing data sequence is denoted as q, and the missing

data sequence is spliced with its forward (Lseq) and backward (Rseq) sequences to form a
complete input sequence X. Equation (6) is expressed as follows. The estimated missing
sequence is chosen, and one of the columns is selected as the missing value imputation
sequence in this paper, i.e., k = 1.

X = {Lseq, q, Rseq} (6)

Sample generation example: During the sample data generation, the length of the
missing sequence (also known as gap size), l, is specified by the user. In addition, the left
and right sequence lengths, m and n, can also be specified by the user, as shown in Figure 3.
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Left  Data
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Imputation  Model

Multi-Step   Prediction
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Figure 3. Multi-step imputation model.

4.2. Imputation Framework

Seq2Seq is a sequence-to-sequence mapping process first proposed by Cho et al. [35].
A lot of work has been published since then to improve the model [36]. The application of
deep learning models to sequence problems is implemented, and the more prominent area is
machine translation. In the Seq2Seq model, LSTMs and GRUs are the most commonly used
recurrent neural networks because they are capable of preventing gradient vanishing. The
attention-added Seq2Seq model was present in [33], and the most classic paper is [34]. The
GRU Seq2Seq model with attention has the advantage of fewer training parameters, faster
speed, and better results, and it resolves the problem of gradient vanishing and gradient
explosion during long sequence training. This improvement increases the performance
of the analysis of long sequences. The overall flow chart of the GRU-Seq2Seq model with
attention to missing value computation is shown in Figure 4.
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Side Data

Left  
Side Data
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Figure 4. Missing value imputation model.

4.3. Missing Value Prediction Model for Variable Length Time Series
4.3.1. Position Encoding

When processing sequences, the self-attentive mechanism does not consider their
position information. The vector operation at each position is the same and does not vary
with the position. Still, there are some tasks where position information is critical, such
as text generation. If position information is needed, it can be represented by position
encoding [37], which usually uses sin and cos to encode the sequential information in the
sequence with the following Equations (7) and (8).
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PE(pos,2i) = sin(pos/10, 0002i/d) (7)

PE(pos,2i+1) = cos(pos/10, 0002i/d) (8)

4.3.2. Multi-Head Self-Attention

Multi-head self-attention is a combination of multiple self-attention, where the input
to self-attentions is a matrix X representing the sum of a data vector, approach word embed-
ding (embedding data are the data features extracted from the original data), and position
embedding. Self-attention computation usually uses the matrices Q, K, and V, which are
obtained by linearly varying self-attention input. The typical attention mechanism uses
mainly additive and multiplicative operations. The matrix add method is simpler, but
considering that matrix multiplication is more mature, the form of matrix multiplication
“Scaled Dot-Product Attention” is used. The self-attention mechanism can be thought of
as mapping Q and K to the output, where Q, K, V, and the output are vectors, and the
attention output is a weighted sum of V.

Calculate the inner product of each row vector of Q and K. The resulting matrix
represents the intensity of attention between sequences divided by

√
dk. The weights on V

are obtained by the SoftMax activation function, where the weights of each row are added
up to equal 1 (9). The inner product operations are performed using the weight matrix of V
and the V matrix to obtain the self-attention result.

Attention(Q,K,V) = so f tmax(
QKT
√

dk
)V (9)

To obtain the final multi-head self-attention results, multiple self-attention results are
concatenated together and linearly mapped to the same dimension as the input matrix. The
computation formula is shown below (10) and (11).

headi = Attention(QWQ
i , KWK

i , VWV
i ) (10)

MultiHead(Q,K,V) = Concat(head1, . . . , headh) (11)

where Q, K, and V are identical. The whole process is illustrated as Figure 5. Typically, we
compute the attention functions on a set of queries simultaneously and pack them into a
matrix Q. The keys and values are also packed into matrices K and V. In the Q, K matrix, dk
represents the number of columns that approach the vector dimension of the matrix.

Concat

Linear

Scaled Dot-Product Attention

Linear Linear Linear

Multi-Head Attention

Q K V

Figure 5. Multi-head self-attention model.
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Multi-Head Attention Pseudocode: fΦ(Tl , Tr) is the word embedding function, where
Φ is the parameter of the function. ϕΘ(Tl , Tr) is the position embedding function, where Θ
is the parameter. LZ(I + P) is the linear function, where Z is a parameter, and W stands

for weight. S(QKT√
dk
)is the SoftMax function, where QKT stands for inner product. Ai is

the result of self-attention. n self-attention results are stitched and then passed through a
linear layer L to obtain the result of multi-head self-attention U. The multi-head attention
algorithm (Algorithm 1) is as follows:

Algorithm 1 Multi-Head Attention Algorithm.
Input: Tl , Tr of the time series, n the number of attention
Output: U the result of multi-head attention
for h = 0 to n do
I ← fΦ(Tl , Tr)
P← ϕΘ(Tl , Tr)
Q, K, V ← LZ(I + P)
W ← S(QKT√

dk
)

Ai ←W ·V
U← LZ(A1 ∪ A2 ∪ . . . , An)
end for
return U

4.3.3. Feed Forward Neural Network

This system is composed of two fully interconnected with the ReLU activation function.
The internal structure of multi-head attention, which mainly performs matrix multiplication
undergoes linear transformations, and the learning ability of linear transformations is not
as strong as that of nonlinear transformations. In order to enhance learning abilities, the
nonlinear mapping by activation function strengthens the part with a strong correlation
and suppresses the part with a weak correlation. The formula is as follows.

FeedForward(x) = max(0, w1x1 + b1)w2 + b2 (12)

4.3.4. Residual Connection and Layer Normalization

The residual connection and normalization layers are used as the components of the
multi-head attention neural network and the feed forward neural network. In multi-head
attention or feed forward, x represents the input, and MultiHeadAttention (x) and FeedFor-
ward (x) denote the output. The residual connection layer is x + MultiHeadAttention (x),
and x + FeedForward (x). It is usually used during the training of multi-layer networks to
focus only on the part of the current difference. The normalization layer is commonly asso-
ciated with RNN structures. As a result of the normalization layer, the input of each layer
of neurons will have the same mean-variance. In addition to speeding up the convergence
process, it may also eliminate the influence of extreme cases on the model, resulting in a
more stable network structure. The computation formula is expressed as follows.

LayerNorm(x + MultiHeadAttention(x)) (13)

LayerNorm(x + FeedForward(x)) (14)

4.3.5. Encoder BiGRU

Data input to the bi-directional GRU layer are processed by the above layers and used
as input to the BiGRU layer.

In bidirectional GRU, the hidden state is the stitching of two hidden states. BiGRU
reads time series data in both directions, forward and backward, at the same time. The
output has two sequences with hidden states, i.e., forward BiGRU output with the hidden
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states h f or = {
−→
h1 ,
−→
h2 , . . . ,

−→
hn} and backward BiGRU output with the hidden states hbac =

{
←−
h1 ,
←−
h2 , . . . ,

←−
hn}. The variable n corresponds to the length of the input sequence xi, the

hidden states at time index i are concatenated as hi = {
−→
hi ,
←−
hi }. The final output of the

encoder is a sequence of hidden states h = {h1, h2, . . . , hn}.

4.3.6. Cross-Attention

The attention weight and context vector in cross-attention are calculated according
to the self-attention process. The difference is that K and V are the outputs of the encoder,
and Q is the hidden state of decoder. The outputs of the two layers of bidirectional GRU
are concatenated as the outputs of the encoder. The hidden state of the last moment of the
encoder is used as the initial hidden state of the decoder. The context vector and hidden
state are concatenated as the result of cross-attention. The result of cross-attention and input
embedding is stitched as the GRU input. The output of the decoder is the concatenated
of input embedding, cross-attention result and GRU output result. Equations (15)–(17) is
as follows.

x = concat(attention, embedding) (15)

output = gru(x, hidden) (16)

decoder = concat(embedding, attention, output) (17)

4.4. ASSM Algorithm

Ψ is the parameter associated with the encoder. E is the encoder output and represents
the concatenated output of the two bidirectional GRU layers. EK is the last hidden layer
state of the encoder, and it is also the initial hidden layer state H of the decoder. C is
the result of cross-attention, and Q is the result of input embedding. θ is the relevant
parameter of the decoder. G represents the GRU layer in the decoder. M represents the
model encapsulation of the encoder E and decoder D. The model output is represented by
P. According to the above introduction, the algorithm process of time series missing value
imputation is shown as follows in Algorithm 2:

Algorithm 2 Missing Time Series Imputation Algorithm.
Input:Tl , Tr of the time series, Ψ Encoder related parameters,
θ Decoder related parameters, n number of iterations,
ξ overall model optimizable parameters.
Output:P imputation all the samples
for i = 1 to n do
E← EΨ(Tl , Tr)
H← H = EK

C← {S( EHT√
dk
) · E} ∪ H

Q← ηθ(Tl , Tr)
O← C ∪Q
D← Gθ(O, H) ∪Q ∪ C
P← Mξ(E, D)
end for
return P

5. Simulation Analysis
5.1. Experimental Setting

Experimental environment: Intel(R) Core(TM) i5-1135G7@2.40GHz CPU, 24G RAM,
Windows 10 operating system; programming environment is Pycharm 2021.2.2.
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Datasets: In this paper, four datasets are selected to verify the effectiveness of the missing
value imputation model. These datasets are QLD, PM25, Metro_Interstate_Tra f f ic_Volume
and ai4i2020. The details of the datasets are shown in Table 1, where s denotes the number of
data, k indicates the number of variables in the dataset, r denotes the input data dimension,
t denotes the number of time stamps, tmin denotes the minimum available length, and tmax
denotes the maximum available length.

Table 1. Statistical information of dataset.

Dataset s k r t tmin tmax

QLD 29,052 8 6 27,256 21,427 27,256
PM25 43,800 11 7 31,752 29,565 30,438
Metro 48,204 8 5 45,213 42,456 45,213

ai4i2020 10,000 13 11 9564 8912 9564

QLD: Data used in this study can be found from the Kaggle water quality dataset.
Data were obtained from North Queensland, Australia, with 11 water quality monitoring
stations, using a variety of sensor probes. The dataset includes nitrate concentration and
water quantity. The data have been processed to remove apparent outliers and resampled so
that each station may collect data from different points in time. NO3 is nitrate concentration;
Temp is water temperature; Level is water level; Dayof week is week; Month is month.

PM25: This dataset includes hourly air pollutant data from 12 state-controlled air
quality monitoring sites. Air quality data were obtained from the Beijing Environmental
Monitoring Center. The meteorological data from each air quality site are matched with
the nearest meteorological station of the China Meteorological Administration. The time is
from 1 February 2010 to 31 December 2014.

Metro_Interstate_Traffic_Volume(Metro): In the dataset, temp is the average temper-
ature; rain_lh is the amount of rainfall that occurs in l hour; snow_1h is the amount of
snowfall that occurs in 1 hour; clouds_all is the percentage of clouds.

ai4i2020: Machine failure is the label of whether the machine failed, where there are
only two values of 0 and 1. Torque [Nm] is the torque value in a normal distribution, with
no negative values.

As mentioned in this paper, d represents the number of variables in the sample. In
addition, m and p indicate the shortest and longest length of the data on the left side of the
missing information, and n and q represent the shortest and longest length of the data on
the right side of the missing data, respectively. The length of the output data is represented
by l. The specific values are shown in Table 2.

Table 2. Parameter settings for the sample generation algorithm.

Parameter QLD PM25 Metro ai4i2020

d 6 7 5 11
m 10 10 50 10
n 10 10 50 10
p 10 10 50 10
q 10 10 50 10
l 6 6 6 6

A model’s parameter settings play a significant role in determining its structure.
The hyperparameters of the model include the dimensionality of the input samples, the
dimensionality of the output samples, the number of layers of the encoder and the decoder,
the number of hidden neurons of BiGRU in the encoder, the number of hidden neurons
of GRU in the decoder, the number layers of BiGRU, the number of attention, the total
number of attention neurons, the number of each attention neuron, the maximum number
of hidden number of LSTM units per layer, the maximum length learning rate of position
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encoding, dropout rate, the number of iterations, loss function, etc. The attention-GRU is
implemented and optimized by using the Pytorch neural network framework. In this study,
we apply a grid search over all hyperparameters for all neural network-based models. In
detail, we test the numbers of layers of the encoder, decoder, and BIGRU from 1 to 3. In
addition, the numbers of GRU and BIGRU units are tested in the range 25, 50, 75. For
other hyperparameters, we use the recommended and classical parameter settings. The
optimized hyperparameters are shown in Table 3.

Table 3. Parameter settings.

Hyperparameters Value

Input dimension of Samples r
Output dimension of Samples 1

Output length of Samples 6
No. of Encoder Layers 1
No. of Decoder Layers 1

No. of Hidden Units Encoder BiGRU Layers 50
No. of Hidden Units Decoder GRU Layers 50

No. of BiGRU Layers 2
No. of Attention Heads 8

No. of Hidden Units Attention Layers 512
No. of Hidden Units each Attention Heads

Layers 64

Max length of position Embedding 30
Dropout Rate 0.2

Iterations 500
Learning Rate 0.005

5.2. Baseline Models

For the experiments in this paper, we compared five machine learning algorithms and
one deep learning algorithm: Dual-SSIM, KNN, EM, MF, ARIMA, and Kmeans. ARIMA
is one of the time series prediction analysis methods. The extensive use of missing value
interpolation is Sklearn’s KNN Imputer. This method is considered an alternative to
conventional interpolation. The reason for this is that it seeks to identify the K nearest
neighbors of the missing data, and a value for imputation is estimated using these nearest
neighbors. The expectation maximization (EM) method is a probability-based estimation
method that applies to a large sample of data. The matrix factorization (MF) implemented
in the fancyimpute library uses matrix decomposition methods to separate the direct matrix
into low-rank elements “U” and “V”. The sparsity penalty is L1 for “U” elements and L2
for “V” elements, which are solved by gradient descent. The Kmeans algorithm divides
samples into clusters and fills in the missing values based on the mean of the divided kinds.
For a reasonable period, the comparison algorithms are set to default values.

5.3. Evaluation Metrics

In this paper, four classical machine learning evaluation metrics (18)–(21) are used to
evaluate the effectiveness of missing value recovery. For time-series data, these metrics
include mean absolute error (MAE), root mean square error (RMSE), symmetric mean
absolute percentage error (SMAPE), and distance measure of similarity (DTW). As a general
rule, the imputation effect is enhanced when all four metrics have a lower value. The
formulas for the four metrics are shown below.

MAE =
1
n

n

∑
i=1
| fi − f̂i| (18)
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RMSE =

√
1
n

n

∑
i=1

(| fi − f̂i|)2 (19)

SMAPE =
200
n

n

∑
i=1

| fi − f̂i|
| fi|+ | f̂i|

% (20)

DTW = min
π∈A( f , f̂ )

 ∑
(i,j)∈π

d( fi, f̂ j)
q

 1
q

(21)

The MAE and RMSE are two commonly used measures of variable accuracy, represent-
ing the difference between the actual and predicted values. In MAE, RMSE, and SMAPE, n,
fi, and f̂i represent the sample size, the true value, and the predicted value, respectively.
SMAPE is expressed as a percentage, independent of the proportion, and can be used to
compare forecasts of varying proportions. This method considers not only the deviation
from the true value of the predicted value but also the ratio between the deviation and the
true value. It is a measurement of prediction accuracy in the statistical field and is unstable
when both actual and predicted values are very close to zero. SMAPE is symmetric. In the
measure, the penalty for negative error (predicted value is higher than the actual value)
and positive error (actual value is higher than the predicted value) is the same. DTW is
a time series similarity measure that calculates two time series of different lengths. In
DTW, A( f , f̂ ) is the set of all admissible paths, and d( fi, f̂ j)

q represents the distances at the
power q.

5.4. Experimental Result Analysis

In order to validate the performance of the proposed model, its imputation results
are evaluated with the MAE, RMSE, SMAPE, and DTW metrics. The evaluation indicators
for all the compared models on four datasets are presented in Table 4. The error metrics
comparison demonstrates that the ASSM model is superior to the others, such as Dual-SSIM,
ARIMA, KNN, EM, MF, and Kmeans. Table 4 shows the effect of time series missing value
imputation on four datasets and analyzes the imputation performance of each algorithm
in detail. For each dataset, bold values indicate the highest scores obtained under the
corresponding metrics.

Table 4. Performance of evaluated algorithms on synthetic data sets.

Datasets Metric ASSM Dual-
SSIM ARIMA KNN EM MF Kmeans

QLD

MAE 0.083 0.091 0.252 0.252 0.310 0.279 0.232
RMSE 0.096 0.103 0.265 0.265 0.361 0.320 0.248

SMAPE 53.732 65.142 115.987 115.987 138.296 123.302 120.554
DTW 0.184 0.203 0.650 0.650 0.834 0.735 0.608

PM25

MAE 0.171 0.189 1.018 1.018 1.403 1.048 0.981
RMSE 0.200 0.218 1.055 1.055 1.635 1.100 1.021

SMAPE 48.090 48.536 265.305 265.302 193.641 226.924 150.195
DTW 0.388 0.422 2.585 2.585 3.843 2.632 2.502

Metro

MAE 0.055 0.060 0.239 0.239 0.310 0.242 0.240
RMSE 0.065 0.072 0.257 0.257 0.360 0.261 0.258

SMAPE 19.840 20.690 62.256 62.256 87.540 63.578 62.624
DTW 0.123 0.131 0.630 0.630 0.805 0.632 0.633

ai4i2020

MAE 0.105 0.110 0.108 0.108 0.150 0.136 0.126
RMSE 0.125 0.131 0.129 0.129 0.180 0.163 0.150

SMAPE 21.741 22.741 22.441 22.441 32.893 28.178 25.425
DTW 0.0304 0.305 0.316 0.316 0.349 0.316 0.368
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In the four datasets, the index ranking of each model is relatively stable, as shown
in Table 4. ASSM is the first, Dual-SSIM is the second, ARIMA and KNN are the third,
Kmeans is the fourth, MF is the fifth, and EM is the worst. By analyzing the reason, ASSM
is the SeqSeq model with added attention mechanism, and the encoder is BiGRU, which
can capture data information from both forward and backward time series. By doing so, the
structure and intrinsic connections between data can be captured more effectively, thereby
improving the learning ability of the feature and showing a better filling effect.

During the processing of sequence data, the Seq2Seq structure is based on the unat-
tended Dual-SSIM model and encodes a variable-length sequence X into a fixed-length
vector representation C. This vector representation is then decoded into another variable
length sequence Y using a decoder, where the input sequence X and the output sequence Y
can differ in size. The Seq2Seq model consists of an encoder and a decoder. An encoder
RNN processes the input sequence and compresses it into a vector. Its final state is a
summary of the whole input sequence. Nevertheless, the encoder tends to forget some
information when the input sequence is long. By adding the attention mechanism, the fixed
vector C is replaced by the ci, which is a weighted average of the encoder’s hidden states
that changes with the output sequence. By employing attention, the decoder examines all
the encoder states each time it updates the state, thereby preventing RNNs from forgetting
their states and allowing the decoder to concentrate on the most relevant information
within the encoder. Kmeans and KNN have similar effects because both are based on
the calculation of sample distances and the way K values are learned. They both require
artificially set values for the number of clusters and the number of nearest neighbors. The
poor performance of EM may be related to the fact that EM assumes that the dataset obeys
a multivariate normal distribution, which is against the actual distribution of the dataset. It
is clear that ASSM provides the best performance for four metrics in all cases. For example,
in the four experimental cases, ASSM achieves MAE scores of 0.083, 0.171, 0.055, and
0.105, respectively, as shown in Figure 6a. In these four cases, the best benchmark model
Dual-SSIM could only achieve scores of 0.091, 0.189, 0.060, and 0.110. Similarly, in all cases,
Dual-SSIM also achieves the best DTW score among all comparison methods. However, the
DTW score of Dual-SSIM is still worse than that of ASSM, as shown in Figure 6d. The ASSM
exhibits a remarkable performance when evaluated in the SMAPE. The ASSM achieves
53.73%, 48.09%, 19.84%, and 21.74% SMAPE scores in the four cases, see Figure 6c. The best
benchmark method is Dual-SSIM in this evaluation, but its performance worse than ours.

In the four datasets QLD, PM25, Metro, and ai4i2020, the ASSM model proposed
in this paper achieves the smallest value in all four metrics, approaching the best result,
followed by Dual-SSIM with the second-best result. In the PM25 dataset, the ASSM model
also achieves the best results in the four metrics, and Dual-SSIM comes second, while the
results of the other models are nearly 10 times worse than those of the proposed model in
this paper in terms of MAE measures. On the ai4i2020 dataset, the ASSM model achieves
the best results in four indicators, while the Dual-SSIM model shows worse outcomes than
the ARIMA and KNN models in three indicators. Dual-SSIM reached 0.110, 0.131, and
22.741 in MAE, RMSE, and SMAPE, while ARIMA and KNN achieved 0.108, 0.129, and
22.441, respectively, as shown in Table 4.

We also plot the detailed missing value-filling results for all the listed models.
Figure 7a shows the performance of all the models in filling six consecutive missing NO3
measurements on the QLD dataset. In Figure 7a, the ASSM model proposed in this paper
can fit the trend of the missing data well. The Dual-SSIM, Kmeans, and KNN models can
approximate the overall trend of the data, while the EM, MF, and ARIMA models cannot.
By providing available information before and after the missing data (red solid line), the
proposed ASSM model recovers the missing data with the highest accuracy (orange solid
line) with the highest accuracy. This demonstrates the effectiveness of the proposed model
structure in Figure 3.
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Figure 6. Evaluation of missing data imputation using four metrics in four datasets. (a) MAE of seven
different methods in four datasets. (b) RMSE of seven different methods in four datasets. (c) SMAPE
of seven different methods in four datasets. (d) DTW of seven different methods in four datasets.
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The results on the PM25 dataset see Figure 7b show that only the proposed ASSM
model fits the trend and intrinsic structural pattern of the missing data well. Dual-SSIM
shows a poor fit as well as the other models; for example, Dual-SSIM directly fits data with
a downward trend into an overall upward trend.

We tested the memorability of the model presented in this paper on the Metro dataset.
The results demonstrate that the model performed well in most cases. In the Metro dataset,
the data length of the before-and-after reference data is 50, and the missing data length is 6.
Based on the results of the analysis—see Figure 7c—we can conclude that the missing data
are observed for a period of time as an uptrend and that the ASSM model fits an uptrend,
while other models, including Dual-SSIM, ignore this uptrend and fit a downtrend.

Although the fit of each model on the ai4i dataset is not satisfactory—see Figure 7d—
which may be related to the dataset, generally speaking, the ASSM model is the closest to
the actual missing values of the data.

6. Conclusions

In this paper, we propose an Seq2Seq model with attention to fill in the missing values
of time series. In terms of its overall structure, the model can be divided into two parts:
encoder and decoder. The encoder employs bidirectional GRU to investigate the regularity
and structure of time series from both positive and negative angles. The decoder uses cross-
attention to focus on the sequence information that has a strong correlation with the missing
values to be filled. The original Dual-SSIM structure does not have good differentiation
of the sequences. This paper applies the self-attention and cross-attention mechanism to
better capture the strong correlation between time series, strengthen the parts with strong
correlation and weaken the parts with weak correlation. This significantly improves the
accuracy of filling in missing values. According to experimental results on four datasets,
this model outperforms the other six comparison algorithms. Experimental results report
the proposed model recovers missing data series more precisely than other benchmark
approaches, including Dual-SSIM, KNN, EM, MF, ARIMA, and Kmeans. Moreover, our
model is able to produce steady estimation results on the four datasets, indicating that it is
very promising for most time series data recovery problems.

In future work, we intend to improve further our model’s imputation accuracy in
datasets with a high percentage of missing values. On the other hand, we intend to train
our model using data generated from production in different domains to apply that work
to real scenarios. In addition, we will combine our framework with prediction models to
accurately predict time series with missing values.

Author Contributions: Conceptualization, Y.L. and M.D.; methodology, Y.L.; software, Y.L.; valida-
tion, Y.L. and M.D.; formal analysis, Y.L.; investigation, Y.L. and S.H.; resources, Y.L.; data curation,
Y.L. and S.H.; writing—original draft preparation, Y.L. and M.D.; writing—review and editing, Y.L.
and M.D.; visualization, Y.L.; supervision, M.D.; project administration, M.D.; funding acquisition,
M.D. All authors have read and agreed to the published version of the manuscript.

Funding: This work research was funded by the National Natural Science Foundation of China, grant
number 62006104, and the Natural Science Foundation of the Jiangsu Higher Education Institutions,
grant number 20KJB520012.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All datasets used for this study have been deposited in the time
series imputation benchmarks repository (https://www.kaggle.com/datasets, (accessed on 8 Decem-
ber 2022)).

Conflicts of Interest: The authors declare no conflict of interest.

https://www.kaggle.com/datasets


Entropy 2022, 24, 1798 18 of 19

References
1. Cheng, C.H.; Chang, J.R.; Lei, I.N. Revised entropy clustering analysis with features selection. In Proceedings of the 18th

Australasian Joint Conference on Artificial Intelligence, Sydney Australia, 5–9 December 2005; pp. 946–949.
2. Huang, Y.; Mao, X.; Deng, Y. Natural visibility encoding for time series and its application in stock trend prediction. Knowl.-Based

Syst. 2021, 232, 107478. [CrossRef]
3. Fang, C.; Wang, C. Time series data imputation: A survey on deep learning approaches. arXiv 2020, arXiv:2011.11347.
4. Wang, X.; Han, X.; Chen, Z.; Bi, Q.; Guan, S.; Zou, Y. Multi-scale transition network approaches for nonlinear time series analysis.

Chaos Solit. Fract. 2022, 159, 112026. [CrossRef]
5. Su, C.H.; Cheng, C.H. A hybrid fuzzy time series model based on ANFIS and integrated nonlinear feature selection method for

forecasting stock. Neurocomputing 2016, 205, 264–273. [CrossRef]
6. Armitage, E.G.; Godzien, J.; Alonso-Herranz, V.; López-Gonzálvez, Á.; Barbas, C. Missing value imputation strategies for

metabolomics data. Electrophoresis 2015, 36, 3050–3060. [CrossRef]
7. Chen, X.; Wei, Z.; Li, Z.; Liang, J.; Cai, Y.; Zhang, B. Ensemble correlation-based low-rank matrix completion with applications to

traffic data imputation. Knowl.-Based Syst. 2017, 132, 249–262. [CrossRef]
8. Aussem, A.; de Morais, S.R. A conservative feature subset selection algorithm with missing data. Neurocomputing 2010,

73, 585–590. [CrossRef]
9. De Souto, M.C.; Jaskowiak, P.A.; Costa, I.G. Impact of missing data imputation methods on gene expression clustering and

classification. BMC Bioinform. 2015, 16, 1–9. [CrossRef]
10. Di Nuovo, A.G. Missing data analysis with fuzzy C-Means: A study of its application in a psychological scenario. Expert Syst.

Appl. 2011, 38, 6793–6797. [CrossRef]
11. Cheng, K.O.; Law, N.F.; Siu, W.C. Iterative bicluster-based least square framework for estimation of missing values in microarray

gene expression data. Pattern Recognit. 2012, 45, 1281–1289. [CrossRef]
12. Chiu, C.C.; Chan, S.Y.; Wang, C.C.; Wu, W.S. Missing value imputation for microarray data: A comprehensive comparison study

and a web tool. BMC Syst. Biol. 2013, 7, 1–13. [CrossRef] [PubMed]
13. Ouyang, M.; Welsh, W.J.; Georgopoulos, P. Gaussian mixture clustering and imputation of microarray data. Bioinformatics 2004,

20, 917–923. [CrossRef] [PubMed]
14. Zhang, C.; Qin, Y.; Zhu, X.; Zhang, J.; Zhang, S. Clustering-based missing value imputation for data preprocessing. In Proceedings

of the 4th IEEE International Conference on Industrial Informatics, Singapore, 16–18 August 2006; pp. 1081–1086.
15. Ku, W.C.; Jagadeesh, G.R.; Prakash, A.; Srikanthan, T. A clustering-based approach for data-driven imputation of missing traffic

data. In Proceedings of the 2016 IEEE Forum on Integrated and Sustainable Transportation Systems, Beijing, China, 10–12 July
2016; pp. 1–6.

16. Raja, P.; Sasirekha, K.; Thangavel, K. A novel fuzzy rough clustering parameter-based missing value imputation. Neural Comput.
Appl. 2020, 32, 10033–10050. [CrossRef]

17. Raja, P.; Thangavel, K. Missing value imputation using unsupervised machine learning techniques. Soft Comput. 2020,
24, 4361–4392. [CrossRef]

18. Troyanskaya, O.; Cantor, M.; Sherlock, G.; Brown, P.; Hastie, T.; Tibshirani, R.; Botstein, D.; Altman, R.B. Missing value estimation
methods for DNA microarrays. Bioinformatics 2001, 17, 520–525. [CrossRef]

19. Jerez, J.M.; Molina, I.; García-Laencina, P.J.; Alba, E.; Ribelles, N.; Martín, M.; Franco, L. Missing data imputation using statistical
and machine learning methods in a real breast cancer problem. Artif. Intell. Med. 2010, 50, 105–115. [CrossRef] [PubMed]

20. Zhang, Y.F.; Thorburn, P.J.; Xiang, W.; Fitch, P. SSIM—A deep learning approach for recovering missing time series sensor data.
IEEE Internet Things J. 2019, 6, 6618–6628. [CrossRef]

21. Zhou, Y.; Wang, S.; Wu, T.; Feng, L.; Wu, W.; Luo, J.; Zhang, X.; Yan, N. For-backward LSTM-based missing data reconstruction
for time-series Landsat images. GISci. Remote Sens. 2022, 59, 410–430. [CrossRef]

22. Xie, X.; Liu, G.; Cai, Q.; Wei, P.; Qu, H. Multi-source sequential knowledge regression by using transfer RNN units. Neural Netw.
2019, 119, 151–161. [CrossRef]

23. Fu, R.; Zhang, Z.; Li, L. Using LSTM and GRU neural network methods for traffic flow prediction. In Proceedings of the 31st
Youth Academic Annual Conference of Chinese Association of Automation, Wuhan, China, 11–13 November 2016; pp. 324–328.

24. Wang, K.; Qi, X.; Liu, H. Photovoltaic power forecasting based LSTM-Convolutional Network. Energy 2019, 189, 116225.
[CrossRef]

25. Tao, Q.; Liu, F.; Li, Y.; Sidorov, D. Air pollution forecasting using a deep learning model based on 1D convnets and bidirectional
GRU. IEEE Access 2019, 7, 76690–76698. [CrossRef]

26. Kim, J.; Moon, N. BiLSTM model based on multivariate time series data in multiple field for forecasting trading area. J. Ambient.
Intell. Humaniz. Comput. 2019, 1–10. [CrossRef]

27. Huang, C.J.; Kuo, P.H. A deep CNN-LSTM model for particulate matter (PM2.5) forecasting in smart cities. Sensors 2018, 18, 2220.
[CrossRef] [PubMed]

28. Kim, J.; Tae, D.; Seok, J. A Survey of Missing Data Imputation Using Generative Adversarial Networks. In Proceedings of the
2020 International Conference on Artificial Intelligence in Information and Communication, Fukuoka, Japan, 19–21 February
2020; pp. 454–456.

http://doi.org/10.1016/j.knosys.2021.107478
http://dx.doi.org/10.1016/j.chaos.2022.112026
http://dx.doi.org/10.1016/j.neucom.2016.03.068
http://dx.doi.org/10.1002/elps.201500352
http://dx.doi.org/10.1016/j.knosys.2017.06.010
http://dx.doi.org/10.1016/j.neucom.2009.05.019
http://dx.doi.org/10.1186/s12859-015-0494-3
http://dx.doi.org/10.1016/j.eswa.2010.12.067
http://dx.doi.org/10.1016/j.patcog.2011.10.012
http://dx.doi.org/10.1186/1752-0509-7-S6-S12
http://www.ncbi.nlm.nih.gov/pubmed/24565220
http://dx.doi.org/10.1093/bioinformatics/bth007
http://www.ncbi.nlm.nih.gov/pubmed/14751970
http://dx.doi.org/10.1007/s00521-019-04535-9
http://dx.doi.org/10.1007/s00500-019-04199-6
http://dx.doi.org/10.1093/bioinformatics/17.6.520
http://dx.doi.org/10.1016/j.artmed.2010.05.002
http://www.ncbi.nlm.nih.gov/pubmed/20638252
http://dx.doi.org/10.1109/JIOT.2019.2909038
http://dx.doi.org/10.1080/15481603.2022.2031549
http://dx.doi.org/10.1016/j.neunet.2019.08.004
http://dx.doi.org/10.1016/j.energy.2019.116225
http://dx.doi.org/10.1109/ACCESS.2019.2921578
http://dx.doi.org/10.1007/s12652-019-01398-9
http://dx.doi.org/10.3390/s18072220
http://www.ncbi.nlm.nih.gov/pubmed/29996546


Entropy 2022, 24, 1798 19 of 19

29. Yoon, J.; Jordon, J.; Schaar, M. GAIN: Missing Data Imputation using Generative Adversarial Nets. In Proceedings of the 35th
International Conference on Machine Learning, Stockholm, Sweden, 10–15 July 2018; pp. 5675–5684.

30. Zhang, Y.; Thorburn, P.J. A dual-head attention model for time series data imputation. Comput. Electron. Agric. 2021, 189, 106377.
[CrossRef]

31. Huang, F.; Zhang, J.; Zhou, C.; Wang, Y.; Huang, J.; Zhu, L. A deep learning algorithm using a fully connected sparse autoencoder
neural network for landslide susceptibility prediction. Landslides 2020, 17, 217–229. [CrossRef]

32. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need.
In Proceedings of the 31st International Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9
December 2017; pp. 5998–6008.

33. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. In Proceedings of the 3rd
International Conference on Learning Representations, San Diego, CA, USA, 7–9 May 2015.

34. Luong, T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natural Language Processing, Lisbon, Portugal, 17–21 September 2015; pp. 1412–1421.

35. Cho, K.; van Merrienboer, B.; Gülçehre, Ç.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning phrase representations
using RNN encoder-decoder for statistical machine translation. In Proceedings of the 2014 Conference on Empirical Methods in
Natural Language Processing, Doha, Qatar, 25–29 October 2014; pp. 1724–1734.

36. Sutskever, I.; Vinyals, O.; Le, Q.V. Sequence to sequence learning with neural networks. In Proceedings of the 27th International
Conference on Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; pp. 3104–3112.

37. Liu, X.; Yu, H.F.; Dhillon, I.; Hsieh, C.J. Learning to encode position for transformer with continuous dynamical model. In
Proceedings of the the 37th International Conference on Machine Learning, Online, 13–18 July 2020; pp. 6327–6335.

http://dx.doi.org/10.1016/j.compag.2021.106377
http://dx.doi.org/10.1007/s10346-019-01274-9

	Introduction
	Related Work
	Preparation
	Proposed Model
	Notations and Definitions
	Imputation Framework
	Missing Value Prediction Model for Variable Length Time Series
	Position Encoding
	Multi-Head Self-Attention
	Feed Forward Neural Network
	Residual Connection and Layer Normalization
	Encoder BiGRU
	Cross-Attention

	ASSM Algorithm

	Simulation Analysis
	Experimental Setting
	Baseline Models
	Evaluation Metrics
	Experimental Result Analysis

	Conclusions
	References

