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Abstract: Because of noise interference, improper exposure, and the over thickness of human tissues,
the detailed information of DR (digital radiography) images can be masked, including unclear edges
and reduced contrast. An image-enhancement algorithm based on wavelet multiscale decomposition
is proposed to address the shortcomings of existing single-scale image-enhancement algorithms. The
proposed algorithm is based on Shannon–Cosine wavelets by taking advantage of the interpolation,
smoothness, tight support, and normalization properties. Next a multiscale interpolation wavelet
operator is constructed to divide the image into several sub-images from high frequency to low
frequency, and to perform different multi-scale wavelet transforms on the detailed image of each
channel. So that the most subtle and diagnostically useful information in the image can be effectively
enhanced. Moreover, the image will not be over-enhanced and combined with the high contrast
sensitivity of the human eye’s visual system in smooth regions, different attenuation coefficients are
used for different regions to achieve the purpose of suppressing noise while enhancing details. The
results obtained by some simulations show that this method can effectively eliminate the noise in the
DR image, and the enhanced DR image detail information is clearer than before while having high
effectiveness and robustness.

Keywords: Shannon–Cosine wavelet multiscale decomposition; DR medical images; image enhancement;
inverse sharpening mask

1. Introduction

The enhancement of medical images is a task of high practical value. In fact, many
current medical images, especially X-ray DR images of low-dose projection data, are often
blurred in the original image [1,2]. In medicine, these blurred images contain a lot of
important details and information that is crucial for medical diagnoses. Therefore, detail
enhancement for medical images has been one of the main focuses of research [3,4].

In the area of improving image quality, there are three main issues to be addressed,
namely contrast enhancement, noise reduction, and image sharpening. The most common
image-enhancement methods are based on histogram equalization (HE) [5], contrast-limited
adaptive histogram equalization (CLAHE) [6–8], and morphological algorithms [9,10].
Histogram equalization algorithms have been shown to be a viable option for medical-
image enhancement. By using a cumulative distribution function (CDF), gray levels are
mapped from low-contrast images to obtain an enhanced gray-scale image. Although the
HE method is simple to calculate, high peaks in the histogram can over enhance the image,
introducing artifacts and noise so that structural details may be eliminated or reduced.
Ismail et al. [6] and Isa et al. [7] introduced the adaptive blurred histogram equalization
scheme for magnetic resonance (MR) image enhancement. This scheme is achieved by
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normalizing and smoothing the histogram of the input image, followed by sub-image
HE processing. This method preserves the average brightness in the MR images of the
brain. Although CLAHE has been widely used, its performance in and the quality of
the enhanced images are highly dependent on the choice of block size, the number of
histogram slots, the intensity range of the enhanced images, the specified distribution
of image blocks, and the parameters of the distribution itself. Unlike traditional feature-
learning methods, using optical flow field and patch-based normalized cross-correlation
(NCC) data terms, the optical flow field can ensure that global optimization can more
effectively compress the noise within MR images than can other optical flow methods
through a special regularization term, overcoming the lack of relatively homogeneous
organization in bright gradients, which can effectively enhance images, but the high time
cost cannot be ignored [11]. Another algorithm for enhancing medical images is the
proposed morphological operation that gives satisfactory results. Unsharp masking (UM),
which is based on morphological operations [12], is a common algorithm for image detail
and edge enhancement. In the inverse sharpening masking algorithm, the difference in the
activity of the pixels is exploited to double-enhance the image using the Laplace operator
for second-order differences [13]. Linear image enhancement is simple in principle and fast
in execution, but the results are not ideal, and some image detail is usually lost because of
uneven image enhancement. In summary, a good medical-image-enhancement algorithm
should have, at the same time, properties such as the ability to suppress noise during image
enhancement, the ability to enhance the contrast of the image without losing brightness,
and the ability to quickly and reliably be set up.

Textures in medical images present mostly irregular, smooth, and closed-curve struc-
tures. On the other hand, existing image-enhancement methods focus only on solving
individual problems on an image, such as increasing contrast, reducing noise, and/or in-
creasing sharpness. Therefore, ensuring that improvements on image problems are parallel
is of great significance for many image-processing applications. In contrast, the wavelet
transform has the advantages of easy noise removal, ease of operation, and the ability to
reflect information on image feature points [14–16]. In this work, in order to achieve a
dynamic capture and an accurate representation of dynamic curve features, we first use
the fluctuation and continuity of the Shannon wavelet function to design a parametric
window function according to the integral median theorem, and then through parameter
adjustment, we can meet the requirements for the adaptive control of the Shannon–Cosine
wavelet on the support interval and smoothness, so as to achieve the texture of medical
images The result is a parametric window function that can be adapted to meet the require-
ments of the Shannon–Cosine wavelet on the support interval and smoothness, to achieve
texture approximation in medical images. Some of the main contributions of this paper are
the following:

1. In the framework of the algorithm of Shannon–Cosine wavelet multiscale de-
composition, a digital X-ray image-enhancement curve was designed according to the
characteristics of noise in the image, which can effectively suppress quantum noise while
enhancing the image and can ensure that the overall enhancement effect will not be overshot
while enhancing the details.

2. We designed a digital X-ray noise-reduction algorithm based on the pixel activity
in different regions, which is based on the pixel activity. This algorithm can maintain
the diagnostic details better than the conventional algorithm can, while smoothing the
unstructured regions.

The organization of this paper is as follows: in Section 2 some preliminary remarks
about multiscale analysis by Shannon–Cosine are provided; Section 3 describes the algo-
rithm for a multiscale digital X-ray image-enhancement and noise-reduction algorithm;
Section 4 features adaptive multiscale enhancement for and a noise-reduction simulation
for DR images; and in Section 5, a discussion on future perspectives and conclusions
is provided.
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2. Wavelet Multiscale Transform Fundamentals

The method of solving nonlinear partial differential equations is a common method for
medical-image processing, which can achieve edge-preserving noise reduction in images,
but the method lacks multiscale characteristics and therefore has poor protection for fine
textures. After the difference method or the single-scale wavelet numerical method to solve
two-dimensional partial differential equations is used, the total number of discrete points
is large, which hinders the solution of large data volume solving problems (such as image
processing) in engineering. Therefore, it is of great importance to extend the application of
the wavelet fine integration method to solving two-dimensional partial differential equa-
tions. The key to constructing the wavelet fine integration algorithm for two-dimensional
partial differential equations is constructing a two-dimensional multiscale interpolation
wavelet operator. By adaptively discretizing the partial differential equations by using
the multiscale wavelet interpolation operator, the obtained set of ordinary differential
equations can be solved: by directly using the adaptive fine integration method, based on
the extrapolation technique.

2.1. Shannon–Cosine Wavelet and Their Properties

The main features of Shannon–Cosine wavelet function are interpolation, smoothness,
compact support, and symmetry [17,18]. Shannon–Cosine wavelet mother wavelet function
are defined as:

ϕ(x) =
sin(πx)

πx

m

∑
n=0

(
an cos

(
2nπx

N

))
·
(

χ

(
x +

N
2

)
− χ

(
x− N

2

))
(1)

where N is a constant associated with the support interval and χ(x) is the Heaviside
function. This function is defined as:

χ(x) =


0 x < 0
unde f ined x = 0
1 x > 0

(2)

where the support interval of the function is [−N/2, N/2]. Coefficients ai(i = 0, 1, . . . , m)
are used to fulfill the smoothness at the boundary, which can be obtained by applying the
following set of differential equations:

dn

dxn φ

(
N
2

)
= 0, n = 0, 1, . . . , m (3)

Here it is not difficult to verify whether the mother wavelet function of the multiscale
Shannon–Cosine wavelet has the interpolation property that φ(0) = 1 [19]. By taking
x = N/2 (or x = −N/2) and x = 0 into Equations (1) and (3), we obtain a system of linear
algebraic equations with respect to the coefficients. Figure 1 illustrates the Shannon–Cosine
wavelet-generating function image.

Support interval parameter N can be found from normalization condition
∫ ∞
−∞ φ(x)dx = 1

of the wavelet’s parent function, and the choice of parameter N is related to the waveform of
the Shannon–Cosine wavelet, which can find functions with an integral greater than 1 in one
interval and less than 1 in another interval. This shows that making a reasonable choice on
a support interval can ensure that the parameterized Shannon–Cosine polynomial function
satisfies the uniformity condition. Unlike the Shannon–Gabor wavelet, the Shannon–
Cosine wavelet is a true tight support wavelet that meets all the definitions of a wavelet
and contributes to the efficiency and numerical accuracy of the algorithm.
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2.2. Multiscale Interpolation Wavelet Operator

Let φ(x) be the wavelet mother function with the interpolation property, and the
sequence of functions obtained by translation and scaling is defined as:

φj,k = φ(2jx− k) (4)

where φj,k is the scale basis function, k = 0, 1, 2, . . . , 2j; j ∈ z, j is the scaling factor, and k is
the translation factor. For functions f (x) ∈ L2(0, 1) and x ∈ [xmin, xmax], the interpolated
wavelet transform coefficients are defined as:

αj,k = f (xj,k)−
(

2j0

∑
k0=0

f (xj0,k0)φj0,k0(xj,k) +
j−1

∑
j1=j0

2h−1

∑
k1=0

αj1,k1 ψj1,k1(xj,k)

)
(5)

where ψj,k(x) = φj+1,2k+1(x) is the wavelet definition function, ∆xj =
xmax−xmin

2j , ∆xJ =
xmax−xmin

2J , xj,k = xmin + k∆xj, and xJ,n = xmin + n∆xJ .
Based on the above definition, the definition of the multiscale interpolation wavelet

transform matrix, Cj,J
k,n, can be given, where k ∈

{
0, 1, 2, . . . , 2j}, 0 ≤ j0 ≤ J − 1, and

n ∈
{

0, 1, 2, . . . , 2J}. According to the definition of multiscale wavelet transform, the
wavelet transform is therefore obtained [20]. The corresponding wavelet coefficients are:

αj,k =
2J

∑
n=0

Cj,J
k,n f (xJ,n) (6)

According to the definition of interpolated wavelet transform coefficients, we have:

αj,k = f (xj,k)−
(

2j0

∑
k0=0

f (xj0,k0) +
j−1

∑
j1=j0

2j1−1

∑
k1=0

αj1,k1 ψj1,k1(xj,k)

)
(7)

where ψj,k = φj+1,2k+1. When the definition of the restriction operator is used, it is not
difficult to obtain: 

f (xj,k) =
2j

∑
n=0

Rj+1,J
2k+1,n f (xJ,n)

f (xj0,k0) =
2j

∑
n=0

Rj0,J
k0,n f (xJ,n)

(8)

By substituting Equation (8) into Equation (7), we get:

αj,k =
2J

∑
n=0

(
Rj+1,J

2k+1,n −
2j0

∑
k0=0

Rj0,J
k0,nφ(xj+1,2k+1)

)
f (xJ,n)−

j−1

∑
j1=j0

2j1−1

∑
k1=0

αj1,k1 ψj1,k1(xj+1,2k+1) (9)
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By substituting Equation (6) into Equation (9), we get:

2J

∑
n=0

Cj,J
k,n f (xJ,n) =

2J

∑
n=0

(
Rj+1,J

2k+1,n −
2j0

∑
k0=0

Rj0,J
k0,nφj0,k0(xj+1,2k+1)

)
f (xJ,n)

−
2J

∑
n=0

j−1
∑

j1=j0

2j1−1

∑
k1=0

Cj1,J
k1,n f (xJ,n)ψj1,k1(xj+1,2k+1)

=
2J

∑
n=0

(
Rj+1,J

2k+1,n −
2j0

∑
k0=0

Rj0,J
k0,nφj0,k0(xj+1,2k+1)

)
f (xJ,n)

−
2J

∑
n=0

(
j−1
∑

j1=j0

2j1−1

∑
k1=0

Cj1,J
k1,nψj1,k1(xj+1,2k+1)

)
f (xJ,n)

=
2J

∑
n=0

(
Rj+1,J

2k+1,n −
2j0

∑
k0=0

Rj0,J
k0,nφj0,k0(xj+1,2k+1)−

j−1
∑

j1=j0

2j1−1

∑
k1=0

Cj1,J
k1,nψj1,k1(xj+1,2k+1)

)
f (xJ,n)

(10)

It is not difficult to obtain the Shannon–Cosine wavelet-based multiscale interpolated
wavelet transform matrix by comparing the expressions on both sides of the equal sign in
Equation (10):

Cj,J
k,n = Rj+1,J

2k+1,n −
2j0

∑
k0=0

Rj0,n
k0,n(xj+1,2k+1)−

j−1
∑

j1=j0

2j1−1

∑
k1=0

Cj1,J
k1,nψj1,k1(xj+1,2k+1)

Cj0,J
k,n = Rj0+1,J

2k+1,n −
2j0

∑
k0=0

Rj0,J
k0,nφj0,k0(xj0+1,2k+1)

(11)

where Rj,J
k,n =

{
1, xj,k = xJ,n
0, otherwise

is the restriction operator.

Based on the above analysis, the multiscale adaptive subdivision interpolation results
of the curve made by the Shannon–Cosine wavelet are shown in Figure 2.
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As shown in Figure 2a,b, when the cosine curve is adaptively subdivided by using the
Shannon–Cosine wavelet method, more feature points are concentrated at the endpoint of
the curve. When the curve is subdivided by using the Shannon–Cosine interval wavelet
method, as shown in Figure 2c,d, more subdivision features are also concentrated at the
boundary points of the curve. In this work, the Shannon–Cosine wavelet function is used
to discretize the partial differential equations, by using the multiscale nature of wavelets
to capture image-texture features, allowing for sparse points in smooth areas and dense
points in rich texture details, thus effectively reducing the number of equation sets while
maintaining the texture of the image. Finally, the wavelet fine integration method is used to
solve the ordinary differential equations. The high-precision solution is obtained, and the
solution of the equation set is the pixel value of the image at that point after noise reduction.



Entropy 2022, 24, 1754 6 of 18

3. Multiscale Digital X-ray Image-Enhancement and Noise-Reduction Algorithm

In this paper, we take advantage of the multiscale properties of the Shannon–Cosine
wavelet to propose an enhancement algorithm for medical X-ray images. The algorithm
system consists of four major parts: (1) imaging for DR images, (2) Shannon–Cosine wavelet
decomposition and reconstruction for DR images, (3) multiscale diagnostic detail enhance-
ment for DR images, and (4) simulations for multiscale noise reduction in DR images.

Figure 3 shows the basic algorithm framework, corresponding to the following steps:
1. X-rays are passed through the analog-to-digital (A/D) converter to obtain the original

X-ray digital photography image, f (xj,k).
2. The Shannon–Cosine wavelet transform is applied to the original image by using the

multiscale properties of the Shannon–Cosine wavelet. A set of high-frequency images,
L0, L1, L2, . . . Ln, and a low-frequency image, gn, are obtained after multilayer
decomposition.

3. A nonlinear gain function,

y =
x

A + B · x + C · xp , x > 0

is designed to control the degree of enhancement for the large dynamic range of
digital X-ray images. The gain coefficient is multiplied by the gray value of each pixel
at different scales to change the detail image, and then the image is reconstructed to
achieve the enhancement effect.

4. The degree of pixel activity vi(n, m) is defined by calculating the standard deviation
within the local neighborhood of the central pixel. The pixel activity level is then
bilinearly interpolated to correspond to high-frequency images at different scales,
Li. Finally, the pixel gray-scale values are attenuated and enhanced according to the
strength of each pixel’s activity level to achieve noise reduction.

Figure 3. Image-enhancement system.
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3.1. Multiscale Diagnostic Detail Enhancement on DR Images

In DR image processing, there are often some finer details that enable physicians to
be more precise about diagnosis, but due to the large dynamic range of the whole image,
this information may not be seen very clearly when displayed. Therefore, it needs to be
enhanced before display. It is important to the enhancement of fine details in the detail
space of the image while preventing the noise from being overly amplified. As shown in
Figure 4.
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The specific method of image enhancement is to first decompose it into a set of high-
frequency images and a low-frequency image, and then multiply different pixel gray values
in the high-frequency image sequence by different gain coefficients. This aspect has already
been explored in [21]. Since the pixels whose high-frequency coefficients are close to zero
in the underlying high-frequency image basically correspond to some small noises in the
original image. If the gain curve in the above literature is used to enhance the image,
these fine noises in the image will be seriously amplified. The enhancement curve of the
following form is given in [21]:

y(x) =

aM x
xc

( xc
M
)p i f |x| < xc

aM x
|x|

(
|x|
M

)p
i f |x| > xc

(12)

where −M < x < M, 0 < xc << M; p is a parameter that controls the degree of
nonlinearity of the curve and also controls the maximum gain of the image; M is the
maximum gray absolute value of the high-frequency image; and a controls the minimum
gain of the image.

We therefore improve the gain curve proposed in [21] in order to increase the contrast
of the finest details in the image while suppressing the fine noise in the image, as shown
in Figure 5. Such a curve is necessarily a curve that rises sharply to a maximum at the
far point and then falls slowly. We suppress the part of the gain curve in [21] where the
absolute value of the coordinate is less than XC. We thus enhance without overamplifying
the noise.
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Figure 5. Improved gain function.

In Figure 5, the degree of freedom, p, is the parameter that controls the degree of the
contraction of the nonlinear gain curve and also controls the maximum gain value of the
image. However, such a curve is a change of a jumping nature due to the discontinuity at
the peak. It can lead to an image in which the gain at the peak is too strong and the gain near
the peak is not strong enough, and it can even happen that the region that was originally
of strong contrast becomes a region of weak contrast. For the above considerations, the
following form of gain curve is proposed:

y =
∣∣∣x/(A + Bx2)

∣∣∣ (13)

The image corresponding to this curve is shown in Figure 6.
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Figure 6. Basic form of the proposed gain function.

The horizontal coordinates of the curves in Figure 6 represent the coefficients of the
high-frequency images in the normalized detail space (i.e., the pixel gray values of the high-
frequency images), and the vertical coordinates represent the gain values corresponding to
the various high-frequency coefficients. The advantage of the curve is that it can control
the peak, ymax, of the curve and the horizontal coordinate corresponding to the maximum,
ymax. However, because it has only two degrees of freedom, this curve does not well control
the degree of nonlinearity of the curve rise and decay. Therefore, we add another variable,
C, to the metric, such that the functional form becomes:

y = x/(A + Bx + Cx2) (14)
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This function has three degrees of freedom, and by comparing it with (13), it is no
longer an even function, so now we can control a different decay for an increasing value of x.
By finding the extreme value of the function, it is easy to derive coordinate xmax =

√
A/C

when the maximum value is taken. The maximum value is ymax = 1/(2
√

A · C + B) and
the boundary value is yx=1 = 1

A+B+C . From this, the restrictive relationship between the
three variables of A, B and C can be obtained as follows.

C =
1/ymax − B

2 · xmax
(15)

A = x2
max · C (16)

where B can be freely selected to adjust the degree of curve attenuation. In this way,
when B is selected, both the maximum value of the curve and the horizontal coordinate
corresponding to the curve at the maximum value can be kept constant while the degree
of nonlinear decay of the curve changes. By using basic mathematical analysis, it can be
concluded that the smaller the value of B curve decay is faster. The curve finally decays to:

yx=1 =
1

A + B + C
=

2 · xmin

(x2
min + 1)/ymin − (xmin − 1)2 · B

(17)

We can also use another form of curve with three degrees of freedom:

y =
x

A + B · x1+p (18)

The constraints on A, B, and p are calculated from the corresponding coordinates,
xmax, and from the extreme values at the peaks, as follows:

A = p · B · xp+1
max (19)

B =
1

(p + peak)xp
max

(20)

Figure 7 shows a comparison of the attenuation effect of the two models.
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Figure 7. Comparison of two model curves.

The disadvantage of these two curves is that the linearity of the decay is not well
controlled. The reason is that the degree of the nonlinear decay of the curve and the final
point of the curve make up a pair of irreconcilable contradictions. The solution is to add
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another degree of freedom to the formula, which can control the degree of the nonlinearity
of the decay while fixing the decay point of the curve.

To achieve this, we combine the two models and add another degree of freedom, p, to
the function. The form of the curve then becomes:

y =
x

A + B · x + C · xp , x > 0 (21)

The curve is shown in Figure 8.
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The constraint relationship between A, B, C, and p is solved according to the fixed
peak and the corresponding coordinate, xmax, at the peak, as follows:

A = f (C, p) = C · (p− 1) · xp
max (22)

C = g(B, p) =
1/peak− B

p · xp−1
max

(23)

In Figure 8, in coefficients p = 1.5 and B =−3, B and p are used as two input coefficients
to adjust the drop point of curve decay and the decay amplitude.

In practice, different curves and different coefficients are used for each layer of high-
frequency images on the basis of empirically based noise estimation. The curves in [21]
or [22] are used directly at the coarser scales because of the continuous low-pass filtering in
the pyramid decomposition algorithm, which is already almost free of noise interference at
the coarser scales.

Of course, there are many other functions available, such as y =
[
xβ/(xβ+α + σβ)

]1/j,
and certain segmented curves [23], which are mostly not very controllable. In addition,
because of the discontinuity of the first-order derivatives of certain gain functions, the
enhancement generates some spurious information.

3.2. Adaptive Multiscale Noise Reduction in DR Images

The multiscale enhanced denoising algorithm based on Shannon–Cosine wavelet
divides the image into several sub-images, from high frequency to low frequency, so that
different scales naturally correspond to different details and structures at different sizes
in the original image. The highest-frequency sub-image corresponds to the finest detail of
the original image, the lowest-frequency sub-image corresponds to the rough description
of the original image, and so on. Then different detail images are processed separately, to
achieve the simultaneous enhancement of different sizes among the details in the image.
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The main steps of our method are as follows. First, the decomposed level-3 detail
image is used to calculate the neighborhood standard deviation of each pixel in the image
to generate an image recording the activity level of each pixel. The reason for choosing
level 3 is that, in general, the image decomposition is almost noiseless after level 3 because
of continuous Gaussian smoothing during the decomposition process. Nevertheless, we
performed low-pass filtering on the level-3 image to further reduce the noise effect. The
smoothed image was then used to calculate the activity level, vi, of each pixel on the basis
of the activity level in the image measured as the local standard deviation over a 3 × 3
pixel block given by:

vi(n, m) = sqrt

(
1
9

n+1

∑
i=n−1

m+1

∑
j=m−1

(x(i, j)− x(n, m))2

)
(24)

where x(n, m) is the average luminance level over the same 3 × 3 pixel support.
After the activity of each pixel is calculated, the pixel activity is interpolated to corre-

spond to each level of the Shannon–Cosine wavelet sequence. In order to better eliminate
boundary artifacts, mainly the bilinear interpolation algorithm is used. The noise atten-
uation is performed in each level of the image according to the strength of each pixel’s
activity. Pixels with particularly low activity basically correspond to the smooth part of
the image and can be attenuated for the purpose of noise removal, those with medium
activity correspond to the less distinct structures in the image and are maintained, and
those with maximum activity correspond to the more distinct structures and are main-
tained or enhanced. In practice, we attenuate the noise only in the first three levels of the
Shannon–Cosine wavelet sequence, 0, 1, and 2, because the noise is largely eliminated in
the subsequent levels because of multiple instances of Gaussian smoothing.

4. Multiscale Medical-Image-Enhancement and Noise-Reduction Simulation
4.1. Simulations for Multicale Diagnostic Detail Enhancement on DR Images

The gray values of different pixels in the high-frequency image sequence are multiplied
with the gain values obtained by the two methods, and the results are shown in Figure 9,
which shows the effect of the gain curve obtained by Equation (12) and the curve generated
by the improved algorithm of this study, namely Equation (21), on the tone-adjusted image.
Our curve has a more-obvious enhancement effect on the details. The curve before the
improvement is too large for noise amplification, resulting in subtle details’ being covered
up, especially some subtle textures in the skull and structures in the cranial cavity, which
will affect a doctor’s diagnosis.
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Figure 10 shows a comparison between the algorithm proposed in this paper and the
classical single-scale inverse sharpening mask algorithm.
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Figure 10. Comparison between the proposed method and the classical Sigle-scale unsharp masking
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inverse sharpening mask algorithm. (c) The enhancement algorithm proposed in this paper.

Figure 10a shows a cephalometric image, which was processed using the classical
single-scale inverse sharpening mask algorithm and the algorithm proposed in this paper,
separately. There are various measures of image quality, and because everyone has a
different understanding of image quality, the subjective visual effect is compared here
mainly from the physician’s diagnostic point of view. Figure 10b shows the processing
results of the classical single-scale inverse sharpening mask algorithm, and Figure 10c shows
the processing results of the enhancement algorithm proposed in this paper. Figure 10
shows that the image after processing by the inverse sharpening mask algorithm has clearer
texture details than the original image, but at the same time, the noise is larger, especially
that of the top of the head. Although the inverse sharpening mask algorithm provides a
certain improvement on the detail, at the same time it more seriously amplifies the noise.
The processing result of the algorithm proposed in this paper is clearer in both the texture
of the top of the skull and the details near the nasal cavity, and the noise is much smaller
than that of the inverse sharpening mask algorithm.

4.2. Simulations for Multiscale Noise Reduction in DR Images

The visual characteristics of the human eye determine that the human eye is much
more sensitive to noise in smooth regions than in structured regions. Any form of noise
reduction will have some impact on the image quality and even bring some false informa-
tion. Especially in the case of diagnostic-related structures, improper noise reduction may
bring the danger of a misdiagnosis. Therefore, noise attenuation should be conducted with
extreme caution.

While noise may exist in different frequencies of information, the most important
noise for diagnosis exists in the high-frequency domain. Because of the characteristics of
DR imaging, the noise points are generally particularly uniform fine particles of impulse
noise and some particularly obvious speckle noises, as shown in Figure 11.
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Figure 11. Noise in digital radiography image. (a) Enhanced abdominal image with uniform fine
particles (b) Enlarged detail section (c) Raw DR image of a local hand with speckle noise.

For the noise in Figure 11c, it is more remarkable that there is a clear, abrupt change
in the local neighborhood. In addition, only a few points in the local neighborhood of
the speckle do not differ much from its gray scale. According to this characteristic of this
speckle noise, we have designed the following algorithm to remove such noise:

1. Set the amplitude, a, of the speckle pulse and the size, S, of the local neighborhood.
2. Perform a point-by-point scan of all pixels in the image. Mark the currently scanned

pixel as the center pixel, c.
3. Count the number, n, of neighborhood points whose absolute value of difference

from the central pixel, c, is greater than a, and record the set, E, of those neighborhood
points whose absolute value of difference from the central pixel is greater than a.

4. If n is greater than a predetermined threshold, thr, then the gray-scale value of that
central pixel, c, is set to the average or statistical median of the pixels in the set (S-E).

Figure 10 shows the original localized digital X-ray image of the hand and the result
after removing speckle noise by using the algorithm in this paper.

Figure 12 illustrates the speckle noise rejection algorithm proposed in this paper. As
long as the appropriate initial coefficients have been set, those isolated speckle noises can
be well suppressed, without losing the details in the image. Because the local fluctuations
in the smoothed region are not large, the response to the mathematical concept is that the
variance in the local neighborhood is small. In addition, the local fluctuation of the detail
region is larger, which is reflected in the mathematical concept that the variance within the
local neighborhood is larger. We define the local intra-neighborhood variance or standard
deviation of a central pixel as the active degree of that pixel, and the active degree of a pixel
can also be replaced by a mathematical concept such as entropy for the local neighborhood
variance. According to the activity level of each pixel in the DR image, the activity level of
the pixel is bilinearly interpolated, and the noise is attenuated according to the intensity of
the activity level of the pixel. Figure 13 shows a comparison between a skull image and a
pixel-activity-level image.



Entropy 2022, 24, 1754 14 of 18Entropy 2022, 24, x FOR PEER REVIEW 15 of 19 
 

 

  
               (a)                                (b)   

Figure 12. Speckle noise removal from localized hand X-ray radiographic images. (a) Before removal 
of speckle noise (b) After removal of speckle noise. 

  
(a) (b) 

Figure 13. Comparison between the original image and an image of pixel activity. (a) Original image 
(b) Pixel-activity map calculated by the meth-od in this paper. 

The attenuation curve is schematically shown in Figure 14. The key points of attenu-
ation and gain are set according to the noise level of the DR image acquisition device. 
Then three-line segments are used to splice the curve of noise attenuation. 

 

Figure 12. Speckle noise removal from localized hand X-ray radiographic images. (a) Before removal
of speckle noise (b) After removal of speckle noise.

Entropy 2022, 24, x FOR PEER REVIEW 15 of 19 
 

 

  
               (a)                                (b)   

Figure 12. Speckle noise removal from localized hand X-ray radiographic images. (a) Before removal 
of speckle noise (b) After removal of speckle noise. 

  
(a) (b) 

Figure 13. Comparison between the original image and an image of pixel activity. (a) Original image 
(b) Pixel-activity map calculated by the meth-od in this paper. 

The attenuation curve is schematically shown in Figure 14. The key points of attenu-
ation and gain are set according to the noise level of the DR image acquisition device. 
Then three-line segments are used to splice the curve of noise attenuation. 

 

Figure 13. Comparison between the original image and an image of pixel activity. (a) Original image
(b) Pixel-activity map calculated by the meth-od in this paper.

The attenuation curve is schematically shown in Figure 14. The key points of attenua-
tion and gain are set according to the noise level of the DR image acquisition device. Then
three-line segments are used to splice the curve of noise attenuation.
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Figure 15 shows the comparison of the proposed algorithm in this work with the
classical median filter and the classical average filter.
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Figure 15. Comparison between the proposed denoising method, neighbor averaging filtering, and
median filtering. (a) The magnified bone texture part (b) After noise reduction by the algorithm in
this paper (c) After mean filtering process (d) After median filtering process (e) The smoothed area of
the magnification (f) After processing by the algorithm in this paper (g) After mean filtering (h) After
median filtering.

As can be seen in Figure 15, the classical filtering method loses details in the bone
texture and in important structures when filtering the smoothed region. In addition, the
method proposed in this paper can keep the detail region in the DR image and suppress
the noise content of the smoothing threshold.

In the work, artificial noise (pretzel noise with an intensity of 0.001 and Gaussian
noise with mean and variance of 0 and 0.001, respectively) was added to the original
image to conduct a quantitative comparison. The peak signal-to-noise ratio (PSNR) and
structural similarity (SSIM) index of the noise-reduced enhanced images obtained by
different methods are given in Table 1. These two parameters are commonly used indicators
to evaluate image quality. The enhancement and denoising effects of different methods
when the noise content is increased are given in Table 1.

Table 1. Objective indicator of image-enhancement and noise-reduction quality.

Algorithms PSNR SSIM

HE 28.8677 0.6946

CLAHE 32.2087 0.8426

Wavelets 30.4563 0.5261

This study 36.9548 0.8297

An analysis of the results presented in Table 1 indicates that among various noise-
reduction methods, when the two parameters of PSNR and SSIM are compared, although
the SSIM index CLAHE algorithm achieved the best calculated result of 0.8426, which is
0.0129 higher than the algorithm of this study, the result of PSNR shows that the algorithm
of this paper has a clear advantage and obviously achieved a good result of 36.9548.

5. Conclusions

Current research has provided a viable and stable algorithm for digital X-ray image
enhancement, which has been implemented by using specific development tools. However,
a mature medical-image-processing algorithm often requires a long refinement process and
needs to be based on a large number of clinical experiments. The tone-curve-generation
algorithm discussed in this paper results only in an improvement of the overall contrast
of the image without adjusting for the most likely areas of disease, and in a few cases, the
tone adjustment of some images is less than optimal. Adaptive tone-curve adjustment can
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take advantage of the diagnostic information that a doctor needs on different tissues in
different parts of the body to better highlight the parts that are relevant to the diagnosis. On
the other hand, the multiscale noise-reduction part of the DR image can also incorporate
some kind of noise-estimation mechanism to more appropriately select the threshold for
noise attenuation and conduct adaptive image noise reduction. In addition, the tone-
curve-generation algorithm studied in this paper is only for linear A/D conversions,
and more-suitable algorithms can be investigated for images using different types of
A/D conversions.

DR image post-processing plays a significant role in the diagnosis of medical person-
nel. In this paper, a systematic and in-depth study of existing DR image post-processing
algorithms was conducted, and a multiscale image noise-reduction and multiscale image-
enhancement algorithm based on Shannon–Cosine wavelet transform decomposition was
proposed according to the characteristics of DR images. Through visual comparison, it was
shown that the algorithm can achieve better results than the traditional inverse sharpening
mask algorithm in terms of both detail enhancement and noise suppression.
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