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Abstract: Accurate workload prediction plays a key role in intelligent scheduling decisions on cloud
platforms. There are massive amounts of short-workload sequences in the cloud platform, and the
small amount of data and the presence of outliers make accurate workload sequence prediction a
challenge. For the above issues, this paper proposes an ensemble learning method based on sample
weight transfer and long short-term memory (LSTM), termed as Tr-Predictor. Specifically, a selection
method of similar sequences combining time warp edit distance (TWED) and transfer entropy (TE) is
proposed to select a source domain dataset with higher similarity for the target workload sequence.
Then, we upgrade the basic learner of the ensemble model two-stage TrAdaBoost.R2 to LSTM in the
deep model and enhance the ability of the ensemble model to extract sequence features. To optimize
the weight adjustment strategy, we adopt a two-stage weight adjustment strategy and select the best
weight for the learner according to the sample error and model error. Finally, the above process
determines the parameters of the target model and uses the target model to predict the short-task
sequences. In the experimental validation, we arbitrarily select nine sets of short-workload data
from the Google dataset and three sets of short-workload data from the Alibaba cluster to verify the
prediction effectiveness of the proposed algorithm. The experimental results show that compared
with the commonly used cloud workload prediction methods Tr-Predictor has higher prediction
accuracy on the small-sample workload. The prediction indicators of the ablation experiments show
the performance gain of each part in the proposed method.

Keywords: cloud data center; transfer entropy; workload forecast; ensemble learning; transfer
learning

1. Introduction

With the rapid growth of various types of terminal data on mobile platforms, terminal
storage capacity is becoming limited. Application deployment to the cloud has become an
increasingly common practice in the industry [1]. Elastic and efficient resource management
is the characteristic of cloud computing over other computing models [2,3]. Autoscaling
and other technologies realize the intelligent scheduling decision of the cloud platform,
and the scaling decision of autoscaling is realized based on the prediction result of the
workload [4,5]. Over-allocation of computing resources or sudden changes in workload
negatively impact resource management. The accuracy of prediction directly affects the
efficiency of scaling. The prediction result of workload decides the allocation of various
resource requirements, and the accuracy of workload prediction is a key factor affecting
cloud resource management [6].

In the cloud platform management system, the monitoring log of the cloud platform
will record changes in resource utilization (CPU, memory, I/O, etc.) when each task is
running [3,7]. Taking the Google data center as an example, the request of a user is called a
job. Each job contains one or more tasks. The monitoring system records at a frequency of
sampling every five minutes. There are two types of jobs running in the Google cluster:
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production priority jobs and batch jobs. Production priorities include longer-duration jobs,
and batch jobs are relatively short jobs [8]. This article treats batch jobs that run less than 8 h
as short tasks. There are a large number of small-sample workload sequences in the Google
data center. Such short tasks also require resource scaling and require fast processing. In
regression tasks, short-sequence workload prediction is a small-sample problem. Therefore,
the accuracy of short-task workload prediction has an important impact on the performance
of autoscaling [9].

The research on time series forecasting provides an effective guarantee for the storage
and management of cloud platform resources, and many new and efficient forecasting
algorithms are used for resource scheduling [10,11]. Traditional time series forecasting
models are fast, efficient and highly interpretable [12]. In this regard, researchers have
been improving them and applying them to cloud load forecasting. Daraghmeh et al. [13]
applied the Prophet to predict the required resource utilization of workloads. Shi et al. [14]
used BHT_ARIMA to predict the short-term workload. The prediction models based on
machine learning are widely used in cloud workload prediction because of their strong
learning and prediction abilities for burst data [15,16]. Liu et al. [17] proposed an adaptive
prediction method. Ouhame et al. [18] proposed CNN-LSTM to model irregular informa-
tion in short sequences. Based on the above research status of cloud workload forecasting,
traditional time series forecasting algorithms are suitable for sequences with periodic and
obvious trends. Machine-learning-based workload prediction algorithms require a large
amount of training data. However, they have no obvious advantage in the forecasting
effect of small-sample workload sequences with strong burstiness. At present, there are
few systematic studies on the problem of small-sample workload sequence forecasting.

Small sample workload forecasting has the following challenges:

(1) The sample points of the workload sequence targeted are too short (less than 100 sam-
ple points) compared to other prediction work, and the corresponding number of tasks
is small (mostly less than 200). The available sample size is small. Such workload pre-
diction can be viewed as a small-scale sample problem. For such problems, although
some solutions have been proposed, most of them are coarse-grained and cannot fully
excavate and effectively utilize the data information in the cloud platform.

(2) Small sample sequences have strong irregular mutation, and the data lengths are
quite different in domains, which leads to increased difficulty in the representation of
sequence workload features. Task sequences often have different patterns of change.
There is no apparent periodicity (about 90% of tasks are aperiodic).

Compared with traditional forecasting and machine learning forecasting methods, the
forecasting model based on transfer learning has received more and more attention due to
its excellent effect. The initial performance of the transfer learning model is higher, and
the convergence is better. Antoine et al. [19] proposed a domain adaptation method for
regression tasks, called WANN. Xu et al. [20] proposed a two-stage transfer prediction
algorithm for short-term charges, which combined the time series trend decomposition
with the two-stage TrAdaBoost.R2 to improve the prediction accuracy.

In recent years, the research value of small-sample problems in practical problems has
been constantly explored [21]. Scholars in related fields put forward new work that is not
advanced [22,23]. The research in [24,25] shows that transfer learning is an effective method
to solve the problem of small samples, and there is a certain similarity in the changing
trend between medium tasks and short tasks. In transfer learning training, the training
process is robust, and the generalization ability of the model is stronger. Therefore, this
paper uses transfer learning to predict small-sample workload sequences and obtain better
accurate prediction results.

To address the above challenges, we propose a sample weight transfer ensemble
algorithm for small-sample workload sequences, denoted as Tr-Predictor. In workload
prediction work, the fusion of ordinary linear models with migration algorithms often
fails to obtain better prediction results on small-sample workload sequences. For the
irregularity and mutability of short-task workload sequences, the deep learning algorithm
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is incorporated into the sample weight migration algorithm to obtain better prediction
accuracy by capturing the potential features of the sequences. The main contributions of
this paper are as follows:

• A two-stage transfer ensemble prediction algorithm is proposed to predict the small-
sample workload sequences with little historical data, weak trend, and periodicity. It
integrates the advantage of the deep network and shallow model. The weight transfer
method obtains relatively more long-term trend features from the source domain to
assist the prediction of target data.

• A fusion time series similarity measurement criterion is proposed to measure the simi-
larity between the source domain and the target domain. The measurement method
uses TWED and TE to measure the correlation between domains and selects the suit-
able medium length set that serves as the source domain. There is a certain causal
relationship between the selected source domain and the target domain. A suitable
source domain can effectively improve the prediction accuracy of transfer learning.

• The algorithm is verified on the monitoring logs of two public large-scale general
cloud data centers. A total of 12 groups of small-sample workload data with different
complex change patterns is selected and compared with the current state-of-the-art
workload prediction algorithms. The extraction algorithm has the characteristics of
high precision and universality on small-sample data.

The rest of this paper is organized as follows. In Section 2, we briefly introduce the
related techniques involved in the proposed method. In Section 3, the proposed method is
presented in detail. Section 4 conducts experiments and corresponding analyses. Finally,
our work is summarized in Section 5.

2. Preliminary

This section mainly introduces three parts of related technologies: time warp edit distance
(TWED), AdaBoost-LSTM and transfer entropy (TE). The techniques in Sections 2.1 and 2.3 are
used for the selection of similar workloads, and the middle section is used as the theoretical
basis for the prediction method proposed in this paper.

2.1. TWED

The most commonly used time series similarity measures include Euclidean distance
and dynamic time warping. Euclidean distance is fast and efficient, but it is susceptible to
time shifts. Dynamic time warping is the most widely used and improved algorithm, but it
cannot handle time series with different sampling rates. Dynamic time warping will not
perform as well for source and target domain data with different sampling rates. Therefore,
we use TWED, which incorporates a ‘stiffness’ [26] parameter as an indicator to control the
elasticity of the metric [27], allowing more flexibility in matching between sequences. As
TWED takes into account differences in timestamps, it can better solve the problem of time
shifts in the sequence matching process and can be used on time series data with different
sampling rates. The algorithm can efficiently retrieve time series while adjusting the elastic
measurement parameters [28].

DTW is used to calculate the similarity between two time series, which is characterized
by allowing time scaling during matching. In voice, picture, signal, medical and other fields,
DTW has shown ideal results. However, we ultimately choose TWED as the similarity
independent criterion between workload sequences. The reasons are as follows:

• TWED takes into account the difference of timestamps so that it can be used for workload
sequence data with different sampling rates. For cloud platform data with complex data,
TWED is more robust than DTW in the workload sequence measurement;

• Compared with DTW, TWED can use trigonometric inequality to speed up the search
in metric space;

• Based on strict evaluation experiment research in [26,27], it is shown that TWED
shows higher classification accuracy than DTW in the classification of multiple groups
of open time series datasets, which further reflects the advantages of TWED.
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Suppose a time series of length m: Pm
1 =

{
(p1, tp1), . . . (pi, tpi), . . . (pm, tpm)

}
and

another time series of length n: Qn
1 =

{
(q1, tq1), . . . (qj, tqj), . . . (qn, tqn)

}
. The calculation

formula of TWED is as follows:

dtwed(Pm
1 , Qn

1 )

= min



dtwed(Pm−1
1 , Qn

1 ) + dLP(pm − pm−1)
+ v · (tpm − tpm−1) + λ

dtwed(Pm−1
1 , Qn−1

1 ) + dLP(pm, qn)
+ dLP(pm−1 − qn−1)
+ v · (|tpm − tqn|+ |tpm−1 − tqn−1|)
dtwed(P, Qn−1

1 ) + dLP(qn − qn−1)+
v · (tqn − tqn−1) + λ

(1)

where tqj and tpi represent the timestamps corresponding to the two time series sequences,
dLP denotes LP-norm, and λ and v are two nonnegative parameters used to adjust the
metric “stiffness”.

2.2. AdaBoost-LSTM

Adaptive boosting (AdaBoost) is a typical regression algorithm that linearly adds a
series of weak estimators to obtain strong estimators through the idea of ensemble. The
sample weight transfer algorithm TrAdaBoost.R2 is an extended algorithm based on the
AdaBoost.R2 [29], supplementing the data of the source domain to help build the model.
It improves the accuracy of selecting the next weak learner at each iteration by adjusting
the weights of the training samples. We use the AdaBoost to integrate a set of LSTM [30]
predictors to improve the fitting ability of the regression model [31]. The AdaBoost-LSTM
model is shown in Algorithm 1.

Algorithm 1 AdaBoost-LSTM

Input: The labeled target time series sequence, T, of size n T = (x1, x2, . . . , xn), the maxi-
mum number of iterations, N and a base learning algorithm, Learner LSTM. Set the
initial weight vector: Wt

j = 1/n.
Output: Strong learner y f (x) is equal to the LSTMt prediction result yt(x) and its corre-

sponding βt generated by weight collection.
1: Call learner LSTMt with the training set, T, according to the distribution, Wt

j , to train
and give the hypothesis, yt : x → R.

2: Calculate the adjusted error for every sample:

Dt =
n

max
j=1
|yj − LSTMk(xj)|

et
j =

(
yj − LSTMN

(
xj
))2

(Dt)
2

3: Calculate the adjusted error of the LSTMt model:

εt = ∑n
j=1 et

jw
t
j

if εt ≥ 0.5, stop and set N = t− 1.

4: Let βt = εt/(1− εt). Update the weight vector: wt+1
j = wt

j β
1−et

j
t /Zt.

(Zt is a normalizing constant.)
5: Loop step 1 to 4. Reserve all models: LSTM1, . . . LSTMt, . . . LSTMN .
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2.3. Transfer Entropy

There is not only a correlation among time series variables, but also a certain causal
relationship. The essence of TE [32] is conditional mutual information. It is an indicator to
measure the directional transfer of information between two time series [33]. Certain causal
relationships can improve the impact on prediction results. Utilizing a nonparametric
method for estimating TE via Copula Entropy(CE) requires only two simple steps and
is more computationally efficient [34]. The transfer of information among workloads is
studied, and the asymmetry is detected to assist in constructing the corresponding driving
and response relationships. The TE between the series P and Q is:

TE = ∑ p
(

Qi+1, Qi, Pi

)
log

p
(
Qi+1 | Qi, Pi

)
p
(
Qi+1 | Qi

) (2)

where Qi = (Q1, . . . , Qi);
When TE is only represented by CE:

TE = −Hc

(
Qi+1, Qi, Pi

)
+ Hc

(
Qi+1, Qi

)
+Hc

(
Qi, Pi

)
− Hc

(
Qi
) (3)

3. Methodology

Tr-predictior consists of the following parts: extracting the required workload from the
dataset, using TWED and TE to obtain a set of similar sequences in the source and target
domains, preprocessing the resulting data for cleaning and normalization, using the prediction
model to obtain the final predicted value of the small-sample workloads and finally outputting
the prediction value. The specific flow of the proposed method is shown in Figure 1.

Figure 1. Flowchart of the proposed approach Tr-predictior.

3.1. Acquisition of Similar Sequences

In our method, the combination of TEWD and TE is used to select the appropriate
source domain for the following reasons. TEWD allows time-shifted elasticity measures.
When considering time series information retrieval, objects in metric space can be efficiently
indexed and retrieved, and local time-shifting is supported. The TWED proposes a lower
bound that allows linking the matching evaluations of two time series to the downsampled
representation space and linking their matching evaluations to their original representation
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space. TE is employed to further evaluate the distributional similarity between domains.
As a causality measurement tool beyond association, it can measure not only the similarity
between two probability distributions but also the degree of influence of the source domain
on the target task. Our method of obtaining similar sequences is a measure based on
similarity and causality.

Compared with feature-based similarity measures, our quantification standard will
be faster and more convenient. TWED is more robust than other methods due to its
consideration of the timestamp. The measurement method we propose considers the
similarity between time series and the amount of information transferred, selecting an
appropriate source set for the target task. Using the TE to judge the causal relationship
and measure the similarity between domains is more conducive to improve the prediction
accuracy of transfer learning.

The inherent information with similar distributions in the source and target domains
is more valuable than other data. Based on the special data type targeted in this paper,
there is inconsistency in the data distribution of the source and target domains. In addition,
the assumption that the data is independent and identically distributed is not satisfied;
therefore, it is difficult for traditional models to adapt to the changes in data distribution
dynamically. By improving the inconsistency of data distribution, the effect of transfer
prediction can be further improved.

3.2. Data Preprocess

The source and target domain data are cleaned and extracted from the cloud dataset.
For missing values in the data, the last observation before the missing value is used to
fill in. We use the 3σ-rule to identify and remove outliers in the dataset. As for sequence
T = {t1, t2, . . . , tn}, we calculate its residual error vi = ti − t(i = 1, 2, . . . , n); t refers to the
arithmetic mean, and the standard error σ is calculated according to the Bessel formula. If
the residual error vb(1 ≤ b ≤ n) of tb conforms to Formula (4)

|vb| = |tb − t| > 3σ, (4)

then xb is considered to be an outlier and eliminated. To eliminate the difference among
the data dimensions, the sequence is normalized. The normalized sequence is T∗. Tx and
Tn represent the maximum and minimum values in T as shown in Formulas (5) and (6):

Tstd=
T − Tn

Tx−Tn
(5)

T∗ = Tstd ∗ (Tx − Tn) + Tn (6)

3.3. Sample Weight Transfer Ensemble Approach

The proposed method is based on Algorithm 1 and two-stage TrAdaBoost.R2 [35]
using the ensemble idea of AdaBoost in transfer learning. This facilitates increasing the
weight of target domain instances with low error rates, so strong regressors have a more
important decisive role in ensemble learning.

Since the single learner LSTM has a weak predictive ability for small-sample workloads
in theory, the integrated operation makes the optimal effect learned by every single learner
superimposed. Then, the final model can be trained as a strong learner. LSTM captures
temporal dependency by learning deep features at different levels in each iteration. Two-
stage TrAdaBoost.R2 mixes the sample data from the source and target domains to construct
a training set as the input of the model. After computing the learning error of the previous
weak learner in the test set correlated between the source and target domains, the new
learning error is used to reupdate the sample weights in the current weak learner. The
proposed algorithm can be described as Algorithm 2.
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Algorithm 2 Tr-Predictior

Input: Suppose T = {t1, t2, . . . , tn} is a set containing multiple workload sequences of
different lengths and the base learning learner LSTM.

Output: The ensemble transfer model obtains the predicted value through the following
formula:

Tempj =
log

(
1

β
j
t

)
N
∑

j=1
log

(
1

β
j
t

)
LSTMj(x)

For t = 1,2,. . . ,S.
1: Call Equations (1) and (3) to obtain the source domain data, recorded as Tsource (length n);
2: Call Equations (4)–(6) to preprocess data, extract target data as Ttarget (length m),

Tc = Tsource + Ttarget.
3: Set the initial weight vector:

Wt = 1/m + n, (i = 1, 2, . . . , m + n).
4: Set the total weight of Tsource: ws

i = n/(m + n). The total weight of Ttarget is wt
i =

m/(m + n)Tsource.
5: Call the AdaBoost-LSTM (Algorithm 1) to train data Tc, freeze the weight ws

i of the top
n source data in the process of training and only update the weight of the target wt

i ,
record the above training model as modelt. (Train hypothesis in modelt for LSTMt is
ht : x → R.)

6: Use Step 2 in Algorithm 1 to calculate the adjusted error of each instance in the target

domain: et
i , change βt in algorithm 1 to βs = 1/(1 +

√
2 log

( n
N
)
), use it to calculate the

adjusted error of each instance in the source domain: es
i .

7: Calculate the adjusted error, εt, of modelt:εt =
n
∑

i=1
et

i w
t
i ; if εt ≥ 0.5, stop and set N = t− 1.

8: Let βt = εt/(1− εt), freeze the weight of the target domain, then just update the weight

vector of the new source domain: ws+1
i = ws

i β
et

i
t /Zt.(Zt is a normalizing constant.)

End for.

9: return ypre =
N
∑

j=1
Tempj.

The algorithm proposed in this paper has two advantages.

• First, it replaces shallow weak learners with deep learning algorithms. Two-stage
TrAdaBoost.R2 extracts the weight distribution information of similar data from the
source domain and builds a stronger model than AdaBoost. The default weak learner
in two-stage TrAdaBoost.R2 is linear regression. However, the linear regression model
needs cross-validation to determine the optimal model after learning the mapping
function. The deep learning algorithm can learn the optimal weight through the
constraints formed by its loss function, and dropout can solve overfitting problems in
the neural network. We combine LSTM with two-stage TrAdaBoost.R2. The new basic
regressor can learn the characteristics of long-term series data in the source domain
and update the sample weights preferably compared with the linear model.

• Second is the two-stage weight adjustment strategy. Two-stage TrAdaBoost.R2 can
solve the extreme weight distribution of training data when TrAdaBoost updates the
weight and effectively avoid the overfitting problem of the model. The algorithm is
adjusted to a two-stage strategy for updating the weights at the time of execution.
The main content of the first stage is reflected in Step 5 of Algorithm 2, which is
further described here. Set the initial weight of the source domain and target domain
instances, integrate the source domain and target domain to obtain Tc and apply
AdaBoost-LSTM to train Tc. The total weight is 1, and n is far greater than m. Multiple
iterations will cause the target domain weight to be close to the source domain instance
weight and tilt. To avoid this problem, the weights of the first n instances (Tsource) are
frozen in the training process, and only the weights of Ttarget are updated. The main
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content of the second stage is reflected in Step 8 of Algorithm 2: the weights of the
source instances are continuously adjusted downward until the LSTM reaches some
optimal point in the iterative process. In addition, this model keeps the weights of the
target instances unchanged. Then, the model only reserves the assumptions generated
in the second stage to determine the output integration result. The most similar target
data with source instances are utilized in this way, ignoring source instances that differ
from target data.

4. Experiments

In this section, we introduce the datasets used in the experiment, the comparison
algorithms and the evaluation indicators. Experiments are divided into three groups:
visualization of similar workloads, prediction results of small-sample workload sequences
and finally the ablation experiments on different components in the proposed method.

4.1. Experiment Preparation

This study is aimed at the small-sample workload in the Google Cloud dataset, but to
verify the performance of the multiple mention algorithm, another comparison is made on
the public Alibaba cluster-trace.

The public dataset Google trace data [36] records the logging of the Google Cloud
Platform for 29 days in 2011, including about 672,074 jobs and 26 million tasks [37]. Data
such as CPU and disk utilization are sampled every five minutes. This paper selects the
mean CPU usage rate data under the task resource usage table for experiments and takes
the data of the average CPU utilization under nine different jobs for experiments. The data
used in the experiment are shown in Table 1.

Table 1. Experimental data.

Job ID Number of Tasks Length Range Value

Job A: 17109330 172 [50,312]
Job B: 5544435560 512 [80,1000]
Job C: 6239009799 90 [90,997]
Job D: 6280685099 233 [50,313]
Job E: 4969889774 100 [100,500]
Job F: 5905891756 10 [80,550]
Job G: 3996806186 71 [65,552]
Job H: 5063960317 180 [50,80]
Job I: 6176114691 290 [75,551]

The comparative dataset is verified with real workload trace data from Alibaba cluster-
trace [38], which includes data records of 4000 machines, and the runtime resource usage
time is eight days. To improve the utilization rate of overall resources, Alibaba has con-
tinuously opened up the real data of the cloud platform for scholars to study. In the 2018
Alibaba Open Cluster, the batch workload on each computer is included. In the experi-
ments, CPU usage was used as the main performance indicator of the workload. Three sets
of small-sample sequences were extracted and recorded as machine_A, machine_B and
machine_C; their corresponding sampling lengths were 100, 85 and 96, respectively. The
prediction object we compared was the CPU utilization recorded on each machine, and its
record range was [0–100].

The sliding window was used to construct training samples and test samples. In
this experiment, the sliding window size was set among 3–6, the dropout was 0.2, and
the learning rate was 0.001. In the experiment, the comparison algorithm adopted the
traditional cloud workload prediction model ARIMA [39], small-sample prediction model
BHT_ARIMA [40], CNN-LSTM-Attention (CLA) and CNN_LSTM [18] and weighted coun-
termeasure networks WANN [13] and AdaBoost.R2 [41].



Entropy 2022, 24, 1770 9 of 17

4.2. Evaluation Indicators

In our experiment, four commonly used evaluation indicators were used to evaluate
the cloud platform workload prediction method proposed in this paper and other compari-
son algorithms, including Mean Absolute Percentage Error (MAPE) [42], Mean Absolute
Error (MAE) [43], Mean Squared Error (MSE) [44] and R Squared (R2) [45]. The smaller the
value of the first three metrics, the better model fit. The value of R2 was closer to one, which
proves that the model performance is better. The true value of the sequence was recorded
as yi, and the predicted value was denoted as ŷi. Here, ȳi is the mean value corresponding
to the sampling points in the sequence from one to n, and i = {1, 2, . . . , n} represents the
i-th sample. The four indicators were calculated as follows:

MAPE(y, ŷ) =
1
n

n

∑
i=1

||yi − ŷi||
||yi||

, (7)

MAE(y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi|, (8)

MSE(y, ŷ) =
1
n

n

∑
i=1

(yi − ŷi)
2, (9)

R2(y, ŷ) = 1− ∑ n
i=1(yi − ŷi)

2

∑ n
i=0(yi − ȳi)

2 . (10)

MAPE represents the deviation of the prediction results from the actual value. MAE
reflects the actual situation of the predicted value error, MSE measures the difference
between the actual value and the predictive value, and R2 reveals the gap between the
prediction value and the ideal situation.

4.3. Experimental Results and Analysis
4.3.1. Extraction of Similar Sequences

Taking the workload data under Job H extracted from the Google dataset as an
example, we drew the probability distribution diagrams of similar workloads before and
after the acquisition, respectively.

It can be seen from Figure 2 that although different sequences come from the same
dataset, their probability density distributions have obvious differences, which violates the
theoretical premise of independent and identically distributed conditions of most machine
learning algorithms and may cause negative transfer results. However, after the similarity
measurement, the probability density distribution between similar workloads tends to be
consistent, which eliminates the problem of data distribution inconsistency among different
workloads, thereby improving the prediction effect of transfer learning.

Figure 2. Probability distribution plots for random and similar sequences. The different coloured
curves in the two subplots indicate the probability distributions for different workload utilisation.
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Figure 3 is a visual trend diagram of similar data sequences in the source and target
domains. The blue lines in the figure represent long task sequences in the source domain,
and the red lines are short-task sequences in the target domain. We select the four most
similar sequences in the source and target domains. Although the data of the source and
the target domain have more differences in the length of sampling points, after measuring
them through the similarity algorithm, different sequences with high overall similarity and
a certain causal relationship can be obtained.

Figure 3. Similar sequences of source domain and target domain.

4.3.2. Predictive Result Analysis of Tasks

(a) Alibaba dataset.
Three groups of small-sample data extracted from the Alibaba dataset were subjected

to comparative experiments. There are six kinds of comparison algorithms. The comparison
of evaluation indicators and predicted values was carried out to verify the universality of
the algorithm proposed in this paper on small-sample workload data.

By analyzing Tables 2–4 on the three sets of data in the Alibaba dataset, Tr-Predictor
performs optimally under the MSE and MAPE indicators, indicating that our prediction
results are relatively accurate. Under the MAE indicator, the ARIMA algorithm performed
better on the Machine_B dataset, which shows that ARIMA has certain competitiveness in
the appropriate data type. The MAPE value of the WANN in these tables is the second best.
Due to the strong periodicity of the data for this task, ARIMA is more suitable for its data
characteristics. Furthermore, we note that WANN also performs well under the MAPE
metric, which indicates that the transfer learning framework performs relatively well.

Table 2. Prediction Results of machine_A.

Algorithm MAE MSE MAPE R2

Tr-Predictor 1.42× 10−1 3.01× 10−2 9.01× 10−3 9.967× 10−1

ARIMA 3.205 17.87 3.42× 10−1 3.815× 10−1

CLA 2.09× 10−1 5.301× 10−2 5.593 −1.056
AR 3.847 21.35 1.68× 10−1 2.74× 10−1

WANN 2.966 11.77 1.25× 10−1 5.92× 10−1

BA 2.96× 10−1 2.22× 10−1 2.49× 10−1 9.99× 10−1

C_L 2.62× 10−1 9.30× 10−2 7.86× 10−1 −2.581

As we can see from Figure 4, the Tr-Predictor algorithm proposed in this study can still
have a good prediction effect for the complex change pattern among multiple workloads in
the Alibaba cluster-trace. The fitting effect of small-sample workload sequences of different
lengths is excellent, which is almost close to the real value of the workload. Compared with
the Google dataset, the complex data of the Alibaba cloud is more stable, and the method
proposed in this paper can still fit well at the peak point.
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Table 3. Prediction results of machine_B.

Algorithm MAE MSE MAPE R2

Tr-Predictor 2.64× 10−1 9.05× 10−2 5.63× 10−3 9.95× 10−1

ARIMA 1.33× 10−1 21.54 7.91× 10−2 −7.73× 10−2

CLA 7.64× 10−2 8.60× 10−1 6.17× 10−1 1.07× 10−2

AR 3.770 21.725 1.64× 10−1 2.62× 10−1

WANN 1.037 1.771 1.13× 10−2 3.27× 10−1

BA 2.253 16.532 1.57× 10−1 9.86× 10−1

C_L 2.84× 10−1 1.20× 10−1 6.80× 10−1 −2.04

Table 4. Prediction results of machine_C.

Algorithm MAE MSE MAPE R2

Tr-Predictor 2.22× 10−1 5.38× 10−2 7.11× 10−3 9.96× 10−1

ARIMA 3.24 18.05372 1.09× 10−1 5.02× 10−2

CLA 3.64× 10−1 4.99× 10−1 1.875 −1.99× 10−2

AR 3.563 19.48 1.18× 10−1 −1.86× 10−2

WANN 1.43 3.44 1.69× 10−2 7.37× 10−1

BA 5.53× 10−1 5.70× 10−1 9.91× 10−1 9.99× 10−1

C_L 3.58× 10−1 1.63× 10−1 8.41× 10−1 −3.37× 10−1

Figure 4. Prediction results of 3 groups of small-sample workload sequences under the Tr-Predictor.

(b) Google dataset.
In this group of experiments, the task data used are from nine different jobs in Table 1,

which contains different kinds of workloads with obvious aperiodicity and strong mu-
tation. To verify the excellent performance of the proposed algorithm on small-sample
cloud workload data, nine groups of complex and diverse cloud data were selected for
experiments. The results of each algorithm under the MAE, MSE and MAPE indicators are
shown in Tables 5–7, respectively. Figure 5 shows the results of each algorithm under the
R2 indicator, and the prediction results are further analyzed.

As shown in Table 5, the proposed method outperforms other baseline models on the
MAE metric. The performance of ARIMA on these nine sets of workload data was uneven,
as it was heavily influenced by the periodic nature of the data. Due to the particularity of the
small-sample workload, the insufficient amount of training data leads to poor performance
of deep learning algorithms, such as AdaBoost.R2 and CNN_LSTM. The BA algorithm
proposed by Huawei Lab for small-sample workload prediction outperforms other baseline
algorithms. The method Tr-Predictor proposed in this paper has a higher accuracy rate
than the tensor ARIMA algorithm on these task datasets. It is because the integrated
strategy makes the results stronger and the prediction effect better. The performance of the
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Tr-Predictor is better than all baselines, and the joint training using source domain data
and target domain is more accurate than non-migration prediction.

Table 5. Comparison of different tasks under the MAE evaluation index.

Job Algorithm

ID Tr-Predictor ARIMA CLA AdaBoost.R2 WANN BHT_ARIMA CNN_LSTM

Job A 4.09× 10−4 5.95× 10−2 1.006× 10−1 1.72× 10−3 5.33× 10−4 6.89× 10−4 2.09× 10−1

Job B 3.33× 10−4 1.33× 10−1 8.30× 10−2 8.36× 10−3 9.02× 10−2 2.89× 10−3 3.42× 10−1

Job C 1.07× 10−3 7.86× 10−2 5.52× 10−2 1.22× 10−2 2.05× 10−1 3.37× 10−2 2.44× 10−1

Job D 2.81× 10−4 1.12× 10−2 2.64× 10−2 1.04× 10−3 1.57× 10−3 3.72× 10−4 1.09× 10−1

Job E 2.08× 10−4 1.11× 10−1 6.43× 10−2 3.88× 10−3 3.25× 10−3 3.04× 10−3 5.16× 10−1

Job F 3.42× 10−4 7.24× 10−2 1.55× 10−1 5.06× 10−3 1.23× 10−3 3.01× 10−3 4.33× 10−1

Job G 1.70× 10−3 1.50× 10−1 1.64× 10−1 3.30× 10−2 2.14× 10−2 5.84× 10−2 5.42× 10−1

Job H 1.04× 10−4 7.57× 10−2 3.95× 10−1 3.11× 10−4 3.30× 10−4 1.58× 10−4 9.23× 10−1

Job I 4.61× 10−4 1.37× 10−1 2.48× 10−3 2.27× 10−3 8.32× 10−4 2.97× 10−3 1.86× 10−1

From the result of Table 6, it is not difficult to see that the distribution of the results
of these nine sets of data under the MSE evaluation index is similar to that of Table 5.
Since the data training samples of the target domain used in this experiment are few, and
only the CNN_LSTM model is used without transfer learning, the prediction accuracy
will be greatly affected. Therefore, there is a big gap between the prediction effect of the
CNN_LSTM network and the ensemble algorithm proposed in this paper. Compared
with the BA algorithm, the MSE index of the Tr-Predictor algorithm in this table has a
greater reduction rate than the MAE index. The source data is favorable for predicting the
target data.

Table 6. Comparison of different tasks under the MSE evaluation index.

Job Algorithm

ID Tr-Predictor ARIMA CLA AdaBoost.R2 WANN BHT_ARIMA CNN_LSTM

Job A 1.70× 10−7 5.98× 10−3 1.25× 10−2 5.04× 10−6 4.80× 10−7 7.20× 10−7 5.52× 10−2

Job B 9.10× 10−7 5.70× 10−2 9.48× 10−3 1.36× 10−4 8.54× 10−3 1.41× 10−5 1.19× 10−1

Job C 1.77× 10−6 1.17× 10−2 5.10× 10−3 2.33× 10−4 2.86× 10−3 1.81× 10−3 6.55× 10−2

Job D 9.00× 10−8 2.15× 10−4 9.92× 10−4 1.31× 10−6 3.98× 10−6 2.70× 10−7 1.27× 10−2

Job E 6.00× 10−8 2.12× 10−2 5.95× 10−3 1.90× 10−5 1.62× 10−5 1.36× 10−5 2.76× 10−1

Job F 1.50× 10−7 8.06× 10−3 3.26× 10−2 6.02× 10−5 4.78× 10−6 1.83× 10−5 3.54× 10−1

Job G 4.71× 10−6 3.01× 10−2 4.08× 10−2 1.58× 10−3 7.07× 10−4 3.87× 10−3 3.17× 10−1

Job H 2.00× 10−8 9.32× 10−3 1.68× 10−1 1.60× 10−7 1.80× 10−7 7.00× 10−8 8.61× 10−1

Job I 3.10× 10−7 3.42× 10−2 8.88× 10−2 7.64× 10−6 9.90× 10−7 1.32× 10−5 3.74× 10−2

Based on the MAPE indicators in Table 7 and the above MAE and MSE indicators,
the Tr-Predictor algorithm can achieve the minimum value under these indicators. This
algorithm can open the gap with other algorithms in different types of task data. The
prediction effect of the BA algorithm is better than the general algorithm. However,
due to the double limitation of the number of sampling points and the number of load
sequence training, the BA algorithm still has some gaps from the algorithm proposed in
this paper. The experimental evaluation scores verify the advantages of transfer learning
and integrated hybrid algorithms. The prediction performance of the hybrid ensemble
learning method is better than a single model. Ensemble learning can significantly improve
the prediction performance of a single model. Therefore, the Tr-Predictor algorithm will
be able to use medium and long series to assist in predicting short series and realize the
effective transfer of trend information between workloads.

The optimal score of the regression model in the R2 evaluation function is one, but the
effect of the model will be arbitrarily degraded by the influence of the training dataset, and
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the value of R2 may also be negative. Under the R2 evaluation index, the scores of each
prediction algorithm in the experiment are shown in the form of radar charts as shown
in Figure 5. The results obtained by the three algorithms of AdaBoost.R2, CNN_LSTM
and CLA on this index are all negative values. The scores of BHT_ARIMA, ARIMA and
Tr-Predictor are among zero and one. The red line in the outermost circle in the radar chart
is almost close to one, indicating that the R2 index value of the Tr-Predictor algorithm is
closest to one, which proves that the prediction performance of the model is better.

Figure 5. R2 evaluation index of comparing algorithms.

Table 7. Comparison of different tasks under the MAPE evaluation index

Job Algorithm

ID Tr-Predictor ARIMA CLA AdaBoost.R2 WANN BHT_ARIMA CNN_LSTM

Job A 1.30× 10−1 2.36× 10−1 6.08× 10−1 7.88× 10−1 1.63× 10−1 1.71× 10−1 9.02× 10−1

Job B 6.19× 10−3 5.08× 10−1 2.21× 10−1 1.83× 10−1 2.06 6.29× 10−2 8.47× 10−1

Job C 9.78× 10−3 6.87× 10−1 4.24× 10−1 7.38× 10−2 4.45× 10−1 6.07× 10−1 7.02× 10−1

Job D 8.81× 10−3 8.95× 10−2 1.47× 10−1 3.26× 10−2 4.65× 10−2 1.03× 10−2 7.51× 10−1

Job E 4.13× 10−3 2.78× 10−1 1.43× 10−1 7.80× 10−2 7.07× 10−2 6.88× 10−2 9.18× 10−1

Job F 1.87× 10−2 6.17× 10−1 9.46× 10−1 9.10× 10−1 4.75× 10−2 1.66× 10−1 7.0× 10−1

Job G 1.51× 10−2 2.44× 10−1 9.99× 10−1 2.72× 10−1 6.79 4.63× 10−1 7.71× 10−1

Job H 1.41× 10−2 9.14× 10−2 4.78× 10−1 4.37× 10−2 4.54× 10−2 2.08× 10−2 7.86× 10−1

Job I 2.47× 10−2 1.31 2.80 1.32× 10−1 3.50× 10−2 1.32× 10−1 8.41× 10−1

The comparison experiments for the above nine groups of tasks are recorded as
follows. Figure 6 is the prediction effect diagram of the nine groups of data in which the
black line represents the original data, and the red line represents the predicted value of
the target domain.

It can be seen from the forecast trend graph of each job that the general trend of the
predicted value of the target domain is consistent with the trend of the original value, but
for the peaks in each part of the time series graph, especially the highest point, there is
still a difference between the predicted value and the actual value. There is a certain gap.
For the points among the peaks, the Tr-Predictor algorithm can accurately predict, and the
fitting degree is relatively high.
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Figure 6. Prediction results of 9 groups of small-sample workload sequences under the Tr-Predictor.

According to the prediction trend chart of different task data, it can be concluded that
compared with the irregular task data, the task data with obvious periodicity can predict
the peak more accurately. There is still space for improvement in the prediction of the
highest and lowest points.

The experimental results corresponding to different task data in the above figures
display the change in data characteristics that will make the prediction results of the same
algorithm different. Synthesizing the prediction results shown in Figure 6, the performance
of the algorithm for cloud platform small-sample workload data is relatively excellent. We
observed in the figure that with the mutation of the workload sample point, the Tr-Predictor
prediction effect on the peak point is not significant.

4.3.3. Ablation Experiment

This part shows the performance gain of each part of the Tr-Predictor algorithm
module through the following comparative experiments. The set of data from Google center-
trace data was selected for comparison randomly. Here, the four regression indicators in
Section 4.2 were still used as evaluation criteria for ablation experiments. In the experiment,
we verified the improvement of different components in the algorithm from three aspects:
the improvement of weak learning, the two-stage weight update strategy and the effect of
transfer learning.

As shown in this ablation experiment, w/o means that the entity nodes proposed in
this chapter are not used in this model, w/o LSTM means that the weak learner in the
ensemble algorithm is the default linear regression, w/o Tr means that only the ensemble is
used. The learning algorithm AdaBoost-LSTM makes predictions without adding transfer
learning; w/o TB means no ensemble strategy.

It can be seen from the ablation experiment results in Tables 8–10 that effective positive
transfer can greatly improve the accuracy of workload prediction, and for small-sample
workload data, the replacement of weak learners and the deep network LSTM can better
capture the dependency among workloads. Shallow models struggle to capture complex
patterns of variation among workloads. The deep network can learn different characteristics
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in multiple iterations to achieve an effective prediction. The combination of different
components in the proposed algorithm can achieve better prediction accuracy.

Table 8. Ablation experiment results of Job A.

Algorithm MAE MSE MAPE R2

w/o LSTM 1.96× 10−3 1.89× 10−6 3.23× 10−1 8.99× 10−1

w/o Tr 1.41× 10−3 2.64× 10−6 5.75× 10−1 −2.71× 10−1

w/o TB 7.56× 10−3 6.20× 10−7 1.81× 10−1 8.21× 10−1

Tr-Predictor 4.90× 10−4 1.70× 10−7 1.30× 10−1 9.44× 10−1

Table 9. Ablation experiment results of Job G.

Algorithm MAE MSE MAPE R2

w/o LSTM 4.51× 10−3 6.10× 10−6 3.01× 10−2 9.95× 10−1

w/o Tr 2.43× 10−2 1.13× 10−3 2.01× 10−1 3.30× 10−1

w/o TB 3.26× 10−2 1.52× 10−3 1.78× 10−1 −7.06× 10−1

Tr-Predictor 1.70× 10−3 4.71× 10−6 1.51× 10−2 9.99× 10−1

Table 10. Ablation experiment results of Machine_A.

Algorithm MAE MSE MAPE R2

w/o LSTM 2.01× 10−1 1.51× 10−1 6.85× 10−3 9.17× 10−1

w/o Tr 5.79 58.11 2.56× 10−1 −9.73× 10−1

w/o TB 7.56× 10−1 6.20× 10−1 1.81× 10−1 8.21× 10−1

Tr-Predictor 1.42× 10−1 3.01× 10−2 9.01× 10−3 9.996× 10−1

5. Conclusions

The accuracy of cloud platform resource demand prediction has important economic
benefits and application value. It is significant for improving the utilization of cloud com-
puting equipment center resources and alleviating the storage pressure of mobile terminals.
This paper studies LSTM as a nested base learner in ensemble learning. We integrate it with
the two-stage TrAdaBoost.R2, which takes full advantage of transfer learning and the LSTM
model. Among them, LSTM is used as a regression tool, and the two-stage TrAdaBoost.R2
algorithm is used for model enhancement. Based on the above viewpoints, this paper
proposes the cloud platform workload prediction integration algorithm Tr-Predictor based
on sample weight transfer, which is used for the prediction of small-sample workload
sequences. In this algorithm, TWED and TE are used to find source domain datasets similar
to the target domain. The ensemble algorithm is used to effectively transfer the dependency
and characteristic information of the workload sequence. Important and different time
series features are learned through each iteration. The proposed method combines the
prediction results of the weak learner with the weights to obtain the final effect. Different
from other methods, this method has the characteristics of universality and high preci-
sion for small-sample data in the cloud platform. Effective prediction of small-sample
workload sequences is of great significance to resource management and scheduling, and
the algorithm has essential practical application value for elastic resource management in
cloud platforms.

In the future, improvement in the complexity and running time of the ensemble
algorithm will be considered. We will try some learnable distance parameterized by neural
networks, set the learned metric to replace TWED and try to use other more suitable deep
learning algorithms as base learners.
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