
Citation: Lin, Z.; Lai, J.; Chen, X.;

Cao, L.; Wang, J. Curriculum

Reinforcement Learning Based on

K-Fold Cross Validation. Entropy

2022, 24, 1787. https://doi.org/

10.3390/e24121787

Academic Editors: Jaroslaw

Krzywanski, Yunfei Gao, Marcin

Sosnowski, Karolina Grabowska,

Dorian Skrobek, Ghulam Moeen

Uddin, Anna Kulakowska, Anna

Zylka and Bachil El Fil

Received: 14 October 2022

Accepted: 3 December 2022

Published: 6 December 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

entropy

Article

Curriculum Reinforcement Learning Based on K-Fold
Cross Validation
Zeyang Lin , Jun Lai *, Xiliang Chen *, Lei Cao and Jun Wang

Command & Control Engineering College, Army Engineering University of PLA, Nanjing 210007, China
* Correspondence: zhangk@aeu.edu.cn (J.L.); lgd_chenxiliang@aeu.edu.cn (X.C.)

Abstract: With the continuous development of deep reinforcement learning in intelligent control,
combining automatic curriculum learning and deep reinforcement learning can improve the training
performance and efficiency of algorithms from easy to difficult. Most existing automatic curriculum
learning algorithms perform curriculum ranking through expert experience and a single network,
which has the problems of difficult curriculum task ranking and slow convergence speed. In this
paper, we propose a curriculum reinforcement learning method based on K-Fold Cross Validation
that can estimate the relativity score of task curriculum difficulty. Drawing lessons from the human
concept of curriculum learning from easy to difficult, this method divides automatic curriculum
learning into a curriculum difficulty assessment stage and a curriculum sorting stage. Through
parallel training of the teacher model and cross-evaluation of task sample difficulty, the method can
better sequence curriculum learning tasks. Finally, simulation comparison experiments were carried
out in two types of multi-agent experimental environments. The experimental results show that the
automatic curriculum learning method based on K-Fold cross-validation can improve the training
speed of the MADDPG algorithm, and at the same time has a certain generality for multi-agent deep
reinforcement learning algorithm based on the replay buffer mechanism.

Keywords: deep reinforcement learning; automatic curriculum learning; K-fold cross validation;
replay buffer

1. Introduction

In recent years, deep reinforcement learning has developed rapidly in the field of artifi-
cial intelligence. By applying multilayer neural networks to approximate the value function
of reinforcement learning, the perception ability of deep learning and the decision-making
ability of reinforcement learning can be effectively combined, such as Atari games [1,2],
complex robot motion control [3], and the application of AlphaGo intelligence in Go [4], etc.

Compared with single-agent reinforcement learning, multi-agent reinforcement learn-
ing algorithms can communicate, cooperate, and complete tasks together. Current main-
stream multi-agent cooperative control algorithms include Lenient Deep Q Network
(DQN) [5], Value-Decomposition Networks (VDN) [6], Q Mixing Network (QMIX) [7],
Deep Recurrent Q-Network (DRQN) [8], Counterfactual Multi-Agent Policy (COMA) [9],
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [10], Multi-Agent Proximal
Policy Optimization (MAPPO) [11], etc. Compared to other algorithms, the Multi-Agent
Deep Deterministic Policy Gradient (MADDPG) algorithm can also be applied to coopera-
tive cooperation and competitive adversarial scenarios, and global observation and policy
functions between agents can be used to accelerate the convergence of actor network and
critic network in the training process [12], and can use the mechanism of centralized train-
ing and decentralized execution to enhance the stability and convergence of the algorithm,
which has a broader application prospect in the current field of artificial intelligence field.

In applying reinforcement learning algorithms to real-world problem solving, the
algorithms consume a lot of training time and training costs in interacting with the real

Entropy 2022, 24, 1787. https://doi.org/10.3390/e24121787 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24121787
https://doi.org/10.3390/e24121787
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0002-5599-5856
https://doi.org/10.3390/e24121787
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24121787?type=check_update&version=1

Entropy 2022, 24, 1787 2 of 18

environment (e.g., crash loss in training self-driving vehicles). To address this problem,
we use curriculum learning in the reinforcement learning training process to facilitate the
transfer of experience between samples.

Curriculum learning is distinguished by the ability to control the order of task selection
and creation fully, thus optimizing the performance of the reinforcement learning target
task [13]. When a reinforcement learning agent is faced with a difficult task, curriculum
learning can assign auxiliary tasks to the agent to gradually guide its learning trajectory
from easy to complex tasks until the target task is solved. At the 2009 International
Conference on Machine Learning, Bengio et al. pointed out that the curriculum learning
approach can be viewed as a special kind of continuous optimization approach that can start
with smoother (i.e., simpler) optimization problems and gradually add coarser (i.e., more
difficult), non-convex (norm) optimization problems to eventually perform the optimization
of the target task [14].

Current mainstream multi-agent deep reinforcement learning algorithms can reduce
the correlation between training samples and ensure independence between samples
by applying the experience replay buffer mechanism in the model fitting process [15].
Automatic curriculum learning [14] can build a task sampler based on the experience
replay buffer. According to the curriculum learning rule, extract the most suitable tasks for
the current reinforcement learning agent from the experience replay buffer from easy to
difficult for neural network training. In this way, the sum of the cumulative reward value
of the agent is maximized, and the learning efficiency and robustness of deep reinforcement
learning are improved.

To reasonably sort the learning order of task samples in automatic curriculum learning,
this paper proposes an automatic curriculum learning method based on K-Fold Cross
Validation, which can be combined with a deep reinforcement learning algorithm based
on the experience replay buffer represented by MADDPG to improve the performance of
reinforcement learning agents for task training.

This method defines the simple curriculum learning task as a task that the current
reinforcement learning model can solve well, and divides automatic curriculum learning
into the curriculum difficulty evaluation stage and the curriculum sorting stage. In the
evaluation stage of curriculum difficulty, dividing the state training samples in the replay
buffer space into K equal parts, multiple model networks are trained in parallel. With
the rest of the teacher network model, the curriculum difficulty of the target state sample
is evaluated, scored, and summed by a loss function and sum it up as the basis for the
evaluation of the problem of task samples; In the stage of curriculum sorting, through
the K-level classification of state samples from easy to difficult, the sample capacity in
each difficulty category is randomly sampled for model learning. Finally, the training
curriculums of the reinforcement learning algorithm are sorted from easy to difficult.
Due to the applicability of the MADDPG algorithm in dealing with most multi-agent
cooperative/competition problems, this paper uses the MADDPG algorithm as the basic
reinforcement learning algorithm to combine the curriculum learning framework based on
K-Fold cross validation and proposes a curriculum reinforcement learning algorithm based
on K-Fold cross validation (KFCV-CL).

To test the effectiveness and feasibility of the KFCV-CL algorithm proposed in this
paper, we applied it in two multi-agent reinforcement learning environments to verify its
versatility and practicality. In the research process of the curriculum reinforcement learning
method based on K-Fold cross validation, our research difficulties were the design of the
curriculum ranking criteria and the design of the algorithm details of the sample ranking in
the experience replay buffer, during which we compared the strengths and weaknesses of
the existing algorithm research and proposed a new method of curriculum reinforcement
learning based on the existing research. The experimental results show that the automatic
curriculum learning method based on K-Fold cross validation can reflect more robust
learning efficiency and robustness in combination with the MADDPG algorithm, which
can shorten the training time and improve the learning performance.

Entropy 2022, 24, 1787 3 of 18

The automatic curriculum learning mechanism based on K-Fold Cross Validation has
the following characteristics:

(1) In sorting deep-reinforcement learning curriculums, this method can distinguish diffi-
culty based on mutual measurement between target tasks, maintain the independence
of task samples in the difficulty evaluation process, avoid interference with prior
experience in curriculum sorting, and has better versatility for tasks.

(2) This method adopts the method of sampling from the replay buffer space in the
process of automatic curriculum learning, which can be applied to the current main-
stream multi-agent deep reinforcement learning algorithm (based on the replay buffer
space mechanism), and has good algorithm applicability.

The rest of this paper is as follows. Section 2 introduces related work, and Section 3
presents the MADDPG algorithm and the basic concepts of automatic curriculum learning.
Section 4 introduces the automatic curriculum learning method based on K-Fold Cross
Validation in detail. Section 5 compares and analyzes experimental results and discusses
them accordingly, and Section 6 presents the conclusions.

2. Related Work

The concept of an easy-to-difficult training method can be traced back to the curricu-
lum learning method proposed by a scientific research team led by Bengio, a leader in
machine learning, at the International Conference on Machine Learning (ICML) in 2009 [14].
In the learning process, the curriculum can be regarded as a sequence of the training
process. The teacher model divides the entire machine learning task into several subparts.
Bengio et al. have proven the advantages of curriculum policy in image classification and
language modeling through experiments. This inspired us to design reinforcement learning
tasks using curriculum learning algorithms.

In the early stages of the application of curriculum learning to the reinforcement learn-
ing process, most people adopt the method of human-designed curriculum for curriculum
sorting instead of automatically generating curriculum by agents, including learning to
execute short programs [16] and finding the shortest paths in graphs [17]. By experimenting
with applied methods of curriculum learning, Felipe et al. [18] proposed that curriculums
can be automatically generated from object-oriented task descriptions, using the generated
curriculums to reuse knowledge across tasks, Jiayu Chen et al. [19] perform curriculum
updates and agent number expansion in the process of automatic curriculum learning,
Daphna et al. [20] proposed the Inference Curriculum (IC) method, a way of transferring
knowledge from another network, trained on different tasks.

Regarding the design method of curriculum reinforcement learning, our method
is similar to the safe curriculum reinforcement learning method proposed by Matteo
Turchetta et al. [21], the teacher-student curriculum learning presented by Tambet Mati-
isen et al. [22], and the curriculum reinforcement learning policy learning proposed by
Sanmit Narvekar et al. [23] is relatively close. Our method divides reinforcement learning
curriculum sorting into two stages, curriculum difficulty assessment and curriculum sort-
ing by stages. Matteo Turchetta et al. avoided the dangerous policy of student network
by resetting the controller, Tambet Matiisen et al. set teacher-student curriculum learn-
ing method, the teacher model selects the task with the highest learning slope from the
given task set for students to learn, Sanmit Narvekar et al. defined the curriculum sorting
problem as a Markov Decision Problem (MDP). The above methods are pretty different
from our proposed KFCV-CL method by extending the model to handle reinforcement
learning problems.

Our method can optimize curriculum learning in two aspects: model assessment
and model selection. Traditional curriculum learning mainly conducts model assessment
through autonomous assessment and heuristic assessment, and the heuristic assessment
method requires direct curriculum sample assessment based on experts’ empirical knowl-
edge, which suffers from intense subjectivity and weak generalization ability. In contrast,
the model autonomous assessment method conducts a direct curriculum sample. The

Entropy 2022, 24, 1787 4 of 18

autonomous model evaluation method directly assesses the curriculum sample through
student models, which suffer from inefficient data utilization and overfitting problems. Our
approach uses time difference error as the curriculum evaluation criterion and the K-fold
cross validation method, which can avoid the overfitting problem caused by the autonomous
assessment model, thus obtaining a more reasonable and accurate assessment of the student
model and improving the accuracy of curriculum selection in curriculum learning.

3. Background

In this section, we introduce the basic concepts of the MADDPG algorithm, the PER-
MADDPG algorithm, and automatic curriculum learning.

3.1. Multi-Agent Deep Deterministic Policy Gradient Algorithm Model
3.1.1. Basic Knowledge of Deep Reinforcement Learning

Deep reinforcement learning uses the value function approximation of deep neural
networks to solve reinforcement learning problems, deep reinforcement learning agents
conduct a series of actions in a given environmental state to maximize the cumulative
reward value. Such issues are often referred to as tasks and are formalized as the Markov
Decision Problem [24] (MDP). Multi-agent deep reinforcement learning can be described
in the form of a nine-tuple Markov decision, M(n, φ) =

〈
n, φ, S, A, O, P, R, gφ, γ

〉
, where

the discrete variable n represents the number of agents, the parameter φ ∈ Φ represents
the initial state and target, S represents the state space, A represents the common action
space of each agent, P(s′|s, a) represents the state transition probability of taking action a
to state s′ in the current state s, P(s′|s, a) represents the reward function obtained under
the given state s and joint action A = (a1, . . . , an), and γ represents the discount factor. The
schematic diagram of reinforcement learning is shown in Figure 1.

Entropy 2022, 24, x FOR PEER REVIEW 4 of 19

Our method can optimize curriculum learning in two aspects: model assessment and
model selection. Traditional curriculum learning mainly conducts model assessment
through autonomous assessment and heuristic assessment, and the heuristic assessment
method requires direct curriculum sample assessment based on experts’ empirical
knowledge, which suffers from intense subjectivity and weak generalization ability. In
contrast, the model autonomous assessment method conducts a direct curriculum sample.
The autonomous model evaluation method directly assesses the curriculum sample
through student models, which suffer from inefficient data utilization and overfitting
problems. Our approach uses time difference error as the curriculum evaluation criterion
and the K-fold cross validation method, which can avoid the overfitting problem caused
by the autonomous assessment model, thus obtaining a more reasonable and accurate as-
sessment of the student model and improving the accuracy of curriculum selection in cur-
riculum learning.

3. Background
In this section, we introduce the basic concepts of the MADDPG algorithm, the PER-

MADDPG algorithm, and automatic curriculum learning.

3.1. Multi-Agent Deep Deterministic Policy Gradient Algorithm Model
3.1.1. Basic Knowledge of Deep Reinforcement Learning

Deep reinforcement learning uses the value function approximation of deep neural
networks to solve reinforcement learning problems, deep reinforcement learning agents
conduct a series of actions in a given environmental state to maximize the cumulative
reward value. Such issues are often referred to as tasks and are formalized as the Markov
Decision Problem [24] (MDP). Multi-agent deep reinforcement learning can be described
in the form of a nine-tuple Markov decision, 𝑀(𝑛, 𝜙) = ൻ𝑛, 𝜙, 𝑆, 𝐴, 𝑂, 𝑃, 𝑅, 𝑔థ, 𝛾ൿ, where the
discrete variable 𝑛 represents the number of agents, the parameter 𝜙 ∈ 𝛷 represents the
initial state and target, 𝑆 represents the state space, 𝐴 represents the common action
space of each agent, 𝑃(𝑠ᇱ|𝑠, 𝑎) represents the state transition probability of taking action 𝑎 to state 𝑠ᇱ in the current state 𝑠, 𝑃(𝑠ᇱ|𝑠, 𝑎) represents the reward function obtained un-
der the given state s and joint action 𝐴 = (𝑎ଵ, … , 𝑎௡), and 𝛾 represents the discount factor.
The schematic diagram of reinforcement learning is shown in Figure 1.

agent

environment

state
Reward action

Figure 1. Schematic diagram of reinforcement learning.

Taking homogeneous agents as the basis for reinforcement learning training, each
agent 𝑖 learns a policy 𝜋ఏ(𝑎௜|𝑜௜, 𝑔) under the condition of a common goal with parame-
ter 𝜃. To measure the strengths and weaknesses of each agent’s policy 𝜋ఏ(𝑎௜|𝑜௜, 𝑔), state
value function 𝑉(𝑛, 𝜙, 𝜋ఏ) is introduced in multi-agent deep reinforcement learning, 𝑉(𝑛, 𝜙, 𝜋ఏ) represents the cumulative expected reward value that 𝑛 agents can obtain un-
der the current state and target 𝜙 according to the policy 𝜋ఏ, Bellman Equation is as fol-
lows: 𝑉(𝑠, 𝜋) = ∑ 𝜋(𝑠, 𝑎)௔∈஺ [𝑅(𝑠, 𝑎) + 𝛾 ∑ 𝑃(𝑠, 𝑎, 𝑠ᇱ)𝑉(𝑠ᇱ, 𝜋)௦ᇲ∈ௌ] (1)

Figure 1. Schematic diagram of reinforcement learning.

Taking homogeneous agents as the basis for reinforcement learning training, each
agent i learns a policy πθ(ai|oi, g) under the condition of a common goal with parameter θ.
To measure the strengths and weaknesses of each agent’s policy πθ(ai|oi, g) , state value
function V(n, φ, πθ) is introduced in multi-agent deep reinforcement learning, V(n, φ, πθ)
represents the cumulative expected reward value that n agents can obtain under the current
state and target φ according to the policy πθ , Bellman Equation is as follows:

V(s, π) = ∑a∈A π(s, a)
[

R(s, a) + γ ∑s′∈S P
(
s, a, s′

)
V
(
s′, π

)]
(1)

Among them, γ represents the discount factor, S represents the state space, a represents
the action space, R(s, a) represents the reward value a received after taking an action in
the state s, representing the state transfer probability P(s, a, s′) of taking an action a in the
current state s to transfer to the state s′, and the optimal policy π∗ refers to the policy that

Entropy 2022, 24, 1787 5 of 18

can maximize the cumulative reward value and its corresponding optimal value function
V∗(s) is expressed as follows:

V∗(s, π) = max
a∈A

{
R(s, a) + γ ∑s′∈S P

(
s, a, s′

)
V∗
(
s′, π

)}
(2)

3.1.2. PER-MADDPG Algorithm

In the cooperative/competitive environment of multi-agents, the policy π(a|s) of
agent i will change with the policy of its competitors or partners, which is the problem
of non-stationarity in the environment [25]. Since the MADDPG algorithm can better use
global observation and policy functions to accelerate the training process and has better
stability and convergence, this paper adopts the MADDPG algorithm as the basic algorithm
of reinforcement learning.

MADDPG is an improved algorithm based on the Actor-Critic framework. Its al-
gorithm training framework is shown in Figure 2. Assuming that there are N agents in
the environment, the joint policy space is π = (π(θ1), π(θ2), . . . , π(θN)), and each agent
adopts the single-agent DDPG policy framework. The structure of the training environment
algorithm consists of Actor network, Critic network, Target Actor network, and Target Critic
network, θ = (θ1, θ2, . . . , θN) represents a collection of individual agent policy functions. In
the figure, agent i is taken as an example, and other agents are represented by boxes.

Entropy 2022, 24, x FOR PEER REVIEW 6 of 19

environment

agent 1

agent 2

agent N

agent i

o1

o2

oi

oN

a1

a2

ai

aN

 









actor target actor

calculated policy
loss

target criticcritic

+

Figure 2. Diagram of MADDPG algorithm training framework.

After all agents complete the interaction with the environment, each agent extracts
the experience from the experience replay buffer space according to the order of priority
experience replay and uses it for training its neural network. The schematic diagram of
the experience replay buffer is shown in Figure 3.

deep neural
network

environment

replay buffer
batch

sampling

ER

agent

action

state
reward

new state

Update
training

1 1 1 2(, , ,)s a r s

2 2 2 3(, , ,)s a r s

1(, , ,)t t t ts a r s +



1(, , ,)i i i is a r s +

1(, , ,)j j j js a r s + ta

ts

tr
1ts +

1(, , ,)t t t ts a r s +
Figure 3. Schematic diagram of experience replay buffer.

To enhance the learning effect of the agent learning process, the input of the critic
network includes the observations and action spaces of other agents. 𝑄 =𝑄(𝑠௠, 𝑎ଵ, 𝑎ଶ, … , 𝑎ே, 𝜃ொ), where 𝑠௠ = (𝑜ଵ௠, 𝑜ଶ௠, … , 𝑜ே௠), the parameters of the Critic network

Figure 2. Diagram of MADDPG algorithm training framework.

The MADDPG algorithm agent adopts the principle of centralized learning and dis-
tributed application. Each agent i obtains the actions aj

i = π
j
i (o

j
i) corresponding to the

current state s according to the current policy π, and stores the state experience samples

Entropy 2022, 24, 1787 6 of 18

obtained by interacting with the environment into the experience replay buffer space. For
the MADDPG algorithm, the experience replay mechanism can reduce the correlation
between training samples and ensure the independence between samples [26]. The experi-
ence replay space is usually implemented as a kind of circular buffer, which can be used
to save the recently collected state sample quaternion xt(st, at, rt, st+1), indicating that the
reinforcement learning agent takes action at in the state st during the exploration of the
environment, obtains reward value and transfers to the state st+1 at the same time.

However, in the process of using state samples, the method of randomly extracting
samples for learning ignores the difference of samples’ learning effects on agents. Through
the application of Prioritized Experience Replay (PER) [15], the importance of each state
sample can be sorted and used as a basis for the probability that the state sample will be
drawn to ensure that the state sample is selected. The relationship between the probability
P(i) and the state sample priority pi is monotonically increasing, and the sample selection
probability of the lowest priority state is always greater than 0, that is

P(i) =
pa

i
∑ pa

k
(3)

pi =
1

rank(i)
(4)

In the equation, pi > 0 represents the priority of state samples, a represents the degree
of use of the priority of state samples, and rank(i) means the order of the state samples
after the storage of the replay buffer storage is sorted according to the size of absolute value
|δ| of temporal difference error of samples.

After all agents complete the interaction with the environment, each agent extracts
the experience from the experience replay buffer space according to the order of priority
experience replay and uses it for training its neural network. The schematic diagram of the
experience replay buffer is shown in Figure 3.

Entropy 2022, 24, x FOR PEER REVIEW 6 of 19

environment

agent 1

agent 2

agent N

agent i

o1

o2

oi

oN

a1

a2

ai

aN

 









actor target actor

calculated policy
loss

target criticcritic

+

Figure 2. Diagram of MADDPG algorithm training framework.

After all agents complete the interaction with the environment, each agent extracts
the experience from the experience replay buffer space according to the order of priority
experience replay and uses it for training its neural network. The schematic diagram of
the experience replay buffer is shown in Figure 3.

deep neural
network

environment

replay buffer
batch

sampling

ER

agent

action

state
reward

new state

Update
training

1 1 1 2(, , ,)s a r s

2 2 2 3(, , ,)s a r s

1(, , ,)t t t ts a r s +



1(, , ,)i i i is a r s +

1(, , ,)j j j js a r s + ta

ts

tr
1ts +

1(, , ,)t t t ts a r s +
Figure 3. Schematic diagram of experience replay buffer.

To enhance the learning effect of the agent learning process, the input of the critic
network includes the observations and action spaces of other agents. 𝑄 =𝑄(𝑠௠, 𝑎ଵ, 𝑎ଶ, … , 𝑎ே, 𝜃ொ), where 𝑠௠ = (𝑜ଵ௠, 𝑜ଶ௠, … , 𝑜ே௠), the parameters of the Critic network

Figure 3. Schematic diagram of experience replay buffer.

To enhance the learning effect of the agent learning process, the input of the critic network
includes the observations and action spaces of other agents. Q = Q

(
sm, a1, a2, . . . , aN , θQ),

where sm =
(
om

1 , om
2 , . . . , om

N
)
, the parameters of the Critic network model are updated by

minimizing the temporal difference error loss function, where the calculation equation of
the loss function is as follows:

L =
1
M ∑M

m=1 (ym −Q(sm, a1, a2, . . . , aN , θQ))
2

(5)

where the y function represents the cumulative average future reward of agent i in the
target actor network, and the loss function L is the square of the difference between the
y function and the Q value of the original network. The Actor network parameters are

Entropy 2022, 24, 1787 7 of 18

updated by the stochastic gradient descent method. The gradient descent equation is
as follows:

∇θπ J =
1
M ∑M

m=1∇θπ π(o, θπ)∇aQ(sm, a1, a2, . . . , aN , θQ) (6)

where o and aN represents the observed value and action of the ith agent, π(o, θπ) represents
that the agent selects the action following the policy network, ∇θπ J represents that the
optimal Q value is selected and gradient descent is performed in the direction of the action
π, K represents the number of empirical samples drawn each time i.e., the size of batchsize,
and ∇θπ π(o, θπ) represents that the action of agent i is selected according to the policy π.

3.2. Automatic Curriculum Learning

In most reinforcement learning, the training effect of the agent depends on the difficulty
of training task samples and the total training time. However, existing reinforcement learn-
ing algorithms still have difficulties and challenges in applying them to many scenarios,
such as high sampling complexity and weak convergence [27]. In addition, reinforcement
learning agents can only conduct model training to improve their performance after ad-
equate information interaction with the environment. However, due to the problems of
reward sparsity, partial observability, delay, high-dimensional observation space, and action
space, it is prone to the problem that the reinforcement learning algorithm cannot converge.

The main idea of curriculum learning is to construct a task sampler q(n, φ) based on
experience replay buffer. The task sampler can extract the most suitable tasks M(n, φ)
for the current agent training in real-time to maximize the cumulative reward value J(θ)
of training.

For a given number of agents n, simplify J(θ) to maximize the expected value
J = Eφ∼p(φ)[V(φ, π)], where p(φ) represents the uniform distribution of φ over the range
of possible values. Then the lower bound of the value of J can be obtained as follows:

J = Eφ∼p[V(φ, π)] = Eφ∼q[
p(φ)
q(φ) V(φ, π)]

= Eφ∼q[V(φ, π) + (p(φ)
q(φ) − 1)V(φ, π)]

≥ Eφ∼q[V(φ, π)]︸ ︷︷ ︸
J1:policy update

+ Eφ∼q[V(φ, π) log
p(φ)
q(φ)

]︸ ︷︷ ︸
J2:curriculum update

(7)

where, for all φ, the equality sign of the inequality holds if and only if p(φ) = q(φ).
The cumulative reward value J(π, q) is decomposed into policy update reward J1

and curriculum update reward J2, where J1 represents the policy update target under the
premise of the current task curriculum q(φ) and J2 represents the curriculum update target
that can be achieved by changing q(φ). Therefore, it can be proved that the cumulative
reward value J(π, q) of reinforcement learning can be maximized by updating the policy π
to maximize J1 and by updating the curriculum q(φ) to maximize J2, thereby generating a
curriculum learning framework.

In the curriculum learning algorithm, the reinforcement learning agent extracts state
samples from the replay storage space for learning, and this process is similar to the process
of learning students according to the prescribed curriculum plan. Curriculum learning
generates state task samples by adjusting the elements of the MDP process corresponding
to the continuous task space. The process can be described as follows: the agent selects
relatively simple state samples from the replay storage in the initial stage of algorithm
learning for reinforcement learning and then continuously increases the training difficulty
of the task curriculum and conducts curriculum learning as the basis of the final training
target task. However, for a reinforcement learning agent in a locally observable state,
the artificial pre-setting of the curriculum sequence may not be applicable, the simple
training samples selected in the initial state may be difficult to train, and the selected
difficult samples can be easily grasped by the agent. Therefore, the learning sequence of
the curriculum tasks can be determined by reinforcement learning agents, and the current

Entropy 2022, 24, 1787 8 of 18

state samples that are most suitable for agents to learn from the experience replay buffer
can be independently selected, which is called automatic curriculum learning [28].

There is a crucial problem in deep reinforcement learning algorithms based on au-
tomatic curriculum learning: how to design an explicit evaluation criterion to evaluate
and sort the complexity of task samples in replay storage space [29]. In the traditional
automatic curriculum learning method, the difficulty of the curriculums is sorted by the
absolute value of temporal difference error, and the samples whose loss value exceeds the
threshold δ are considered difficult samples. This method is general, but the loss value
is directly used as the sample difficulty index. It introduces uncontrollable distribution
errors, which may lead to overfitting of the state samples themselves and non-convergence
of the algorithm.

After the difficulty of given state samples is sorted in the curriculum task sorting
stage, previous work usually manually controls the use of samples according to the sample
difficulty or directly discards easy and difficult samples to conduct curriculum training.
Discarding easy and difficult samples may lead to a loss of information and affect the
fit of deep learning models. How to implement training programs on the premise of
losing as little information as possible is a significant problem facing current automatic
curriculum learning.

4. Curriculum Reinforcement Learning Algorithm Based on K-Fold Cross Validation

This paper proposes a general curriculum learning framework, the K-Fold Cross
Validation Curriculum Learning (KFCV-CL) framework, which can be applied to multi-
agent deep reinforcement learning problems based on the replay buffer mechanism. By
analyzing the temporal difference loss values of all training state samples in the coopera-
tive/competitive task, we found that the reinforcement learning agent can quickly grasp
the state task (simple task) whose initial state is closer to the final state after a few rounds
of training, but it is difficult to grasp the state task (a difficult task) whose initial state is far
from the final state during the whole training process. Based on this correlation, this work
proposes a K-Fold Cross Validation method to define the state task difficulty. The K-Fold
Cross Validation curriculum learning framework is divided into two stages: curriculum
difficulty evaluation and curriculum sorting.

For all target tasks, let D be the training set of all state samples used for training and θ
be the set of parameters of the neural network model used for training. In the curriculum
difficulty evaluation stage, a curriculum difficulty score is given to each state sample in
D, and C is used as the difficulty level score set corresponding to all state samples in the
training set D. In the curriculum sorting stage, based on the above difficulty level scores, D
is divided into a series of task curriculum sets {Si : i = 1, 2, . . . , K} from easy to difficult for
training, and finally, the expected complex task training effect is obtained.

4.1. Assessment of Curriculum Difficulty

The difficulty of a curriculum task sample can be determined by many elements, for
example, the distance between the initial state of each agent and the final state, the number,
and location of obstacles in the environment, the sparsity of rewards, etc. The difficulty of
curriculum tasks can be distinguished explicitly by setting a difficulty evaluation function.
However, traditional difficulty assessment methods have the following problems. First,
the weight coefficients between the difficulty factors are not easy to assign. For example,
it is difficult to distinguish the influence between the degree of reward sparsity and the
number of obstacles. Second, traditional methods are not universal for multi-agent rein-
forcement learning problems in different environments, and the influence of factors needs
to be reevaluated.

The curriculum difficulty evaluation method proposed in this paper can evaluate the
relative difficulty of the target sample through the teacher network formed by the remaining
samples, avoid the subjective bias caused by the assignment of the weight coefficient, and
improve the versatility of the difficulty evaluation method.

Entropy 2022, 24, 1787 9 of 18

The MADDPG algorithm belongs to the Temporal Difference (TD) algorithm, which
uses the estimated reward function Rt+1 + γV(St+1) to update the value function V(St)
(TD(0))

V(St)← V(St) + a(Rt+1 + γV(St+1)−V(St)) (8)

where Rt+1 + γV(St+1) is called TD target and Rt+1 + γV(St+1)−V(St) is called TD error.
We take the absolute value of temporal difference error as the evaluation reference

for the difficulty of the curriculum task because the state sample with a significant total
value of temporal difference error may harm the fitting of the training model. There are
the following reasons: 1. In a complex environment, the reward value is easily affected by
random noise, which may affect the real network training and lead to deviations in target
network training; 2. In the stochastic gradient descent process of deep neural networks,
state samples with larger absolute values of temporal difference errors require smaller
update steps to reach the global minimum of gradient descent.

To evaluate the difficulty of the curriculum, the state sample training set D in experi-
ence replay buffer space in the reinforcement learning algorithm is equally divided into K
parts, {D̃i : i = 1, 2, . . . , K}, and the K training sample subsets are used for parallel training
of the reinforcement learning model respectively, {θ̃i : i = 1, 2, . . . , K}, and the resulting K
network models are called teacher network models, which are used to evaluate the samples
in the target student network model. The training process of the teacher network model is
described as follows:

θ̃i = argmin
θ̃i

∑dj∈D̃i
L(dj, θ̃i)

i = 1, 2, . . . , K
(9)

where L represents the loss function of temporal difference error, dj ∈ D̃ represents the
experience samples drawn from the training set of state samples in the experience replay
buffer D, and {θ̃i : i = 1, 2, · · · , K} represents the K reinforcement learning models trained
by a subset of K training samples, respectively.

After the teacher network training is completed, the difficulty evaluation of curriculum
task samples is carried out. The task sample dj is included in the kth subset, the teacher
network corresponding to the kth subset is removed, and the remaining K − 1 teacher
models are used to estimate the score of the curriculum task sample dj, and the K− 1 scores
are obtained. The scoring process of each teacher model for the target curriculum task
sample dj is expressed as follows:

cji = (y−Qπ
teacher(s, a1, a2, . . . , aN))

2

y = rj + γQπ′(s′, a′1, a′2, . . . , a′N)|a′i=π′i (oi)

(10)

where cji represents the score of the target curriculum task sample dj by the teacher net-
work corresponding to the ith subset, Qteacher

(
sj, aj

)
represents the Q value obtained by

inputting the state sj and action value aj into the teacher model, aN represents the action
taken by the Nth agent, and γ represents the discount factor, then the difficulty score
corresponding to the task sample dj is defined as the sum of the scores of all remaining
teacher training models:

cj = ∑i∈(1,...,K),i 6=k cji (11)

As a result, the curriculum difficulty score corresponding to the task sample dj can
be obtained. Since teacher training models are carried out independently in the scoring
process, the influence of the data contained in the task sample dj on the task sample, the
difficulty score can be avoided, the robustness and accuracy of the scoring result can be
improved, and it has good versatility. Figure 4 shows the framework for assessing the
difficulty of curriculum tasks.

Entropy 2022, 24, 1787 10 of 18

Entropy 2022, 24, x FOR PEER REVIEW 10 of 19

teacher models are used to estimate the score of the curriculum task sample 𝑑௝, and the 𝐾 − 1 scores are obtained. The scoring process of each teacher model for the target curric-
ulum task sample 𝑑௝ is expressed as follows: 𝑐௝௜ = (𝑦 − 𝑄௧௘௔௖௛௘௥గ (𝑠, 𝑎ଵ, 𝑎ଶ, … , 𝑎ே))ଶ 𝑦 = 𝑟௝ + 𝛾𝑄గᇲ(𝑠ᇱ, 𝑎ଵᇱ , 𝑎ଶᇱ , … , 𝑎ேᇱ)|௔೔ᇲୀగ೔ᇲ(௢೔) (10)

where 𝑐௝௜ represents the score of the target curriculum task sample 𝑑௝ by the teacher net-
work corresponding to the 𝑖th subset, 𝑄୲ୣୟୡ୦ୣ୰(𝑠௝, 𝑎௝) represents the 𝑄 value obtained by
inputting the state 𝑠௝ and action value 𝑎௝ into the teacher model, 𝑎ே represents the ac-
tion taken by the 𝑁th agent, and 𝛾 represents the discount factor, then the difficulty score
corresponding to the task sample 𝑑௝ is defined as the sum of the scores of all remaining
teacher training models: 𝑐௝ = ∑ 𝑐௝௜௜∈(ଵ,…,௄),௜ஷ௞ (11)

As a result, the curriculum difficulty score corresponding to the task sample 𝑑௝ can
be obtained. Since teacher training models are carried out independently in the scoring
process, the influence of the data contained in the task sample 𝑑௝ on the task sample, the
difficulty score can be avoided, the robustness and accuracy of the scoring result can be
improved, and it has good versatility. Figure 4 shows the framework for assessing the
difficulty of curriculum tasks.

Replay Buffer 

Sample-set 1 Teacher 1

Teacher 2

Teacher i

Teacher K

1jc

2jcSample-set 2

Sample-set i

Sample-set K

Example j

jc
Difficulty

score

 

jKc

Figure 4. Framework diagram to assess the difficulty of curriculum tasks.

4.2. Curriculum Sorting Rules
In this section, we divide the training samples in the experience buffer space 𝐷 into

multiple stages for reinforcement learning training according to the difficulty scores cor-
responding to the previously calculated curriculum task samples. {𝑆௜: 𝑖 = 1,2, … , 𝐾}, at
each stage of training, the random sampling method is still used for model training for
this part of the state samples to ensure the independent and identical distribution of the
samples and avoid overfitting.

After estimating the difficulty of all training task samples according to the task cur-
riculum difficulty measurement method in the previous section, the training samples are
sorted in difficulty order from low to high, the task samples are divided into 𝐾 training
sets, 𝐶ଵ − 𝐶௄, and the training sets are sorted from easy to difficult.

For task state samples, this hierarchical structure of difficulty scores can directly re-
flect the inherent difficulty distribution corresponding to the training sample set. After
that, we divide the learning of the curriculum into 𝐾 stages. For each learning stage, ran-
dom sampling is conducted from the training set of the corresponding difficulty for peri-
odic training of the neural network. After the training period 𝑆௄ is reached, the final stage
of training is carried out through the set 𝐷 of the original training samples. The training

Figure 4. Framework diagram to assess the difficulty of curriculum tasks.

4.2. Curriculum Sorting Rules

In this section, we divide the training samples in the experience buffer space D
into multiple stages for reinforcement learning training according to the difficulty scores
corresponding to the previously calculated curriculum task samples. {Si : i = 1, 2, . . . , K},
at each stage of training, the random sampling method is still used for model training for
this part of the state samples to ensure the independent and identical distribution of the
samples and avoid overfitting.

After estimating the difficulty of all training task samples according to the task cur-
riculum difficulty measurement method in the previous section, the training samples are
sorted in difficulty order from low to high, the task samples are divided into K training
sets, C1 − CK, and the training sets are sorted from easy to difficult.

For task state samples, this hierarchical structure of difficulty scores can directly reflect
the inherent difficulty distribution corresponding to the training sample set. After that,
we divide the learning of the curriculum into K stages. For each learning stage, random
sampling is conducted from the training set of the corresponding difficulty for periodic
training of the neural network. After the training period SK is reached, the final stage of
training is carried out through the set D of the original training samples. The training set is
used to ensure the convergence of the model to finally realize the curriculum reinforcement
learning process from easy to difficult.

1
K

num(C1) :
1
K

num(C2) : · · · :
1
K

num(CK) (12)

4.3. Algorithm Framework and Process

The pseudocode of the KFCV-CL algorithm is as follows (Algorithm 1):

Entropy 2022, 24, 1787 11 of 18

Algorithm 1: KFCV-CL algorithm

for episode = 1 to max− episode do
Initialize a random process N for reinforcement learning action exploration
for t = 1 to max− episode− length do

for each agent v, select the action av = πv(ov, θπv) + εa w.r.t the current policy
The agent v conducts action av, transfers to the next state s′v and obtains the reward rv
Store (s, a, s′, r) into buffer space D
s← s′

Divide the experience samples in D into K equal parts, {D̃i : i = 1, 2, . . . , K}
Teacher models are trained for Di, the parameters are {θ̃i : i = 1, 2, . . . , K}

θ̃i = argmin
θ̃i

∑
dj∈D̃i

L
(

dj, θ̃i

)
The score cj = ∑i∈(1,...,K),i 6=k cji of each experience sample dj is obtained

cji = (y−Qπ
teacher(s, a1, a2, . . . , aN))2

y = rj + γQπ′
(
s′, a′1, a′2, . . . , a′N

)∣∣∣
a′v=π′v(ov)

Sort the experience samples and divide them into K training sets C1 − CK
for agent v = 1 to N do

Sampling a minibatch of experience quadruples (sm, am, s′m, rm) from D
Calculate the expected action reward of each experience sample

ym = rm
v + γQ′

(
s′m, a′1, a′2, . . . , a′N , θQ′

)
Minimize loss function to update Critic network parameters

L = 1
M

M
∑

m=1
(ym −Q

(
sm, a1, a2, . . . , aN , θQ))2

Update the Actor network parameters by the following gradient function

∇θπ J = 1
M

M
∑

m=1
∇θπ π(o, θπ)∇aQ

(
sm, a1, a2, . . . , aN , θQ)

end for
Update the target network parameters of each agent v

θ′v = τθv + (1− τ)θ′v
end for

end for

In summary, we can learn curriculum tasks from easy to difficult through the difficulty
assessment and curriculum sorting process. Next, we will conduct simulation experiments
in two cooperative/competitive task environments.

5. Experiment

We conduct simulation validation of the curriculum reinforcement learning algorithm
based on K-Fold cross validation in two experimental environments in multi-agent particle
world environment [30]. Each group of experiments is carried out in Ubuntu18.04.3+PyTorch
+OpenAI environment, the hardware environment is IntelCore i7-9700K+GeForceRTX2080+
64G memory, the test environment tasks are the cooperative task (Hard Spread), and adver-
sarial task (Grassland), the birth positions of agents are randomly generated, and obstacles
are randomly added, which can better enhance the difficulty combined with the algorithm
simulation needs in this paper.

The reinforcement learning testing process does not have an input dataset but relies
on data interaction with a simulated environment. The learning performance of the re-
inforcement learning algorithm can be measured from two aspects: 1. The cumulative
reward value changes with the number of training episodes. Under the premise of the
same number of training episodes, the higher the total reward value obtained by agents,
the better the training effect, and the faster the convergence speed; 2. From the actual
performance of the agents in the simulation environment, the agents can cooperate and
compete in the environment and have better performance, indicating that the training
efficiency of the algorithm is higher. The key hyperparameters set for the RL training
process are listed in Table 1.

Entropy 2022, 24, 1787 12 of 18

Table 1. Parameter setting of the DRL process.

Parameters Values

Discount factor 0.99
Size of RNN hidden layers 64

Size of the replay buffer 5000
Exploration 0.1

Initial curriculum factor λ 0.1
Batch size of the replay buffer 128
Learning rate of actor network 0.001
Learning rate of critic network 0.001

The update rate of the target network 0.01

5.1. Hard Spread Experiment

The multi-agent cooperation experiment adopts the “Hard Spread” environment. As
shown in Figure 5, in a square two-dimensional plane with a side length of 6, the plane is
isolated into three parts by randomly adding walls, and N agents and N landmarks are
generated randomly in the plane. The agents can only observe the landmark position but
cannot observe the wall. The learning goal of agents is to reach a landmark position in
the shortest time and to avoid collision with other agents or walls. To achieve the overall
training goal as soon as possible, each agent needs to consider the distance to the nearest
landmark and, at the same time, consider the relative positions of other agents and the
target to obtain the globally optimal policy and avoid falling into the trap of local minimum.

Entropy 2022, 24, x FOR PEER REVIEW 13 of 19

Hard-Spread

Agent Landmark Wall

KFCV-CL

PER-MADDPG

MADDPG

verification
algorithm

Figure 5. Schematic diagram of training in a cooperative environment.

The reward obtained by each agent at each time step consists of three parts, including
1. the distance between the agent and the nearest landmark; 2. whether the agent collides
with other agents or walls; 3. whether the agent has reached a landmark location. The
closer the distance between the agents and the landmarks, the higher the reward, and the
environment gives a positive reward to the agent that covers the landmark and a negative
reward to the agent that collides. The agent collision reward is defined as follows: 𝐶 = ൜ −1, 𝑖𝑓 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑0, 𝑖𝑓 𝑛𝑜𝑡 𝑐𝑜𝑙𝑙𝑖𝑑𝑒𝑑 (13)

The agent coverage landmark reward is defined as follows: 𝐷 = ൜ +4, 𝑖𝑓 𝑐𝑜𝑣𝑒𝑟𝑒𝑑0, 𝑖𝑓 𝑛𝑜𝑡 𝑐𝑜𝑣𝑒𝑟𝑑 (14)

Let the distance between agent 𝑖 and landmark 𝑗 be 𝐾(𝑖, 𝑗) , 𝐾(𝑖, 𝑗) =ඥ(𝑥௜ − 𝑥௝)ଶ + (𝑦௜ − 𝑦௝)ଶ, represents the closer the agent 𝑖 is to the nearest target 𝑗, the
greater the reward value it gets. Then the reward function of agent 𝑖 at each moment is 𝑟௜ = −𝜙[𝑚𝑖𝑛௝ஸே (𝐾(𝑖, 𝑗))] + 𝐶 + 𝐷 (15)

In the value of the equation, 𝜙 represents the eigenvector corresponding to the
shortest distance.

As shown in Figure 5, in the 𝑁 = 4 environment, the KFCV-CL, PER-MADDPG, and
MADDPG algorithms are used to control the movement of the agent. Under the same
number of training episodes, the algorithm that obtains a higher cumulative reward value
and the cover rate has higher training performance and faster model convergence.

Figure 6a shows the average cover rate curves of the three algorithms after 2 × 10ହ
rounds of training. It can be seen from the figure that the coverage of the KFCV-CL algo-
rithm can be significantly improved compared with the PER-MADDPG and MADDPG
algorithms after sorting the curriculums from easy to difficult.

Table 1 shows the average number of collisions in each step, the average minimum
distance between the agent and the nearest landmark, and the average number of land-
marks covered by the agent after 1.9 × 10ହ rounds of training and 10,000 random rounds
of experiments based on the policies learned by the agents. From the results in Table 2,
the agents controlled by the KFCV-CL algorithm can significantly improve the three indi-
cators. As shown in the figure, the test reward obtained by the agent performing random
10,000 rounds of experiments can be stably maintained at a high level, which means that

Figure 5. Schematic diagram of training in a cooperative environment.

The reward obtained by each agent at each time step consists of three parts, including
1. the distance between the agent and the nearest landmark; 2. whether the agent collides
with other agents or walls; 3. whether the agent has reached a landmark location. The
closer the distance between the agents and the landmarks, the higher the reward, and the
environment gives a positive reward to the agent that covers the landmark and a negative
reward to the agent that collides. The agent collision reward is defined as follows:

C =

{
−1, i f collided
0, i f not collided

(13)

Entropy 2022, 24, 1787 13 of 18

The agent coverage landmark reward is defined as follows:

D =

{
+4, i f covered
0, i f not coverd

(14)

Let the distance between agent i and landmark j be K(i, j), K(i, j) =
√
(xi − xj)

2 + (yi − yj)
2,

represents the closer the agent i is to the nearest target j, the greater the reward value it
gets. Then the reward function of agent i at each moment is

ri = −φ[min
j≤N

(K(i, j))] + C + D (15)

In the value of the equation, φ represents the eigenvector corresponding to the short-
est distance.

As shown in Figure 5, in the N = 4 environment, the KFCV-CL, PER-MADDPG, and
MADDPG algorithms are used to control the movement of the agent. Under the same
number of training episodes, the algorithm that obtains a higher cumulative reward value
and the cover rate has higher training performance and faster model convergence.

Figure 6a shows the average cover rate curves of the three algorithms after 2× 105

rounds of training. It can be seen from the figure that the coverage of the KFCV-CL
algorithm can be significantly improved compared with the PER-MADDPG and MADDPG
algorithms after sorting the curriculums from easy to difficult.

Entropy 2022, 24, x FOR PEER REVIEW 14 of 19

the agents can learn a better policy. Figure 6b is a scatter diagram of the test reward ob-
tained by the agents performing random 10,000 rounds of experiments.

(a) (b)

Figure 6. Representation diagram of agents in the cooperative environment. (a) Target cover rate in
the cooperative environment. (b) Test reward in the cooperative environment.

Table 2. Data analysis table of 10,000 random experiments conducted by agents in the cooperative
environment.

The Experimental Algo-
rithm

The Average Number
of Collisions

Mean the Closest Dis-
tance

The Average Number of
Landmarks Covered

KFCV-CL 0.687 2.406 1.791
PER-MADDPG 0.707 2.529 1.288

MADDPG 0.742 3.636 0.701

5.2. Grassland Experiment
In a cooperative training environment, the agent’s policy will continue to mature

along with the training process, and the cumulative reward value will continue to in-
crease. In a multi-agent adversarial environment, the agent’s policy will also be affected
by the opponent’s agent policy, and the convergence speed of the two policies is not syn-
chronized, so the cumulative reward value will fluctuate and will have higher require-
ments for algorithm training performance, the KFCV-CL algorithm can effectively im-
prove the learning performance of agents in the mutual game.

The multi-agent adversarial experiment adopts the “grassland” experiment, which is
adapted from the classic experiment “predator-prey” in the MPE environment and im-
proves the confrontation and training difficulty of the experimental environment by in-
troducing grass and allowing the agent (sheep) to die. In the two-dimensional plane [0, 1],
there are 𝑁ௌ sheep, 𝑁ௐ wolves and 𝐿 piles of grass, where the sheep move twice as fast
as the wolf, and the grass stays in place.

All environments in the grassland experiment are entirely observable. The agent
needs to adjust its policy according to the opponent’s policy and the partner’s policy and
respond to the global state. As the number of wolves increases, it becomes increasingly
difficult for sheep to survive. At the same time, the sheep become more brilliant, which
will also reversely motivate the wolves to improve their policies. The reward value of the
wolf 𝑖 depends on the distance between it and the sheep and whether the sheep are
caught. The smaller the distance between each other, the greater the reward value.

Let the distance between the wolf 𝑖 and the sheep 𝑗 be 𝐾(𝑖, 𝑗), then

Figure 6. Representation diagram of agents in the cooperative environment. (a) Target cover rate in
the cooperative environment. (b) Test reward in the cooperative environment.

Table 1 shows the average number of collisions in each step, the average minimum
distance between the agent and the nearest landmark, and the average number of land-
marks covered by the agent after 1.9× 105 rounds of training and 10,000 random rounds of
experiments based on the policies learned by the agents. From the results in Table 2, the
agents controlled by the KFCV-CL algorithm can significantly improve the three indica-
tors. As shown in the figure, the test reward obtained by the agent performing random
10,000 rounds of experiments can be stably maintained at a high level, which means that the
agents can learn a better policy. Figure 6b is a scatter diagram of the test reward obtained
by the agents performing random 10,000 rounds of experiments.

Entropy 2022, 24, 1787 14 of 18

Table 2. Data analysis table of 10,000 random experiments conducted by agents in the cooperative
environment.

The Experimental
Algorithm

The Average
Number of
Collisions

Mean the Closest
Distance

The Average
Number of

Landmarks Covered

KFCV-CL 0.687 2.406 1.791
PER-MADDPG 0.707 2.529 1.288

MADDPG 0.742 3.636 0.701

5.2. Grassland Experiment

In a cooperative training environment, the agent’s policy will continue to mature
along with the training process, and the cumulative reward value will continue to increase.
In a multi-agent adversarial environment, the agent’s policy will also be affected by the
opponent’s agent policy, and the convergence speed of the two policies is not synchronized,
so the cumulative reward value will fluctuate and will have higher requirements for algo-
rithm training performance, the KFCV-CL algorithm can effectively improve the learning
performance of agents in the mutual game.

The multi-agent adversarial experiment adopts the “grassland” experiment, which is
adapted from the classic experiment “predator-prey” in the MPE environment and improves
the confrontation and training difficulty of the experimental environment by introducing
grass and allowing the agent (sheep) to die. In the two-dimensional plane [0, 1], there are
NS sheep, NW wolves and L piles of grass, where the sheep move twice as fast as the wolf,
and the grass stays in place.

All environments in the grassland experiment are entirely observable. The agent needs
to adjust its policy according to the opponent’s policy and the partner’s policy and respond
to the global state. As the number of wolves increases, it becomes increasingly difficult
for sheep to survive. At the same time, the sheep become more brilliant, which will also
reversely motivate the wolves to improve their policies. The reward value of the wolf i
depends on the distance between it and the sheep and whether the sheep are caught. The
smaller the distance between each other, the greater the reward value.

Let the distance between the wolf i and the sheep j be K(i, j), then

K(i, j) =
√
(xi − xj)

2 + (yi − yj)
2 (16)

When a wolf collides with (eats) a sheep, the wolf will receive a higher reward value
for it. At the same time, the sheep will receive a negative reward value (penalty). Reward
value for successfully colliding (eating) the sheep of the wolf is as follows:

C1 =

{
+5, i f captured
0, i f not captured

(17)

To maintain the excellent operation of the training environment and prevent the
agent from giving up learning a better policy because of escaping the boundary, a large
negative reward value (penalty) is imposed on the agent that escapes the boundary of the
two-dimensional plane. The size of the penalty depends on how far the agent leaves the
boundary, and the boundary reward is

C2 =

{
0, max(xi, yi) < 0.9
−200(max(xi, yi)− 0.9), max(xi, yi) ≥ 0.9

(18)

Entropy 2022, 24, 1787 15 of 18

When the sheep encounters (eats) grass, it will get a reward value. After the grass is
eaten by sheep, it will respawn in another random area.

C3 =

{
+2, i f captured
0, i f not captured

(19)

In the grassland experiment, wolves cooperate to complete the predation task. Since
the overall reward value is prioritized in the environment, the instantaneous higher reward
of the individual agent can be sacrificed, so the distance taken when defining the reward
value is the minimum distance between the wolves and sheep, and the reward function of
the wolf i is

ri = −φ[min
i≤n

K(i, j)] + C1 + C2 (20)

The movement speed of the sheep group is faster than that of the wolf group, and the
movement range has boundaries. Therefore, to maximize the overall reward value of the
sheep group, considering the sum of the distances from the wolves in the environment, the
reward function of sheep j is:

rj = φ
[
∑N

i=1(K(i, j))
]
− C1 + C2 + C3 (21)

In the above equation, φ represents the eigenvector corresponding to the shortest
distance.

In the reinforcement learning environment, the KFCV-CL, PER-MADDPG, and MAD-
DPG algorithms are used to control wolves to move and compete with sheep trained by
other baseline algorithms. The average reward value for wolves is used as the wolf evalua-
tion index, and the average reward value for sheep is used as the sheep evaluation index.
Figure 7 shows a schematic diagram of the training in the adversarial environment training.

Entropy 2022, 24, x FOR PEER REVIEW 16 of 19

Grassland

Wolf Sheep Grass

KFCV-CL

PER-MADDPG

MADDPG

verification
algorithm

Figure 7. Schematic diagram of training adversarial environment. Red balls represent the wolf

agents, the blue balls represent the sheep, and the green balls represent the grass. The wolf agent

and the sheep agent are controlled by the algorithms, respectively.

In the environment of 𝑁𝑆 = 12, 𝑁𝑤 = 16, the KFCV-CL, PER-MADDPG, and MAD-

DPG algorithms are used to control the wolves to move and compete with the sheep

trained by MADDPG. The curves in Figure 8a represent the trend of the reward value

obtained by the wolf agent corresponding to the three algorithms in 1 × 105 rounds, the

legend of (b) illustrates the histogram of the average reward value obtained by the three

algorithms in 10,000 rounds. From the reward value curves of the adversarial experiment,

it can be concluded that due to asynchrony in the algorithm training process, the reward

value curve has a fluctuating upward process. The red curve corresponding to the KFCV-

CL algorithm is significantly higher than the reward curves corresponding to the other

two algorithms. The average reward value of KFCV-CL is 1.34 times that of PER-MAD-

DPG and 1.65 times that of MADDPG, which shows that the performance of the KFCV-

CL algorithm is significantly better than the other two algorithms.

(a) (b)

Figure 8. Representation diagram of agents in an adversarial environment. (a) The episode reward

is achieved in the adversarial environment. (b) The average reward obtained by the three algorithms

in the adversarial environment.

As shown in Figure 9, in the environment of 𝑁𝑆 = 12,𝑁𝑤 = 16, the KFCV-CL algo-

rithm is used to control the wolf agent, and the PER-MADDPG and MADDPG algorithms

Figure 7. Schematic diagram of training adversarial environment. Red balls represent the wolf agents,
the blue balls represent the sheep, and the green balls represent the grass. The wolf agent and the
sheep agent are controlled by the algorithms, respectively.

In the environment of NS = 12, Nw = 16, the KFCV-CL, PER-MADDPG, and MAD-
DPG algorithms are used to control the wolves to move and compete with the sheep trained
by MADDPG. The curves in Figure 8a represent the trend of the reward value obtained
by the wolf agent corresponding to the three algorithms in 1× 105 rounds, the legend of
(b) illustrates the histogram of the average reward value obtained by the three algorithms

Entropy 2022, 24, 1787 16 of 18

in 10,000 rounds. From the reward value curves of the adversarial experiment, it can be
concluded that due to asynchrony in the algorithm training process, the reward value
curve has a fluctuating upward process. The red curve corresponding to the KFCV-CL
algorithm is significantly higher than the reward curves corresponding to the other two
algorithms. The average reward value of KFCV-CL is 1.34 times that of PER-MADDPG and
1.65 times that of MADDPG, which shows that the performance of the KFCV-CL algorithm
is significantly better than the other two algorithms.

Entropy 2022, 24, x FOR PEER REVIEW 16 of 19

Grassland

Wolf Sheep Grass

KFCV-CL

PER-MADDPG

MADDPG

verification
algorithm

Figure 7. Schematic diagram of training adversarial environment. Red balls represent the wolf
agents, the blue balls represent the sheep, and the green balls represent the grass. The wolf agent
and the sheep agent are controlled by the algorithms, respectively.

In the environment of 𝑁ௌ = 12, 𝑁௪ = 16, the KFCV-CL, PER-MADDPG, and MAD-
DPG algorithms are used to control the wolves to move and compete with the sheep
trained by MADDPG. The curves in Figure 8a represent the trend of the reward value
obtained by the wolf agent corresponding to the three algorithms in 1 × 10ହ rounds, the
legend of (b) illustrates the histogram of the average reward value obtained by the three
algorithms in 10,000 rounds. From the reward value curves of the adversarial experiment,
it can be concluded that due to asynchrony in the algorithm training process, the reward
value curve has a fluctuating upward process. The red curve corresponding to the KFCV-
CL algorithm is significantly higher than the reward curves corresponding to the other
two algorithms. The average reward value of KFCV-CL is 1.34 times that of PER-MAD-
DPG and 1.65 times that of MADDPG, which shows that the performance of the KFCV-
CL algorithm is significantly better than the other two algorithms.

(a) (b)

Figure 8. Representation diagram of agents in an adversarial environment. (a) The episode reward
is achieved in the adversarial environment. (b) The average reward obtained by the three algorithms
in the adversarial environment.

As shown in Figure 9, in the environment of 𝑁ௌ = 12, 𝑁௪ = 16, the KFCV-CL algo-
rithm is used to control the wolf agent, and the PER-MADDPG and MADDPG algorithms

Figure 8. Representation diagram of agents in an adversarial environment. (a) The episode reward is
achieved in the adversarial environment. (b) The average reward obtained by the three algorithms in
the adversarial environment.

As shown in Figure 9, in the environment of NS = 12, Nw = 16, the KFCV-CL algo-
rithm is used to control the wolf agent, and the PER-MADDPG and MADDPG algorithms
are used to control the sheep agent, respectively, and the winning rate curves correspond-
ing to the wolf and sheep are obtained. From the winning rate curves, the wolf agent
controlled by the KFCV-CL can gain an advantage in a short time (20,000 rounds) against
the sheep agent controlled by the MADDPG algorithm, and the winning rate is stable
above 0.85. However, when the wolf agent controlled by KFCV-CL fights against the sheep
agent controlled by PER-MADDPG, it wins and loses in the early stage but can learn better
policies in the later stage, thereby gaining an advantage in the confrontation. It can be
seen that the performance of the KFCV-CL algorithm is significantly better than the other
two algorithms.

Entropy 2022, 24, x FOR PEER REVIEW 17 of 19

are used to control the sheep agent, respectively, and the winning rate curves correspond-
ing to the wolf and sheep are obtained. From the winning rate curves, the wolf agent con-
trolled by the KFCV-CL can gain an advantage in a short time (20,000 rounds) against the
sheep agent controlled by the MADDPG algorithm, and the winning rate is stable above
0.85. However, when the wolf agent controlled by KFCV-CL fights against the sheep agent
controlled by PER-MADDPG, it wins and loses in the early stage but can learn better pol-
icies in the later stage, thereby gaining an advantage in the confrontation. It can be seen
that the performance of the KFCV-CL algorithm is significantly better than the other two
algorithms.

(a) (b)

Figure 9. The win rate of wolf and sheep using two algorithms, respectively, in the adversarial en-
vironment. (a) KFCV-CL versus PER-MADDPG. (b) KFCV-CL versus MADDPG.

6. Conclusions
To solve the problems of complex curriculum sorting and slow convergence in cur-

riculum reinforcement learning, this paper proposes a curriculum reinforcement learning
method based on K-Fold Cross Validation, which can automatically sort curriculums
through curriculum difficulty assessment and curriculum sorting without relying on ex-
pert experience, and it can be applied in multi-agent deep reinforcement learning algo-
rithm based on replay buffer space. Through simulations in the cooperative environment
and the adversarial environment, the usability and superiority of the algorithm was
proven, which is of solid research and practical significance. The reinforcement learning
method based on automatic curriculum learning has the advantages of fast solution speed
and strong model generalization ability for solving optimization problems in industrial
practice, and can provide new approaches and new ideas for solving combinatorial opti-
mization problems. Our method has the advantages of high data utilization and accurate
curriculum evaluation and can avoid the overfitting problem in the evaluation process,
but there are still problems such as the long training period and insufficient applicability
for particular scenarios of reinforcement learning (such as sparse reward environment and
multi-agent body confidence distribution problem). T he subsequent study will be con-
ducted on how to combine automatic curriculum learning with algorithms of value de-
composition network structure and further adaptation to multi-agent body. In the future,
we will further investigate how to combine automatic curriculum learning with algo-
rithms of value decomposition network structure, how to further adapt to a multi-agent
simulation environment, and how to reduce the time complexity of curriculum sequenc-
ing further.

Figure 9. The win rate of wolf and sheep using two algorithms, respectively, in the adversarial
environment. (a) KFCV-CL versus PER-MADDPG. (b) KFCV-CL versus MADDPG.

Entropy 2022, 24, 1787 17 of 18

6. Conclusions

To solve the problems of complex curriculum sorting and slow convergence in cur-
riculum reinforcement learning, this paper proposes a curriculum reinforcement learning
method based on K-Fold Cross Validation, which can automatically sort curriculums
through curriculum difficulty assessment and curriculum sorting without relying on expert
experience, and it can be applied in multi-agent deep reinforcement learning algorithm
based on replay buffer space. Through simulations in the cooperative environment and the
adversarial environment, the usability and superiority of the algorithm was proven, which
is of solid research and practical significance. The reinforcement learning method based on
automatic curriculum learning has the advantages of fast solution speed and strong model
generalization ability for solving optimization problems in industrial practice, and can
provide new approaches and new ideas for solving combinatorial optimization problems.
Our method has the advantages of high data utilization and accurate curriculum evaluation
and can avoid the overfitting problem in the evaluation process, but there are still problems
such as the long training period and insufficient applicability for particular scenarios of
reinforcement learning (such as sparse reward environment and multi-agent body confi-
dence distribution problem). T he subsequent study will be conducted on how to combine
automatic curriculum learning with algorithms of value decomposition network structure
and further adaptation to multi-agent body. In the future, we will further investigate
how to combine automatic curriculum learning with algorithms of value decomposition
network structure, how to further adapt to a multi-agent simulation environment, and how
to reduce the time complexity of curriculum sequencing further.

Author Contributions: Conceptualization, Z.L. and X.C.; Methodology, Z.L.; Software Z.L., J.L. and
X.C.; Validation, Z.L., J.L. and X.C.; writing—original draft, Z.L., L.C. and J.W.; writing—review and
editing, X.C. and J.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially supported by the National Natural Science Foundation of China
(No. 61806221) and the National Defense Scientific Research Program (No. WDZC20225250403].

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data used to support the findings of this study are available from
the website https://github.com/openai/multiagent-particle-envs (accessed on 26 July 2022).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Foglino, F.; Christakou, C.C.; Gutierrez, R.L. Curriculum learning for cumulative return maximization. arXiv 2019,

arXiv:1906.06178.
2. Mnih, V.; Kavukcuoglu, K.; Silver, D. Playing atari with deep reinforcement learning. arXiv 2013, arXiv:1312.5602.
3. Fang, M.; Zhou, T.; Du, Y. Curriculum-guided hindsight experience replay. Adv. Neural Inf. Process. Syst. 2019, 19, 12602–12613.
4. Silver, D.; Huang, A.; Maddison, C.J. Mastering the game of Go with deep neural networks and tree search. Nature 2016, 529,

484–489. [CrossRef] [PubMed]
5. Palmer, G.; Tuyls, K.; Bloembergen, D. Lenient multi-agent deep reinforcement learning. arXiv 2017, arXiv:1707.04402.
6. Sunehag, P.; Lever, G.; Gruslys, A. Value-decomposition networks for cooperative multi-agent learning. arXiv 2017,

arXiv:1706.05296.
7. Rashid, T.; Samvelyan, M.; Schroeder, C. Qmix: Monotonic value function factorisation for deep multi-agent reinforcement

learning. In Proceedings of the International Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp.
4295–4304.

8. Hausknecht, M.; Stone, P. Deep recurrent q-learning for partially observable mdps. In Proceedings of the 2015 AAAI Fall
Symposium Series, Arlington, VA, USA, 17–21 November 2015; pp. 369–382.

9. Foerster, J.; Farquhar, G.; Afouras, T. Counterfactual multi-agent policy gradients. In Proceedings of the AAAI Conference on
Artificial Intelligence, New Orleans, LA, USA, 5–9 February 2018; pp. 632–645.

10. Li, S. Multi-agent deep deterministic policy gradient for traffic signal control on urban road network. In Proceedings of the
2020 IEEE International Conference on Advances in Electrical Engineering and Computer Applications (AEECA), Melbourne,
Australia, 22–25 December 2020; pp. 896–900.

https://github.com/openai/multiagent-particle-envs
http://doi.org/10.1038/nature16961
http://www.ncbi.nlm.nih.gov/pubmed/26819042

Entropy 2022, 24, 1787 18 of 18

11. Yu, C.; Velu, A.; Vinitsky, E. The Surprising Effectiveness of PPO in Cooperative, Multi-Agent Games. arXiv 2021, arXiv:2103.01955.
12. Shi, D.; Guo, X.; Liu, Y. Optimal Policy of Multiplayer Poker via Actor-Critic Reinforcement Learning. Entropy 2022, 24, 774.

[CrossRef]
13. Portelas, R.; Colas, C.; Weng, L. Automatic curriculum learning for deep rl: A short survey. arXiv 2020, arXiv:2003.04664.
14. Bengio, Y.; Louradour, J.; Collobert, R. Curriculum learning. In Proceedings of the 26th Annual International Conference on

Machine Learning (ICML), Quebec, MT, Canada, 14–18 June 2009; pp. 41–48.
15. Schaul, T.; Quan, J.; Antonoglou, I. Prioritized experience replay. arXiv 2015, arXiv:1511.05952.
16. Sutton, R.S.; Barto, A.G. Learning to execute. arXiv 2014, arXiv:1410.4615.
17. Graves, A.; Wayne, G.; Reynolds, M. Hybrid computing using a neural network with dynamic external memory. Nature 2016, 538,

71–76. [CrossRef]
18. Silva, F.L.D.; Costa, A.H.R. Object-oriented curriculum generation for reinforcement learning. In Proceedings of the 17th

International Conference on Autonomous Agents and Multi-Agent Systems, New York, NY, USA, 8–12 March 2018; pp. 1026–
1034.

19. Chen, J.; Zhang, Y.; Xu, Y. Variational Automatic Curriculum Learning for Sparse-Reward Cooperative Multi-Agent Problems.
Adv. Neural Inf. Process. Syst. 2021, 34, 36–48.

20. Weinshall, D.; Cohen, G.; Amir, D. Curriculum learning by transfer learning: Theory and experiments with deep networks. In
Proceedings of the International Conference on Machine Learning (ICML), Long Beach, CA, USA, 10–15 June 2018; pp. 5238–5246.

21. Turchetta, M.; Kolobov, A.; Shah, S. Safe reinforcement learning via curriculum induction. Adv. Neural Inf. Process. Syst. 2020, 33,
12151–12162.

22. Matiisen, T.; Oliver, A.; Cohen, T. Teacher–student curriculum learning. IEEE. Trans. Neural Net. Learn. Syst. 2019, 31, 3732–3740.
[CrossRef] [PubMed]

23. Narvekar, S.; Stone, P. Learning curriculum policies for reinforcement learning. arXiv 2018, arXiv:1812.00285.
24. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA, 2018.
25. Lei, W.; Wen, H.; Wu, J. MADDPG-based security situational awareness for smart grid with intelligent edge. Appl. Sci. 2021, 11,

3101. [CrossRef]
26. Fedus, W.; Ramachandran, P.; Agarwal, R. Revisiting fundamentals of experience replay. In Proceedings of the International

Conference on Machine Learning (ICML), Virtual Event. 13–18 July 2020; pp. 3061–3071.
27. Portelas, R.; Colas, C.; Hofmann, K. Teacher algorithms for curriculum learning of deep rl in continuously parameterized

environments. In Proceedings of the Conference on Robot Learning (PMLR), San Diego, CA, USA, 8–13 October 2020; pp.
835–853.

28. Kumar, M.; Packer, B.; Koller, D. Self-paced learning for latent variable models. Adv. Neural Inf. Process. Syst. 2010, 23, 154–160.
29. Florensa, C.; Held, D.; Geng, X. Automatic goal generation for reinforcement learning agents. In Proceedings of the International

Conference on Machine Learning (ICML), Stockholm, Sweden, 10–15 July 2018; pp. 1515–1528.
30. Lowe, R.; Wu, Y.I.; Tamar, A. Multi-agent actor-critic for mixed cooperative-competitive environments. Adv. Neural Inf. Process.

Syst. 2017, 30, 133–160.

http://doi.org/10.3390/e24060774
http://doi.org/10.1038/nature20101
http://doi.org/10.1109/TNNLS.2019.2934906
http://www.ncbi.nlm.nih.gov/pubmed/31502993
http://doi.org/10.3390/app11073101

	Introduction
	Related Work
	Background
	Multi-Agent Deep Deterministic Policy Gradient Algorithm Model
	Basic Knowledge of Deep Reinforcement Learning
	PER-MADDPG Algorithm

	Automatic Curriculum Learning

	Curriculum Reinforcement Learning Algorithm Based on K-Fold Cross Validation
	Assessment of Curriculum Difficulty
	Curriculum Sorting Rules
	Algorithm Framework and Process

	Experiment
	Hard Spread Experiment
	Grassland Experiment

	Conclusions
	References

