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Abstract: Entanglement entropy (EE) is a quantitative measure of the effective degrees of freedom
and the correlation between the sub-systems of a physical system. Using the replica trick, we can
obtain the EE by evaluating the entanglement Renyi entropy (ERE). The ERE is a q-analogue of the
EE and expressed by the q replicated partition function. In the semi-classical approximation, it is
apparently easy to calculate the EE because the classical action represents the partition function by
the saddle point approximation and we do not need to perform the path integral for the evaluation of
the partition function. In previous studies, it has been assumed that only the minimal-valued saddle
point contributes to the EE. In this paper, we propose that all the saddle points contribute comparably
but not necessarily equally to the EE by dealing carefully with the semi-classical limit and then the
q→ 1 limit. For example, we numerically evaluate the ERE of two disjoint intervals for the large c
Liouville field theory with q ∼ 1. We exploit the BPZ equation with the four twist operators, whose
solution is given by the Heun function. We determine the ERE by tuning the behavior of the Heun
function such that it becomes consistent with the geometry of the replica manifold. We find the same
two saddle points as previous studies for q ∼ 1 in the above system. Then, we provide the ERE for
the large but finite c and the q ∼ 1 in case that all the saddle points contribute comparably to the
ERE. In particular, the ERE is the summation of these two saddle points by the same weight, due
to the symmetry of the system. Based on this work, it shall be of interest to reconsider EE in other
semi-classical physical systems with multiple saddle points.

Keywords: semi-classical limit; Liouville field theory

1. Introduction

Evaluating the effective degrees of freedom of a physical system is a fundamental
problem in physics. It is helpful to determine the phases of quantum many-body systems
or to study the holographic principle, which states that the degrees of freedom of a gravita-
tional system are equal to those of a system that is one dimension lower compared to the
gravitational system. Entanglement entropy (EE) is a quantitative measure of the effective
degrees of freedom and the correlation between the sub-systems of a physical system; thus,
it has been investigated from viewpoints of thermodynamics, statistical mechanics, and
information theory. Generally, the difficulty in estimating the value of EE depends on the
complexity of the structure of a theory or the form of the sub-systems. Therefore, despite,
the difficulty in evaluating the EE of general quantum field theory, EEs of two-dimensional
conformal field theories are well studied owing to their abundant symmetries. Particularly,
the global conformal symmetry determines the EE of a single interval regardless of the
intricacies of the theories. However, when we deal with a two disjoint intervals sub-system,
it is hard to evaluate the EE unless it is a simple theory such as the free field [1].

The entanglement Renyi entropy (ERE) is a q-analogue of the EE. The ERE SA(q) of
the sub-system A is defined as

SA(q) =
1

1− q
log trA

(
ρ

q
A

)
, (1)
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where ρA is the partial density matrix on A. The partial density matrix is normalized as
trA(ρA) = 1, and then the EE can be defined as SA = limq→1 SA(q). The ERE is rewritten as

SA(q) =
1

1− q
(log ZA(q)− q log Z), (2)

where ZA(q) and Z denote the partition function of the q-replicated theory and that of the
original theory, respectively [2]. The Liouville conformal field theory (CFT) has preferable
properties for this formulation, which is studied in the context of the non-critical string
theory, higher dimensional theory, etc. [3]. The Liouville CFT exhibits the semi-classical
limit as the large c limit. In this limit, the evaluation of EREs is easier because the saddle
points of the path integral represent the respective partition functions. Previous studies
have reported that there exist two saddle points for ZA(q) for the two disjoint intervals
system in the case of the large c Liouville CFT with q ∼ 1, or in the adjacent interval
limit [4–6]. Then, it has been assumed that only the minimal valued saddle point contributes
to ZA(q).

In this paper, we numerically calculate the ERE for q ∼ 1 using the Heun function.
The Liouville CFT has postulated that the correlation functions with the null vector satisfy
the linear differential equation known as the BPZ equation prefixed with Belavin, Polyakov
and Zamolodchikov [7]. As the replica partition function ZA(q) is given by the correlation
function of the twist operators, this correlation function can be obtained by solving the
BPZ equation. Further, we show that the solution is consistent with the structure of the
sub-system. For the two disjoint intervals, the BPZ equation is equivalent to the Heun’s
differential equation. We determine the ERE by imposing an appropriate condition on the
monodromy matrices of the Heun’s differential equation, and find the two saddle points
that were obtained by the previous studies [4–6]. However, we will point out that these
two saddle points should be treated carefully when applying the q→ 1 limit for the large
c, because they contribute comparably, but not necessarily equally to ZA(q), which can
be understood by considering the quantum state corresponding to multiple saddle points.
The ERE is obtained by the Born rule.

This paper is structured as follows. In Section 2, we will review the replica trick and
establish the relationship between the geometry of the replica manifold and the correlation
function related to the ERE. In Section 3, we discuss how to treat multiple saddle points.
In Section 4, we show the EREs for q ∼ 1 based on the conditions specified in Section 3.
Finally, Section 5 is the conclusion.

2. Entanglement Renyi Entropy (ERE) and Replica Trick

We will review the replica trick and the ERE of two disjoint intervals A = [z1, z2] ∪
[z3, z4] for a 2-dimensional CFT on the extended complex plane Σ = C ∪ {∞} [2,8]. To
evaluate trA

(
ρ

q
A

)
, it is useful to consider the replica manifold and the replica field theory.

Figure 1 shows a schematic picture of the replica manifold ΣA(q) of the ERE for two disjoint
intervals, the original manifold Σ with the twist operators Tq, T̃q, and the conformal map
w : ΣA(q)→ Σ. The left panel depicts the replica manifold ΣA(q) which comprises q sheets
and a single field. The right panel depicts the replica field theory defined on Σ, which
comprises q fields on the single sheet with the twist operators. The replica field theory
provides the equivalent partition function to that of the theory on the replica manifold.
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Figure 1. The left panel depicts the replica manifold ΣA(q) with q = 3 sheets. Each sheet is connected
to the same-colored lines. The right panel depicts the original manifold Σ with the twist operators
Tq, T̃q at the boundary of the sub-system. The conformal map w maps ΣA(q) to Σ.

Let Z be the partition function of the CFT on Σ, and ZA(q) be partition function
of the same CFT on the replica manifold ΣA(q). Because ZA(q) is constituted to satisfy
trA

(
ρ

q
A

)
= ZA(q)/Zq, the ERE SA(q) is calculated using the partition functions as follows:

SA(q) =
1

1− q
(log ZA(q)− q log Z). (3)

The replica field theory is constructed so that the above ERE is expressed as the following
4-point correlation function on Σ:

SA(q) =
1

1− q
log〈Tq(z1, z̄1)T̃q(z2, z̄2)Tq(z3, z̄3)T̃q(z4, z̄4)〉Σ, (4)

where Tq and T̃q represent the primary twist operators with the same conformal weight
hq = c(q2 − 1)/(24q) and h̄q = c(q2 − 1)/(24q).

For a 2-dimensional CFT, there are some preferable properties to determine the corre-
lation function. On the original manifold Σ, a correlation function incorporating the energy
momentum tensor T(z), and the holomorphic part of the primary operators Oi(zi) with
the conformal weight hi satisfies the following relation:

〈T(z)
N

∏
i=1

Oi(zi)〉Σ =
N

∑
i=1

[
hi

(z− zi)2 +
∂zi

z− zi

]
〈

N

∏
i=1

Oi(zi)〉Σ. (5)

In what follows, we abbreviate the anti-holomorphic part of operators, because we can
obtain the equations for it immediately from those for the holomorphic part by adding the
bar appropriately. For an arbitrary operator O(z), the following relation holds from the
definition of the twist operators.

〈O(z)Tq(z1)T̃q(z2)Tq(z3)T̃q(z4)〉Σ
〈Tq(z1)T̃q(z2)Tq(z3)T̃q(z4)〉Σ

= q〈O(z)〉Σ̃A(q), (6)

where Σ̃A(q) is one of the q sheets of the replica manifold ΣA(q) and we use the same
complex coordinate on both Σ̃A(q) and Σ. If we obtain the conformal transformation
w(z) : ΣA(q)→ Σ, the energy momentum tensor on the replica manifold is given by the
Schwarzian derivative of w(z) as follows:

〈T(z)〉Σ̃A(q) =
c

12

[
w′′′(z)
w′′(z)

− 3
2

(
w′′(z)
w′(z)

)2
]

. (7)
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From Equations (5)–(7), we obtain the following differential equation which relates the
conformal transformation, the conformal weight, and the 4-point correlation function
as follows:

qc
12

[
w′′′(z)
w′′(z)

− 3
2

(
w′′(z)
w′(z)

)2
]
=

4

∑
i=1

(
hq

(z− zi)2 −
ci

z− zi

)
, (8)

where ci = −∂zi log〈Tq(z1)T̃q(z2)Tq(z3)T̃q(z4)〉Σ. The global conformal symmetry restricts
the correlation function as

〈Tq(z1)T̃q(z2)Tq(z3)T̃q(z4)〉Σ = (z3 − z1)
−2hq(z4 − z2)

−2hq〈Tq(0)T̃q(x)Tq(1)T̃q(∞)〉Σ (9)

∑
i

ci = 0, ∑
i

cizi = 4hq, ∑
i

ciz2
i = 2hq ∑

i
zi, (10)

where x = (z4 − z3)(z2 − z1)(z4 − z2)
−1(z3 − z1)

−1 denotes one of the cross ratios. There-
fore, it is enough to deal with the following equation:

w′′′(z)
w′′(z)

− 3
2

(
w′′(z)
w′(z)

)2

=
12hq

qc
Q(q, z), (11)

Q(q, z) =
1
z2 +

1
(z− x)2 +

1
(z− 1)2 + 2

(
1
z
− 1

z− 1

)
+

2a(q, x)
z(z− x)(z− 1)

, (12)

where a(q, x) is defined as:

2hq a(q, x)
x(1− x)

= −∂x log〈Tq(0)T̃q(x)Tq(1)T̃q(∞)〉. (13)

The solution of the third order non-linear differential Equation (11) for w(z) is described as:

w(z) =
αΨ1(z) + βΨ2(z)
γΨ1(z) + δΨ2(z)

, αδ− βγ = 1, (14)

where Ψ1(z), Ψ2(z) are the linearly independent solutions of the following linear differen-
tial equation:

d2

dz2 Ψ(z) +
6hq

qc
Q(q, z)Ψ(z) = 0. (15)

We can confirm that Equation (14) is the solution of Equation (11) by substituting it. There-
fore, the ERE is equivalent to the correlation function of the twist operators, the energy
momentum tensor on the replica manifold, the conformal map w(z) : ΣA(q) → Σ, and
the linearly independent solutions of Equation (15). Thus, the ERE can be obtained by
evaluating any one of these entities. Next, we will evaluate a(q, x) for the semi-classical
Liouville CFT. The function a(q, x) is comparable to the derivative of the ERE. In what
follows, we call a(q, x) as the derivative of the ERE. To evaluate the derivative of the ERE
a(q, x) for the semi-classical Liouville CFT, we solve Equation (15) with the condition that
Ψ(z) goes to the next or previous sheet when crossing the sub-region A, as depicted in the
left panel of Figure 1. Considering the twist operators, this condition implies that Ψ(z) is a
q valued function on Σ and the phase of Ψ(z) varies with ±2π/q when Ψ(z) goes around
the twist operators Tq and T̃q.

As a practice of the above procedure, let us consider the ERE of the single inter-
val A = [u, v]. In this system, two twist operators are inserted at z1 = u and z2 = v.
From the global conformal symmetry, we can immediately obtain 〈Tq(u)T̃q(v)〉Σ ∝ (u−
v)−2hq without any other conditions. Subsequently, we obtain the derivative of the
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ERE c1 = −c2 = 2hq (u− v)−1 from the definition ci = −∂zi log〈Tq(u)T̃q(v)〉Σ and the
linearized equation corresponding to Equation (15) as:

d2

dz2 Ψ(z) +
6hq

qc
Q(q, z)Ψ(z) = 0, (16)

Q(q, z) =
1

(z− u)2 +
1

(z− v)2 −
2(u− v)−1

z− u
+

2(u− v)−1

z− v
. (17)

The solution for this equation and the corresponding conformal map are determined
as follows:

Ψ(z) = (z− u)
1
2

(
1±
√

1− 24hq
qc

)
(z− v)

1
2

(
1∓
√

1− 24hq
qc

)
, (18)

w(z) =
α(z− u)

√
1− 24hq

qc + β(z− v)

√
1− 24hq

qc

γ(z− u)

√
1− 24hq

qc + δ(z− v)

√
1− 24hq

qc

. (19)

Because Ψ(z) and w(z) are q valued functions on Σ, the local behavior of the conformal
map should be consistent with w(z ∼ u) ∼ (z− u)±1/q; we further find the conformal

weight hq = c(q2 − 1)/(24q) again from the condition ±1/q =
√

1− 24hq/(qc). Note that

if α = δ = 1, β = γ = 0, we retrieve the well known conformal map w(z) = (z− u)1/q(z−
v)−1/q. This method works extraordinarily in this example because the behavior of the
solutions Ψ(z) is completely determined by the conformal weight of the twist operators
owing to the global conformal symmetry. However, because general multi-point correlation
functions depend on the characteristics of each CFT, we can at most determine the local
behavior of Ψ(z) without applying any other conditions related to the global structure of
Σ. Therefore, an additional condition is required to be imposed to determine the global
behavior of Ψ(z). We evaluate the ERE for the large c Liouville CFT on the condition that
the Ψ(z) in Equation (15) serves as the 1-point correlation function on the replica manifold.

3. ERE with Multiple Saddle Points

In this section, we discuss the treatment of the ERE in the semi-classical approxi-
mation, within, the saddle points of the partition function represent the path integral in
Equation (3). According to previous studies [4–6], the derivative of the ERE is given by
a(q ∼ 1, x) = 1− x, −x from Equation (15) for the large c Liouville CFT. We often come
across the statement [9] that the leading term of the derivative of the ERE for the large c
limit is proportional to (q− 1)c, then (q− 1)c must be large enough for the saddle point
approximation, and only the minimal-valued action contributes to the path integral for the
partition function. However, we show that all the saddle points may comparably contribute
to the ERE for q ∼ 1. At least, we point out that only one of them does not represent the EE.
First, we consider the case of two saddle points for two disjoint intervals system. From the
saddle point approximation, the partition function ZA(q) is described as follows:

ZA(q) = p1 exp[−IA,1(q, x, x̄)] + p2 exp[−IA,2(q, x, x̄)], (20)

where x̄ = (z̄4 − z̄3)(z̄2 − z̄1)(z̄4 − z̄2)
−1(z̄3 − z̄1)

−1 denotes one of the cross ratios, p1, p2
are some constants and IA,1(q, x, x̄), IA,2(q, x, x̄) are classical actions. Even after taking

the large c limit, the normalization condition limq→1 trA

(
ρ

q
A

)
= 1 must hold. This means

limq→1(ZA(q)/Zq) = 1, and then

lim
q→1

( p1 exp[qI − IA,1(q, x, x̄)] + p2 exp[qI − IA,2(q, x, x̄)] ) = 1, (21)
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where we assume that I = − log Z is the unique Euclidean classical action of the original
theory; it is the c order term. Because the replica field theory involves the q replicated field
of the original theory, the effective action IA,i(q, x, x̄) may be comparable to IA,i(q, x, x̄) =
qI + O(q− 1) for q ∼ 1. Thus, p1 + p2 = 1 from Equation (21). One may concern that the
two saddle points merge into the saddle point of the original theory for q ∼ 1 and become
indistinguishable. As long as q 6= 1, even if q is infinitesimally close to 1, there exist the
two topologically distinguishable configurations of the classical field Ψ(z) as observed in
previous studies [4–6]. Thus, from the viewpoint of the path integral, there exist the two
distinct saddle points, out of which the leading term behaves like the c order term, as long
as q 6= 1. Then, each classical action are described as IA,i(q, x, x̄) = qI + bi(q, x) + b̄i(q, x̄),
limq→1 bi(q, x) = 0 and limq→1 b̄i(q, x̄) = 0. We will explain why the q− 1 order term of
the classical action is decomposed into the holomorphic and the anti-holomorphic part
after deriving the ERE. Therefore, Equation (3) for an arbitrary q in the semi-classical
limit becomes

SA(q) =
1

1− q

(
log

2

∑
i=1

pi exp
[
−bi(q, x)− b̄i(q, x̄)

])
. (22)

As a result, the term in the parenthesis is proportional to (q− 1)c. However, note that the
leading terms of the saddle points for ZA(q) are proportional to qI, and then Equation (22)
is derived from the cancellation between qI, which originated from log ZA(q) and one from
q log Z. Thus, the saddle point approximation is valid for a large c independent of the
magnitude of (q− 1)c. Equation (22) is consistent with the decomposition of the 4-point
function into the conformal blocks. Thus, we can assume that the q− 1 order term of the
classical action is decomposed into the holomorphic and the anti-holomorphic part.

We obtained Equation (22) as the ERE in the semi-classical limit with an arbitrary q
based on the assumption that the replica field theory has two saddle points for the large c.
If we adopt a large enough, but finite c for the saddle point approximation and keep q− 1
finite, we can consider that only the minimal saddle point contributes to the ERE for a large
(q− 1)c. Conversely, if (q− 1)c ∼ 0 with large finite c and q ∼ 1, the ERE becomes

SA(q ∼ 1) ∼ 1
1−q log

2
∑

i=1
pi
(
1− bi(q, x)− b̄i(q, x̄)

)
∼ 1

1−q

[
log

2
∑

i=1
pi −

2
∑

i=1

pi(bi(q,x)+b̄i(q,x̄))
∑2

i=1 pi

]
.

(23)

Owing to the normalization condition of p1 + p2 = 1, the EE is defined as:

SA = lim
q→1

SA(q) = lim
q→1

2

∑
i=1

pi
(
bi(q, x) + b̄i(q, x̄)

)
q− 1

. (24)

Thus, the EE determined in the semi-classical limit is a summation of all the (q − 1)c
order terms of the classical actions. The following two nuances should be noted: First,
in the semi-classical approximation, the leading terms of the classical action of the two
partition functions cancel each other owing to the structure of the replica theory and the
normalization condition of the density matrix. Second, the q→ 1 limit is adopted so that
(q− 1)c ∼ 0 is satisfied. Therefore, because of the exquisite relationship between the two
limits, the multiple saddle points comparably contribute to the EE with the contribution
weights pi. The above cautions are specific to the EE in the semi-classical approximation.
Thus, we do not need to worry about it in other scenarios, such as the thermal phase
transition of physical systems.

We identify the relation between the derivative of the ERE a(q, x) and the order
(q − 1)c term of the classical action bi(q, x), and then determine p1 and p2. We should
pay attention for the quantum state of the replica field theory to relate them. As there
are two classical saddle points, it is natural that the replica field theory also has the two
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quantum states corresponding to them. We assume that the quantum state of the replica
field theory is expressed as |Ω〉 = √p1|Ω1〉+

√
p2|Ω2〉, 〈Ω1|Ω2〉 ∼ 0, where |Ω1〉 and |Ω2〉

represent the states corresponding to the respective classical actions in the semi-classical
limit. Subsequently, the partition function is described as ZA(q) = p1ZA,1(q) + p2ZA,2(q),
where we defined ZA(q) = 〈Ω|Ω〉, ZA,i(q) = 〈Ωi|Ωi〉. We can associate the weights p1
and p2 to the probability amplitude of |Ω1〉 and |Ω2〉, respectively. According to the above
argument, Equation (13) is written as:

2hq

x(1− x)
a(q, x) = − p1∂xZA,1(q) + p2∂xZA,2(q)

ZA(q)
= − p1∂xe−b1(q,x) + p2∂xe−b2(q,x)

p1e−b1(q,x) + p2e−b2(q,x)
. (25)

Because the ERE for q ∼ 1 is equivalent to the summation of the derivative of the classical
actions, as described in Equation (24), it is natural that the derivative of the ERE also
decomposes into a(q, x) = p1a1(q, x) + p2a2(q, x) at least for q ∼ 1. In particular, we relate
ai(q, x) and bi(q, x) as follows:

2hq

x(1− x)
ai(q, x) = − ∂xe−bi(q,x)

p1e−b1(q,x) + p2e−b2(q,x)
∼ ∂xbi(q ∼ 1, x) (26)

In the same way, we also relate āi(q, x̄) and b̄i(q, x̄). Thus, we find 2hq x̄−1(1− x̄)−1 āi(q, x̄) ∼
−∂x̄ log ZA,i(q), and we can regard this as the definition of āi(q, x̄) for q ∼ 1. On the above
identification, the ERE is described as:

SA(q) ∼
2hq

q− 1

2

∑
i=1

pi

(∫ ai(q, x)
x(1− x)

dx +
∫ āi(q, x̄)

x̄(1− x̄)
dx̄
)

(27)

Note that the two candidates of the derivative of the ERE a(q ∼ 1, x) = 1− x, −x are
obtained just by analyzing Equation (15) independent of the quantum state. Therefore,
we assume

p1a1(q ∼ 1, x) = 1− x, p2a2(q ∼ 1, x) = −x. (28)

Next, we determine the weights p1 and p2 because we can only obtain piai(q, x) and not
ai(q, x) itself. Furthermore, the ERE is described by the 4-point function of the twist operators
Equation (4). Consider the 4-point correlation function G1234(x) = 〈φ1(0)φ2(x)φ3(1)φ4(∞)〉Σ,
where φi is a general operator. Because G1234(x) is independent of the way of the operator
product expansion, and G1234(x) exhibits the crossing symmetry G1234(x) = G3214(1− x).
The first and the third operators, in the ERE in Equation (4), are identical twist opera-
tors; therefore, we obtain G1234(x) = G3214(x) in addition to G1234(x) = G1234(1 − x).
Therefore, the ERE SA(q) in Equation (22) is invariant with the replacement x → 1− x;
thereby, allowing p1 = p2 = 1/2 to be true. In this system, we can confirm that x = x̄ and
a(q, x) = ā(q, x̄). Finally, the EE of the two disjoint intervals for the large c Liouville CFT
from Equation (24) is

SA = lim
q→1

4hq

q− 1

∫ 1− 2x
x(1− x)

dx =
c
3

log
x(1− x)

ε2 , (29)

where ε denotes the UV cut off scale. Consequently, the obtained EE is equivalent to that
of the free compactified boson at the leading order of the large c. Thus, it shall not be
in contradiction to any postulate of the CFT. Note that we do not need the weights pi
to calculate the EE, and we exploited the symmetry between the two saddle points to
determine the weights pi. In general, we need some extra information to evaluate the
weights pi and the ERE. If we obtain a complex valued saddle point and its complex
conjugated one, we can assign p1 = p2 = 1/2 for the ERE to be real valued [10]. Moreover,
for non-static systems, pi may be time-dependent. It is possible that the contribution of the
dominant saddle point varies with time due to the time dependence of pi. The weights pi
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are the coefficients of the conformal block expansion of the multi-point function; therefore,
they may be evaluated with AGT correspondence and related techniques [11,12].

4. Determination of ERE for the Semi-Classical Liouville CFT

In this section, we see that Ψ(z) in Equation (15) should behave as the 1-point correla-
tion function on the replica manifold for the large c Liouville CFT, and then determine the
ERE of the two disjoint intervals. The Liouville CFT contains the degenerate operator, and
then the corresponding BPZ equation helps us to analyze the structure of the correlation
functions [3]. Let ψχ(z) denote the light degenerate operator corresponding to the level 2
light null vector with the conformal weight hχ; wherein, the BPZ equation holds:[

3∂2
z

2(2hχ + 1)
−

4

∑
i=1

(
hq

(z− zi)2 +
∂zi

z− zi

)]
〈ψχ(z)Tq(z1)T̃q(z2)Tq(z3)T̃q(z4)〉 = 0 (30)

As we treat the q-replicated Liouville CFT, the central charge is q times that of the original
theory, that is, hχ = (5− qc +

√
(qc− 1)(qc− 25))/16. We can choose (z1, z2, z3, z4) =

(0, x, 1, ∞) without the loss of generality. In the large c semi-classical limit, we can rewrite
this equation in a simple form through the following steps. The conformal weight hχ is
hχ = −1/2− 9/(2qc) + O(c−2) and ψχ(z) is a light operator whose expectation value can
be considered as a 1-point correlation function Ψχ(z) on the replica manifold. This means
that the above 5-point correlation function behaves as follows:

Ψχ(z) =
〈ψχ(z)Tq(0)T̃q(x)Tq(1)T̃q(∞)〉Σ
〈Tq(0)T̃q(x)Tq(1)T̃q(∞)〉Σ

(31)

=⇒ 〈ψχ(z)Tq(0)T̃q(x)Tq(1)T̃q(∞)〉Σ = Ψχ(z) ∑
i

pi e−IA,i(q,x). (32)

Thus, we will deal with the following equation assuming that Ψχ(z) behaves as the 1-point
correlation function on the replica manifold:

d2

dz2 Ψχ(z) +
q2 − 1

4q2 Q(q, z)Ψχ(z) = 0, (33)

Q(q, z) =
1
z2 +

1
(z− x)2 +

1
(z− 1)2 + 2

(
1
z
− 1

z− 1

)
+

2a(q, x)
z(z− x)(z− 1)

, (34)

a(q, x) = − 12q
c(q2 − 1)

x(1− x)∂x log ZA(q). (35)

Ψχ(z) satisfies the same differential equation as Equation (15), but now we have an addi-
tional global condition that Ψχ(z) behaves as a 1-point correlation function on the replica
manifold. Furthermore, we evaluate a(q, x) for q ∼ 0 first as we can find an analytical
expression of Ψχ(z) using the WKB approximation, and then numerically evaluate a(q, x)
for q ∼ 1.

First, as just a practice, we calculate the ERE for q ∼ 0 using the WKB method because it
enables in for understanding the relation between the structure of the replica manifold and
the global behavior of Ψχ(z) on it. Consider the following WKB solution of Equation (33)
in the leading order of the WKB approximation for q ∼ 0:

Ψχ(z) =
1

Q(q, z)1/4 exp
[
± 1

2q

∫ z√
Q(q, ζ)dζ

]
. (36)

As we have the integral expression for Ψ(z), it is easy to analyze its global behavior, which
is determined by the residues of

√
Q(q, z). Note that we can rewrite

√
Q(q, z) as



Entropy 2022, 24, 1758 9 of 13

√
Q(q, z) =

√
z4 − 2z3 + 2z2 − 2xz + x2 + 2a(q, x)z(z− x)(z− 1)

z(z− x)(z− 1)
. (37)

The residues of
√

Q(q, z) at z = 0, x, 1 are ±1 independent of a(q, x). From the requirement
that Ψ(z) behaves as a 1-point correlation function on the replica manifold as depicted in
Figure 1, a(q, x) is determined so that

√
Q(q, z) transforms into a rational function and

its Riemann surface is single sheeted, that is, Res
√

Q(q, z = 0) = −Res
√

Q(q, z = x) =
Res
√

Q(q, z = 1) should hold. Therefore, we find the unique derivative of the ERE a(q, x) =
1− 2x, and then,

√
Q(q, z) and the ERE for q ∼ 0 is determined as follows:√

Q(q ∼ 0, z) = ±
(

1
z
− 1

z− x
+

1
z− 1

)
, (38)

SA(q ∼ 0) = lim
q→0

4hq

q− 1

∫ 1− 2x
x(1− x)

dx =
c

6q
log

x(1− x)
ε2 . (39)

We can express the conformal map as w(z) = z
1
q (z− x)−

1
q (z− 1)

1
q ; we obtain the energy

momentum tensor for q ∼ 0 as follows:

12
q c T(z) = q2−1

2q2z2 +
q2−1

2q2(z−x)2 +
q2−1

2q2(z−1)2 − (q2−1)(x+z−1)
q2z(z−x)(z−1) −

6(x−1)x
(z2−2xz+x)2

∼ − 1
2q2

[
1
z2 +

1
(z−x)2 +

1
(z−1)2 + 2

(
1
z − 1

z−1

)
+ 2(1−2x)

z(z−x)(z−1)

] (40)

The form of this energy momentum tensor is consistent with Equation (5) for q ∼ 0,
that is, it has the same poles. For a finite q, the sub-leading terms of the WKB solution may
cancel the extra poles at z2 − 2xz + x = 0. Additionally, for a(q, x) = ±1,

√
Q(q, z) also

becomes a rational function:

a(q, x) = 1 ⇐⇒
√

Q(q ∼ 0, z) = ±
(

1
z
− 1

z− x
− 1

z− 1

)
, (41)

a(q, x) = −1 ⇐⇒
√

Q(q ∼ 0, z) = ±
(

1
z
+

1
z− x

− 1
z− 1

)
. (42)

From the relative sign of the poles, the 4-point correlation functions corresponding to them
are given as:

a(q, x) = 1 ⇐⇒ 〈Tq(z1)T̃q(z2)T̃q(z3)Tq(z4)〉Σ, (43)

a(q, x) = −1 ⇐⇒ 〈Tq(z1)Tq(z2)T̃q(z3)T̃q(z4)〉Σ. (44)

This practice clearly demonstrates the relation between each 4-point correlation function
and the geometry of each replica manifold. We may be able to precisely analyze by
considering the higher order term of the WKB solution. Thus, we confirm the one-to-one
correspondence between each saddle point ai(q, x) and each replica manifold. However,
we obtain multiple saddle points for the general q.

Second, we consider the q ∼ 1 case. Let Φ(z) = g(x)Ψχ(z) and g(z) = z
q−1
2q (z −

x)
q+1
2q (z− 1)

q−1
2q , then Equation (33) is transformed into the Heun’s differential equation

as follows:
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d2

dz2 Φ(z) +
(

γ

z
+

ε

z− x
+

δ

z− 1

)
d
dz

Φ(z) +
αβz− p

z(z− x)(z− 1)
Φ(z) = 0, (45)

α = 1, β = 1− 1
q

, γ = 1− 1
q

, δ = 1− 1
q

, ε = 1 +
1
q

, (46)

p =
q− 1
2q2 [1− 2x + q− (q + 1)ai(q, x)] (47)

The solution of this equation is called as the Heun function. The Heun’s differential
equation has four regular singular points at z = 0, x, 1, ∞ and the Frobenius solutions of
the Heun’s differential equation are known as the local Heun functions. For example, two
independent local Heun functions around z = 0 can be expressed as:

Φ(z ∼ 0) ∼ HeunG[x, p, α, β, γ, δ, z], (48)

Φ(z ∼ 0) ∼ z1−γHeunG[x, p + (1− γ)(δx + ε), α− γ + 1, β− γ + 1, 2− γ, δ, z], (49)

where the local Heun function is normalized as HeunG[x, p, α, β, γ, δ, z = 0] = 1 [13].
We denote a local Heun function near z = zi with the characteristic exponent s as ys

zi
(z).

The connection matrix describes the relationships between the local Heun functions. For
example, ys

x(z) and ys
0(z) are connected by the connection matrix Cx0 as follows:(

y0
x(z)

y1−ε
x (z)

)
=

1

W(y0
0, y1−γ

0 )

(
W(y0

x, y1−γ
0 ) W(y0

0, y0
x)

W(y1−ε
x , y1−γ

0 ) W(y0
0, y1−ε

x )

)(
y0

0(z)
y1−γ

0 (z)

)
, (50)

where W(y0
x, y1−ε

x ) = y0
x(z)∂zy1−ε

x (z) − ∂zy0
x(z)y1−ε

x (z) is the Wronskian of y0
x(z) and

y1−ε
x (z) and the others are the same. The ratio of these Wronskians attains a constant

value with respect to z, contrary to the Wronskians themselves. We utilized the Mathemat-
ica to calculate these Wronskians, see [14].

The derivative of the ERE a(q, x) determines the connection matrices. Additionally,
we need to find the condition that the connection matrices must satisfy. To formulate
it, consider the paths P0x and P1x, which encircle the interval [0, x] or [x, 1] once in the
counterclockwise direction. Additionally, let R0 = R−1

x = R1 = R−1
∞ = diag(1, exp[2πi/q])

and the connection matrix Cx0 be given by Equation (50) and the others be defined in the
same manner. Then, the analytic continuation along P0x for the local Heun functions y0

x
and y1−ε

x are described as: (
y0

x(z)
y1−ε

x (z)

)
= M0x

(
y0

x(z)
y1−ε

x (z)

)
, (51)

where we define the monodromy matrix M0x = Cx0R0C0xRx as depicted in Figure 2.

<latexit sha1_base64="6SW5MpcABVBhRt5hktuRvZSOp4E=">AAACanichVG7SgNBFD1ZXzE+ErVRbIJR0SbcxBAflaCFZXzECCqyu45myGZ32d0EkuAP2FkJWimIiJ9h4w9Y+AminYKNhXc3EbFQ787snDlzz50zM5ptSNcjegwpbe0dnV3h7khPb19/NDYwuOlaFUcXed0yLGdLU11hSFPkPekZYst2hFrWDFHQSkv+eqEqHFda5oZXs8VuWT005YHUVY+pwk6uKKfq03uxBCXTHDQbZ5Ahbj7IzmTmKZ5KUhAJtCJnxa6xg31Y0FFBGQImPMYGVLj8bSMFgs3cLhrMOYxksC5whAhrK5wlOENltsT/Q55tt1iT535NN1DrvIvB3WFlHBP0QDf0Svd0S0/08WutRlDD91LjUWtqhb0XPR5ef/9XVebRQ/Fb9adnDweYC7xK9m4HjH8Kvamv1k9f1xfWJhqTdEnP7P+CHumOT2BW3/SrVbF2jgg/wNctx38Hm+lkKpvMrGYSi8utpwhjFGOY4vuexSJWkEM+cHeCM5yHXpRBZUQZbaYqoZZmCD9CGf8E5AeMQg==</latexit>

�(z)
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R0
<latexit sha1_base64="VejhCTJ3hPeC8g6fTN5NraQy8ck="></latexit>

Rx
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R1
<latexit sha1_base64="DP61DcdtSRNMZoOKDL0VKx9JHF4="></latexit>
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C11
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C1x

Figure 2. The dots represent z = 0, x, 1, ∞ on Σ from left to right. The analytic continuation along each
magenta line is described as a matrix, such as Cx0, · · · and R0, · · · . The paths P0x and P1x correspond
to the monodromy matrices M0x = Cx0R0C0xRx and M1x = Cx1R1C1xRx, respectively.
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Similarly, the analytic continuation along P1x is expressed comparable to the other
monodromy matrix M1x = Cx1R1C1xRx. One may hope that both the monodromy ma-
trices transform into the identity matrix like the WKB analysis for q ∼ 0. However, both
cannot transform into the identity matrix simultaneously for general q whatever a(q, x)
is chosen. Instead, one of two should be the identity matrix, also known as the Schottky
uniformization [4,15,16]. Moreover, it is trivial for the analytic continuation along the path
which encircles all the four regular singular points once in the counterclockwise direction.
Therefore, M0x = I is equivalent to M∞1 = I because Cx1M∞1C1x M0x = I and C1xCx1 = I.
Comparably, M1x = I implies M0∞ = I; thus, it is sufficient to deal with the monodromy
matrices M0x and M1x. On this condition, the monodromy matrices M0x and M1x are
commutative. Thus, if we perform the analytical continuation via q times P0x and q times
P1x for integer q, Φ(z) retains its original value because this is the first time that Φ(z) is
back to the starting point from the viewpoint of the replica manifold. For 0 < q ∈ Q, let
q = t/u with t, u ∈ Z+, while considering the analytical continuation via u times P0x and u
times P1x in random order, the same discussion holds because Φ(z) is t times back to the
starting point. Therefore, we accept the Schottky uniformization for an arbitrary q ∈ R, if
the ERE is a continuous function with respect to q.

For an arbitrary q near x = 0 or x = 1, the derivative of the ERE behaves as
a(q, x ∼ 0) ∼ 1 or a(q, x ∼ 1) ∼ −1, respectively [5,6]. Then, we regard the former
as p1a1(q, x) if there are only two saddle points. We numerically calculate p1a1(q, x) in case
all the components of the commutation relation between the two monodromy matrices
[M0x, M1x] vanish simultaneously. Then, we obtain the ERE from Equations (22) and (26)
with a1(q, x) = −a2(q, 1− x).

Figure 3 shows p1a1(q, x) and the ERE SA(q) for q ∼ 1. For q → 1, we can consider
p1a1(q → 1, x) → 1 − x. As mentioned before, we obtained the same EE as that of
a compactified boson. Note that the central charge c should be large enough because
Equation (22) is based on the saddle point approximation. For (q − 1)c ∼ 0, the EREs
depend on c only linearly, and then the EREs with c = 1 in Figure 3 is meaningful. It
is difficult to compute the ERE not for q ∼ 1. In particular, for q < 0.5, the number of
saddle points increases with a decreasing q, and we cannot determine the weights of the
contribution for each saddle point to the ERE. Moreover, we cannot calculate each saddle
point for small q owing to the lack of numerical accuracy. The WKB analysis could be
considered to calculate the ERE for this region. The monodromy analysis using the AGT
correspondence [17] or analytic expression of the connection matrices [18] may help for
determining the ERE.
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Figure 3. The left panel shows p1a1(q, x) for q = 0.6, 0.8, 1.0, 1.2, 1.4. The right panel shows the
corresponding ERE normalized as SA(q) = 1 at x = 1/2 with the central charge c = 1 and the UV
cutoff ε = 0.1.

5. Conclusions

In this study, we reviewed the relationship between the ERE and the geometrical
structure of the replica manifold and saw that some additional conditions must be imposed
to determine the ERE of two disjoint intervals system in general. Then, we considered
the treatment of the EE in the semi-classical approximation in general. Because of the
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exquisite relationship between the large c and q → 1, we pointed out that the multiple
saddle points contribute comparably to the EE. The leading terms of the classical action of
the two partition functions ZA(q) and Z for large c cancel each other due to the structure
of the replica theory and the normalization condition of the density matrix. For the case
of general ERE, the method to evaluate the contribution weights of each saddle point is
not known. Thus, we numerically evaluated the ERE of the two disjoint intervals for the
large c Liouville CFT for q ∼ 1 by analyzing the BPZ equation by satisfying the criterion
that its solution behaves like a 1-point correlation function on a replica manifold. This
condition is expressed by the condition that one of the monodromy matrices transforms
into the identity matrix for any real number q.

In future work, it shall be of interest to reconsider ERE in other scenarios and entan-
glement measures. For instance, there is a growing interest in the reflected Renyi entropy,
which signifies that the corresponding replica manifold exhibits a rather complex geom-
etry [19]. Additionally, we can consider the ERE of a single interval on the torus as it
is also well known for the expression of the Heun’s differential equation. Conversely, it
would be interesting to evaluate the higher order terms of the WKB method and the large
c. Considering the higher order terms of the WKB method for finite q, we may check the
consistency between the WKB method and the numerical method for the ERE of the two
disjoint intervals. For higher order corrections of large c, it may be necessary to evaluate
the contribution of the cross term between multiple quantum states corresponding with
each saddle point in case of multiple saddle points.
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