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Abstract: The MODIS Aqua and Terra Normalized Difference Vegetation Index (NDVI) and Enhanced
Vegetation Index (EVI) time series acquired during nearly two decades (2000 to 2020) covering the area
burned by the Camp Fire (California) in 2018 is investigated in this study by using the multifractal
detrended fluctuation analysis in relation to the recovery process of vegetation after fire. In 2008, the
same area was partially burned by two wildfires, the BTU Lightning Complex Fire and the Humboldt
Fire. Our results indicate that all vegetation index time series are featured by six- and twelve-month
modulating periodicities, with a larger spectral content at longer periods for two-fire-affected sites.
Furthermore, two fires cause an increase of the persistence of the NDVI and EVI time series and an
increase of the complexity, suggesting that the recovery process of vegetation dynamics of fire-affected
sites is characterized by positive feedback mechanisms, driving the growth-generating phenomena,
which become even more effective in those sites affected by two fires.

Keywords: wildfires; remote sensing; satellite time series; multifractality; power spectrum

1. Introduction

The long-term monitoring of the status of vegetation cover and its variations represents
a crucial issue to effectively manage ecosystem functionality and to design efficient strate-
gies for the mitigation of disturbance events, such as drought, wind, storm, wildfire, etc.,
that affect the environment and ecosystems [1,2]. Wildfires are among the most important
factors that disturb ecosystems worldwide [3–5], which can affect the evolution of surface
biomass [6,7]. Thus, characterizing the vegetation dynamics contributes to the modeling
and evaluation of fire impacts on vegetation and the variations of inner mechanisms [8].

In the last decades, severe wildfires occurred repeatedly in several zones world-
wide [9–11] for several reasons, including global warming, climate change, and anthropic
activities. The increased number of fires has significantly affected the growth and succes-
sion of vegetation communities. Thus, the evaluation of the vegetation reaction to fires
has become an important scientific topic [12], because the variations of the vegetation
communities play a primary role in the balance of the land surface and ecosystem (such as
plant composition and production, cycle of carbon and water, and formation and change of
ecological structure) [13].

The evaluation of the effects of wildfires on vegetation dynamics requires investigation
on various spatiotemporal scales. To this end, satellite remote sensing is widely used
as a fundamental means to investigate the dynamics of vegetation at different regional
scales and time ranges after the occurrence of a fire [14–16]. The advantage of satellite
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remote sensing is that it can provide massive data on the region of interest with long
temporal and wide spatial observations [17]. Numerous environmental research and
analyses were significantly improved by taking advantage of the satellite data [18]. In
particular, the Moderate-Resolution Imaging Spectroradiometer (MODIS) sensors of the
Aqua and Terra satellites have recorded the long-term global observations for nearly
two decades. A series of vegetation indices (VIs) product suites, the MOD13Q1 and
MYD13Q1, for example [19], were generated to monitor and quantify the biomass status
on the basis of vegetation spectral properties. As the most widely used VIs, the time series
of the Normalized Difference Vegetation Index (NDVI) and the Enhanced Vegetation Index
(EVI) can efficiently describe features and changes of surface biomass, thus reflecting the
composition, distribution, and activities of the vegetation communities [20]. The higher the
value of these two VIs, the lusher the terrestrial biomass. The characteristics of NDVI and
EVI make the series data of them from MODIS sensors well-suitable for monitoring the
vegetation changes caused by fires.

Vegetational time dynamics can reflect and describe the complex natural phenomenon,
which can be even more complex when wildfires occur due to the interactions among the
vegetation, soil, and atmosphere, as well as a response to anthropic activities, climatic
change, and ecosystem succession [21]. Thus, investigating the satellite VI time series by
appropriate statistical methodologies could contribute to understanding the time dynamics
of vegetation, allowing a detailed description of vegetational trends [22]. Fractal analysis
has been employed to quantitatively interpret the complexity of vegetation affected by
fires [23]. Telesca et al. [24,25] applied the Detrended Fluctuation Analysis (DFA) to identify
the persistence induced by fires using the multi-temporal NDVI data of satellite SPOT-
VEGETATION. Li et al. [26] also applied DFA to the series of MODIS NDVI to assess the
influence of fires on vegetation covers. However, due to the complexity of vegetational
processes, an exhaustive characterization of vegetation dynamics can be accomplished by
using multifractal methods. Therefore, in this study, we also employed the Multifractal
Detrended Fluctuation Analysis (MFDFA) [27], which is the multifractal extension of the
DFA, to investigate more deeply the vegetation processes taking place in sites burned by
one or two fires.

In this paper, we investigate the changes of vegetation time dynamics provoked by
one or two wildfires using the MFDFA. A total of 572 pixels inside the burned area of the
Camp Fire were explored with the Aqua and Terra MODIS NDVI and EVI series for the
characterization of vegetation features affected by wildfires.

2. Materials and Methods
2.1. Data Preprocessing

The study area is that burned by the Camp Fire that occurred in California, USA,
in 2018 (Figure 1). Other wildfires occurred between 2000 and 2020, burning part of the
area affected by the Camp Fire. In particular, two wildfires, the BTU Lightning Complex
Fire (hereafter indicated as Btu Fire) and the Humboldt Fire, occurred in 2008, burning an
area that largely overlapped that burned by the Camp Fire. The detailed information of
the three wildfires is provided in Table 1. Aiming at characterizing vegetation dynamics
under the disturbance of wildfires, we investigated the time dynamics of MODIS NDVI
and EVI satellite series. A total of 572 pixels were randomly extracted from the study
area by using the MODIS and VIIRS Land Products Global Sub-setting and Visualization
Tool (https://doi.org/10.3334/ORNLDAAC/1379): 280 pixels affected only by 1 fire (the
Camp Fire), 210 pixels affected by 2 fires (Camp Fire and Btu Fire, or Camp Fire and
Humboldt Fire), and 82 pixels not affected by any fire. Each pixel represents an area of
250 × 250 square meters.

https://doi.org/10.3334/ORNLDAAC/1379
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Figure 1. Land covers of the study area and the burned area of the Camp Fire (pink boundary), Btu
Fire (dark red boundary), and Humboldt Fire (blue boundary).

Table 1. Characteristics of the three wildfires that occurred in the study area.

Wildfire Event Duration Cause Burned Area (Acres) Tree Coverage (%)

Humboldt Fire 11–21 June 2008 Arson 23,344
Grasslands 54.59%,
Savannas 32.02%,

Woody Savannas 12.86%

Btu Fire 21 June–29 July 2008 Lightning strikes 57,815

Woody Savannas 59.94%,
Evergreen Needleleaf Forests

23.78%,
Savannas 7.29%,

Grasslands 5.71%

Camp Fire 8–25 November 2018 Electrical transmission
lines 153,336

Evergreen Needleleaf Forests
37.20%,

Woody Savannas 31.20%,
Grasslands 16.06%,

Savannas 9.38%

Based on the Terra and Aqua combined MODIS Collection 6 Land Cover Product
MCD12Q1 [28], downloaded from the NASA Earthdata website (https://ladsweb.modaps.
eosdis.nasa.gov/), the annual global land cover map at 500 m spatial resolution was
generated following the classification scheme of the International Geosphere-Biosphere
Program (IGBP), which is divided into 17 land cover types. Figure 1 shows the land covers
of the study area and the burned areas of the three wildfires. The fire perimeters were
obtained from the National Interagency Fire Center (NIFC) website (https://data-nifc.
opendata.arcgis.com/), an open data site to share the maps and data related to wildland
fire activities across the USA.

Two Vegetation Indices (VIs), the NDVI and EVI, were employed to investigate the
detection of the fire-affected pixels and to quantitatively characterize the vegetation status.
The vegetation biomass is strongly reflected in the NIR spectral region but highly absorbed
in the visible red region [29]. By a normalized ratio combination of these two spectral
bands, the NDVI can reduce the noise correlated between bands, the influences induced

https://ladsweb.modaps.eosdis.nasa.gov/
https://ladsweb.modaps.eosdis.nasa.gov/
https://data-nifc.opendata.arcgis.com/
https://data-nifc.opendata.arcgis.com/
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by the aerosol, atmosphere, and sun, as well as the errors related to the calibration and
equipment, to some extent [30]. The NDVI is defined as follows:

NDVI =
ρNIR − ρred
ρNIR + ρred

, (1)

where ρNIR denotes the atmospherically corrected reflectance in the spectral bands of NIR
(near infrared) and ρred is that of the visible red band. The reflectance values are derived
from the satellite data. The vegetation area affected by fires produces an evident decrease
of the NDVI, since the reflectance of the NIR band decreases and the reflectance of the red
band increases [31].

Based on the formulation of NDVI, the EVI incorporates the visible blue spectral band
and the adjustment coefficients, which is defined as follows:

EVI = G× ρNIR − ρred
ρNIR + C1 × ρred −C2 × ρblue + L

, (2)

where ρblue represents the atmospherically corrected reflectance of the visible blue spectral
domain, and the coefficients G, C1, C2, and L are set to 2.5, 6, 7.5, and 1, respectively,
according to the research in [30,32], among which L is the canopy background adjustment
to solve the transmission of nonlinear, differential NIR, and red radiant through a canopy,
C1 and C2 are the coefficients of the aerosol resistance term, the blue band is used to correct
the aerosol influences of the red band, and G is the gain factor. Since the atmospheric
aerosol scattering in the visible blue band is higher than that in the visible red band, the
reflectance difference between these two bands can be used to stabilize the index value at
different aerosol concentrations [30]. Additionally, the EVI can remove the influences of
vegetation canopy and background soil variations using the equation formulation with the
adjustment coefficients.

The data of NDVI and EVI time series [33] were derived from the MODIS VI products
MYD13Q1 [34] and MOD13Q1 [35], spanning more than twenty years from 2000 to 2020.
The VI products were designed to obtain global VI data by adopting the optimal pixel
value over a 16-day frequency at a 250 m spatial resolution [19]. The detailed information
of MODIS NDVI and EVI time series are reported in Table 2.

Table 2. Characteristics of the analyzed MODIS NDVI and EVI series.

VI Product VI Spatial
Resolution (m)

Frequency
(Days)

Temporal Extent
(Year) Sensor/Satellite

MOD13Q1 NDVI, EVI 250 16 2000–2020 MODIS/Terra

MYD13Q1 NDVI, EVI 250 16 2002–2020 MODIS/Aqua

Due to the cloud, atmosphere, or bidirectional reflectance distribution function (BRDF)
effects or a combination of all these factors [35], some anomalous values appeared in the
NDVI and EVI time series. Therefore, a data pre-processing procedure was performed to
remove noise and outliers based on: (1) the quality assessment (QA) information acquired
from the pixel reliability index, that is the summary quality layer of MODIS VI products,
and (2) the VI quality data that describe the pixel conditions under the process of acquisition
and processing [20]. After the data pre-processing procedure, a very low percentage of
missing data characterizes the data, in particular, 2.73%, 1.63%, and 1.13% for the Aqua
satellite, and 1.51%, 0.89%, and 0.89% for the Terra satellite for the three types of study sites
(two fires, one fire, and no fire, respectively).

Figure 2 shows, as an example, the NDVI and EVI time series of one pixel for each
study site, each type of VI, and each satellite. It is clearly visible that the VIs for one- and
two-fire sites have a sharp decrease when wildfires occur, and then gradually increase after
the fire.
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Figure 2. Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) time
series for a pixel affected by two fires (a), one fire (b), and no fire (c). Upper panels: Terra MODIS
collection; Lower panels: Aqua MODIS collection.

Before applying the MFDFA, we investigated the spectral properties of the pixel time
series. Figure 3 shows, as an example, the periodogram and its 95% confidence curve of
one Aqua EVI pixel time series recorded in a fire-unaffected site, one in a site affected



Entropy 2022, 24, 1748 6 of 22

by one fire, and one in a site affected by two fires. The 95% confidence curve for each
periodogram was calculated by applying the random shuffling method: given the pixel
time series, 5000 random shuffles were generated; for each shuffle, the periodogram was
calculated; then, at each period, a distribution of periodogram values was obtained: the
95th percentile of such distribution represents the 95% confidence level for that period.
Therefore, the 95% confidence curve was obtained enveloping all the 95th percentiles. A
periodogram value is, then, significant at 95% if it is larger than the corresponding value of
the 95% confidence curve.
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Figure 3. Periodogram of an Aqua EVI pixel time series of a site not affected by any fire (a), affected
by one fire (b), and affected by two fires (c). The dotted lines represent the 95% confidence level
(see text for details). Two main periodicities at about 6 and 12 months are significant at 95%. They
represent the meteo-climatic fluctuations.

The example shown in Figure 3 is rather emblematic of the spectral behavior of all
the analyzed pixel time series: we can clearly see that a few periods were significant at
95%. Except the long period band, especially clear in one- and two-fire cases, two main
periodicities were significant at 95% at about 6 and 12 months.

Figure 4 shows the mean periodogram of the pixel time series analyzed in this study.
Besides the presence of the two main periodicities, the long period band for periods above
about 15–20 months, corresponding to the low-frequency band of the mean periodogram,
is more intense for fire-affected pixels than that of fire-unaffected ones; in particular, pixels
affected by two fires show a more powerful periodogram at long periods with respect to
pixels affected by only one fire. The more intense value of the periodogram at long periods
indicates a larger signal power at these time scales, and thus a larger correlation structure
for long periods. On the contrary, the almost flat behavior of the mean periodogram for fire-
unaffected pixels suggests a more random structure of these pixels that are characterized by
a lower memory phenomenon than fire-affected pixels. Furthermore, the relatively larger
value of the mean periodogram at long periods observed for pixels affected by two fires
than that of those affected by only one fire could indicate a larger correlation structure and
a larger “recovery efficiency” of sites affected by two fires.

Since the identified periodicities could hide the inner dynamics of the pixel time series,
and thus affect the multifractal results, they were removed by the Fourier filtering method.
Figure 5 shows, as an example, the residual pixel time series after removing the 95%
significant periodicities (at about 6 and 12 months) from the series, whose periodograms
are shown in Figure 3.

Figure 6 shows the residual NDVIr and EVIr series corresponding to the NDVI and EVI
series shown in Figure 2, after removing the periodicities significant at 95% (as explained
above). It can be found that compared to the NDVI and EVI time series, the periodic
seasonal variations of the residual series were rather reduced, especially for fire-unaffected
sites and those affected by one fire. The immediate changes provoked by fires were,
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however, retained. The further statistical analyses were performed on the NDVIr and
EVIr series.
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Figure 5. Residuals of the pixels, whose periodograms are shown in Figure 3, after removing the two
periodicities at 6 and 12 months by Fourier filtering.

2.2. The Multifractal Detrended Fluctuation Analysis (MFDFA)

One of the dynamical features to identify in a time series is the persistence. A time
series is persistent when an increase or decrease of the series tends to be followed by a
variation of identical sign, anti-persistent when an increase or decrease of the series tends
to be followed by a variation of opposite sign, or purely random if the samples of the series
are independent and completely uncorrelated among them. Thus, identifying the type
and degree of persistence/anti-persistence in a process could convey information on what
type of inner mechanisms would govern the dynamics of that process. The Detrended
Fluctuation Analysis (DFA) is a method that allows to detect persistent/anti-persistent
behavior in nonstationary time series. However, persistence is not sufficient to completely
characterize the dynamics of a complex process. Kantelhardt et al. [27] developed an
extension of the DFA, the Multifractal Detrended Fluctuation Analysis (MFDFA), which is
an efficient method for investigating those particular features of the time dynamics of a
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series (such as heterogeneity, intermittency, and different roles played by small and large
fluctuations) that define the so-called multifractality of a series.
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Figure 6. Residual Normalized Difference Vegetation Index (NDVIr) and Residual Enhanced Veg-
etation Index (EVIr) time series corresponding to the example pixel time series shown in Figure 2,
affected by two fires (a), one fire (b), and no fire (c). Upper panels: Terra MODIS collection; Lower
panels: Aqua MODIS collection.
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If the series x(i), for i = 1,2,. . . ,N, has mean xave, by integrating it, we obtain the
profile y(i):

y(i) =
i

∑
k=1

[x(k)− xave], (3)

Firstly, we divide the profile y(i) into Nm = int(N/m) contiguous boxes of identical size
m. In case N is not a multiple of m, a short part of the series could remain at the end; thus,
the same procedure is applied from the end of the profile y(i). Then, in each of the 2Nm
obtained segments, a least square method is performed to fit the profile with a polynomial,
and the following variance is calculated:

F2(m, ν) =


1
m

m
∑

i=1
{y[(ν− 1)m + i]− yν(i)}2, ν = 1, . . . , Nm

1
m

m
∑

i=1
{y[N − (ν− Nm)m + i]− yν(i)}2, ν = Nm + 1, . . . , 2Nm

, (4)

where yν(i) is a p-degree polynomial that fits the profile in the box ν; and removes the trends
of order until p in the profile, and until p − 1 in the original time series.

Then, the qth order fluctuation function Fq(m) is computed as:

Fq(m) =

{
1

2Nm

2Nm

∑
υ=1

[
F2(m, υ)

] q
2

} 1
q

, (5)

where q > 0; in particular, q > 0 enhances the large fluctuations, while q < 0 enhances the
small ones. Changing the scale m, the fluctuation function Fq(m) increases with m. If the
series is characterized by long-range power-law correlations, the Fq(m) increases with m as
a power-law:

Fq(m) ≈ mhq , (6)

where hq is called the generalized Hurst exponent. For q = 0, F0(m) is calculated as follows:

F0(m) ≡ exp

{
1

4Nm

2Nm

∑
ν=1

ln[F2(m, ν)]

}
≈ mh0 , (7)

from which the exponent h0 is obtained. For q = 2, the MFDFA becomes the DFA and the
exponent h2 is the scaling exponent that is estimated through the DFA. The exponent h2
can be used to quantitatively characterize the persistence of a time series: if it is lower than
0.5, the series is anti-persistent; if it is higher than 0.5, the series is persistent; if it is equal to
0.5, the series is random.

If the exponent hq is nearly constant with q, the series is called monofractal, indicating
that the scaling behavior of the small and large fluctuations is approximately identical. If
the small and large fluctuations have different scaling behaviors, the hq decreases with q,
which indicates that more exponents are necessary to describe the fractality of the series,
that in this case is multifractal with a more complex structure.

The degree of multifractality can be investigated by means of the multifractal spectrum.
From the following relationships (also known as the Legendre transform):

τ(q) = qhq − 1, (8)

and
α =

dτ

dq
, (9)

the multifractal spectrum f (α) is calculated as:

f (α) = qα− τ(q), (10)
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where α is the so-called Hölder exponent. The multifractal spectrum furnishes an indication
of the relative dominance of the various scaling exponents in the series and is typically a
single-humped shaped. It can be fitted by a second-degree polynomial:

f (α) =
2

∑
i=0

ci(α− α0)
i, (11)

where α0 is the maximum. The width, W, of the multifractal spectrum is defined as:

W = αmax − αmin, (12)

where αmax and αmin are the two zeros of the fitted second-degree polynomial. W is often
employed to quantify the multifractality in a series. The larger the value of W, the higher the
multifractal degree of the series. Another parameter describing the multifractal spectrum is
the asymmetry, R, defined as:

R =
∆αL − ∆αR
∆αL + ∆αR

. (13)

where ∆αL = α0 − αmin and ∆αR = αmax − α0. R < 0 (>0) indicates right-skewness (left-
skewness) of the spectrum [36]. The right-skewness (left-skewness) indicates that the
dynamics of the series is governed by the small (large) variations.

2.3. The Binomial Multifractal Model

Since the analyzed satellite data have a rather short length and present gaps, we firstly
checked the performance of the MFDFA on the time series generated by the binomial
multifractal model (BMM) with similar length and gap percentage. The BMM, whose
multifractal behavior is theoretically known, is described below. Given 0.5 < a < 1, N = 2k,
and ν = 1, . . . ,N, the BMM is defined by:

xν = an(ν−1)(1− a)k−n(ν−1) (14)

where n(ν) is the number of digits equal to 1 in the binary representation of the index ν. For
this model, hq has the following theoretical expression [27]:

hq =
1
q
−

ln
[
aq + (1− a)q]

qln(2)
(15)

We applied the MFDFA with q ranging from −10 to 10 and scale m from 10 to 1
4 of

the size of the series generated by the BMM. Figure 7 shows the fluctuation functions
F−10 and F10 for the BMM series generated with a = 0.75 and length N = 16,384 (k = 14)
(Figure 7a) and N = 512 (k = 9) (Figure 7b). In particular, the length of the last binomial
series is comparable with that of the data analyzed in this study.

The fluctuation functions plotted on log–log scales show a nice straight behavior,
despite the presence of some spikes, especially for positive q. There is also a good matching
between the theoretical hq spectrum and those obtained for the simulated binomial series,
although such matching is generally better for the longer series and for q < 0 (Figure 8).

We also used the BMM for analyzing the effects of missing data on the multifractality
of the time series. In fact, since MFDFA requires that the time series do not present gaps,
in our simulations, we considered four types of gap filling: (1) eliminating the gap and
stitching together both the neighbors, (2) filling the gap with the nearest non-missing value,
(3) filling the gap with a linear interpolation function, and (4) filling the gap with a cubic
spline interpolation function.



Entropy 2022, 24, 1748 11 of 22Entropy 2022, 24, x FOR PEER REVIEW 11 of 23 
 

 

  
(a) (b) 

Figure 7. Fluctuation functions for q = −10 and q = 10 of the binomial series generated with a = 0.75 
and (a) N = 214 and (b) N = 29. 

The fluctuation functions plotted on log–log scales show a nice straight behavior, de-
spite the presence of some spikes, especially for positive q. There is also a good matching 
between the theoretical hq spectrum and those obtained for the simulated binomial series, 
although such matching is generally better for the longer series and for q < 0 (Figure 8). 

 
Figure 8. The hq spectrum of the binomial series. The comparison is between the theoretical case for 
a = 0.75 and the simulated cases with size N = 214 and N = 29. 

We also used the BMM for analyzing the effects of missing data on the multifractality 
of the time series. In fact, since MFDFA requires that the time series do not present gaps, 
in our simulations, we considered four types of gap filling: (1) eliminating the gap and 
stitching together both the neighbors, (2) filling the gap with the nearest non-missing 
value, (3) filling the gap with a linear interpolation function, and (4) filling the gap with a 
cubic spline interpolation function. 

Figure 9 shows the hq spectrum of a series simulated by the BMM, with a = 0.9 and 
length N = 512 = 29 (blue circles). From this series, 100 replicas were derived, but with 25 
gaps (i.e., 5% of the length of the series) randomly placed along the series (thus, each rep-
lica is different from the other for the position of the gaps). Then, the gaps of each replica 

Figure 7. Fluctuation functions for q = −10 and q = 10 of the binomial series generated with a = 0.75
and (a) N = 214 and (b) N = 29.

Entropy 2022, 24, x FOR PEER REVIEW 11 of 23 
 

 

  
(a) (b) 

Figure 7. Fluctuation functions for q = −10 and q = 10 of the binomial series generated with a = 0.75 
and (a) N = 214 and (b) N = 29. 

The fluctuation functions plotted on log–log scales show a nice straight behavior, de-
spite the presence of some spikes, especially for positive q. There is also a good matching 
between the theoretical hq spectrum and those obtained for the simulated binomial series, 
although such matching is generally better for the longer series and for q < 0 (Figure 8). 

 
Figure 8. The hq spectrum of the binomial series. The comparison is between the theoretical case for 
a = 0.75 and the simulated cases with size N = 214 and N = 29. 

We also used the BMM for analyzing the effects of missing data on the multifractality 
of the time series. In fact, since MFDFA requires that the time series do not present gaps, 
in our simulations, we considered four types of gap filling: (1) eliminating the gap and 
stitching together both the neighbors, (2) filling the gap with the nearest non-missing 
value, (3) filling the gap with a linear interpolation function, and (4) filling the gap with a 
cubic spline interpolation function. 

Figure 9 shows the hq spectrum of a series simulated by the BMM, with a = 0.9 and 
length N = 512 = 29 (blue circles). From this series, 100 replicas were derived, but with 25 
gaps (i.e., 5% of the length of the series) randomly placed along the series (thus, each rep-
lica is different from the other for the position of the gaps). Then, the gaps of each replica 

Figure 8. The hq spectrum of the binomial series. The comparison is between the theoretical case for
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Figure 9 shows the hq spectrum of a series simulated by the BMM, with a = 0.9 and
length N = 512 = 29 (blue circles). From this series, 100 replicas were derived, but with
25 gaps (i.e., 5% of the length of the series) randomly placed along the series (thus, each
replica is different from the other for the position of the gaps). Then, the gaps of each
replica were filled by using each one of the four methods indicated above. We calculated
the hq spectrum for each replica and averaged among them all. The mean hq spectrum
of the replicas for each of the four filling methods is very similar to that of the original
binomial series. The average root-mean-squared error (RMS) between the hq spectrum of
each replica and the hq spectrum of the binomial series is shown in Figure 10, along with its
standard deviation, varying the percentage of missing data and the parameter a.
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Figure 9. Comparison among the mean hq spectra of the binomial series with different gap filling for
a = 0.9, size N = 29, and 5% of gap percentage.
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The mean RMS was lower for a smaller gap percentage and for linear gap filling.

3. Results

The satellite data analyzed in this study presented a maximum gap percentage of 8%.
Thus, based on the results obtained for the binomial multifractal model, we filled the gaps
of the residual satellite time series by linear interpolation. Another preliminary analysis
consists in selecting the order m of the detrending polynomial and the maximum order q.

Since the detrending p-degree polynomial removes all the trends in the profile up to
order p, if the detrending polynomial of degree p + 1 leads to a fluctuation function similar
to that obtained by detrending through the polynomial of degree p, this means that the
series is only characterized by trends up to order p, and thus the polynomial of degree p
is sufficient to properly detrend the series. Thus, we calculated the fluctuation functions
for different degrees, p, from 1 to 5. As an example, the fluctuation functions for q = 10
and q = −10 of some pixels are shown in Figure 11. Concerning the selection of the degree,
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p, we can see that for all the pixels, the fluctuation functions tended to overlap for p ≥ 4,
indicating that p = 4 is sufficient to detrend the data.
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Figure 11. Fluctuation functions for q = 10 (a) and q = −10 (b) of the residual NDVI of a pixel affected
by two fires (polynomial degrees, p, from 1 to 5). (c) Fluctuation functions for q = −10 of the residual
EVI of a pixel affected by two fires. (d) Fluctuation functions from q = −10 to q = 10 for the residual
NDVI of an Aqua pixel not affected by any fire. (e) Fluctuation functions from q = −10 to q = 10 for
the residual EVI of a Terra pixel not affected by any fire.

It is interesting to focus on some features that characterize the fluctuation functions of
some pixels. Figure 11a shows the fluctuation function for q = 10 and p = 1 that, although
characterized by a general linear trend, presents few significant drops at some specific scales.
This particular fluctuation function describes the scaling behavior of large fluctuations of
the series. The drops indicate that the deviation from the linear fit at the scales where they
occur is small compared with that at the other scales, and this means that there are scales at
which the large deviations of the series are better fitted by a linear trend than the others.
Increasing the degree of the detrending polynomial p, this “drop effect” becomes less and
less visible and the scaling appears more homogeneous. It should be highlighted that the
drops do not affect the linear trend, indicating that scaling exists with an exponent given
by the slope of the regression line. Figure 11b shows the fluctuation functions for q = −10
of the same pixel as that in Figure 11a. This fluctuation function describes the scaling of
the small fluctuations of the series. The “drop effect” seen for q = 10 was not present; the
scaling, however, was not uniform at all scales; in fact, we can observe nearly two scaling
regimes at two different scale ranges, with a cutoff at about m = 80 corresponding to about
3.3 years. The cutoff may be related to the presence of a cycle of the same period that
modulates the data at long-range scales. Its evidence for a negative q indicates that such
cycle is more efficient in modulating the small fluctuations than the large ones. Figure 11c
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shows, instead, fluctuation functions for q = −10 that behaved nearly linearly in log–log
scales for all the degrees, p, and all scales. However, some pixels are not characterized
by apparent scaling; for instance, Figure 11d shows the fluctuation function of a pixel
where the scaling was visible for all the q values, while other pixels, such as that shown in
Figure 11e, did not show clear scaling for any q and scale.

Due to such a variety of cases, we needed to define an objective criterion, by which
only those series with fluctuation functions approximately linear on log–log scales were
selected and used for the analysis. The coefficient of determination, R, is a parameter that
takes the value of 1 for a perfect linear fitting and 0 for totally scattered points. Thus, as a
criterion for selecting pixels to investigate for multifractality, we can define the following:
given a series, if all the fluctuation functions have R larger or equal to a threshold T, the
series is kept, otherwise, it is discarded.

For each of the 572 pixels, we calculated the fluctuation functions within the range
of scales m from 10 to 80, for q between −10 and 10, with a q-step = 1 and a degree of
detrending polynomial p = 4. Then, for each function, we calculated R. Figure 12 shows, as
an example, the distribution of R for each q and each of the 82 series of the collection of Aqua
NDVI data with no fire occurrence, where T = 0.9 (Figure 12a) and T = 0.95 (Figure 12b). In
both cases, the larger R was for a relatively smaller q-range around 0.
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Figure 12. Distribution of the coefficient of determination, R, for each series and each q value for
the data of Aqua NDVI with no fire occurrence for (a) T = 0.9 and (b) T = 0.95. The white boxes
correspond to R values smaller than the threshold.

The selection of the useful pixels depends on the threshold and on the q-range. In gen-
eral, a higher threshold and a larger q-range lead to more pixels to be discarded; for instance,
considering the collection of Aqua-NDVI no-fire data, for T = 0.90 and q-range = [–10, 10],
only 59 useful pixels over 82 had R > 0.9 for each fluctuation function, while for T = 0.95,
there were only 16. However, if we restrict the q-range to [−5, 5], 73 pixels were selected
for T = 0.90 and 39 for T = 0.95. Thus, a compromise is necessary between the q-range,
that needs to be sufficiently large to be able to detect multifractality, and the threshold,
T, that needs to be sufficiently high to guarantee a good linear fitting. This compromise
determines the number of useful pixels, which needs to be sufficiently large for a reliable
statistical analysis.

Based on these considerations, we fixed T = 0.95 and q-range = [−5, 5]. With these
parameters, we selected the useful pixels. The total number of useful pixels for each sensor
and each type of site is reported in Table 3.
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Table 3. Number of useful pixels.

Aqua-EVI Aqua-NDVI Terra-EVI Terra-NDVI

No Fire 54 39 37 48
One Fire 136 62 174 113
Two Fires 149 80 184 138

After selecting the pixels with R criterion, we performed the MFDFA.
First, we investigated the persistence/anti-persistence of the data through the expo-

nent h2. Figure 13 shows the box plot of h2 for the selected pixel time series of the three
types of sites. It can be observed that the series tended to be more persistent when the site
was affected by two fires, while they tended to be characterized by a random dynamic if
the site was fire-unaffected.
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Figure 13. Box plots of h2 for (a) residual NDVI and EVI of MODIS/Aqua and (b) residual NDVI and
EVI of MODIS/Terra.

This pattern was common to all types of the investigated data, except for Terra EVI
and Terra NDVI, where sites affected by only one fire and those not affected by any fire
showed almost identical persistence characteristics.

We applied the two-sample Student’s t-test to check whether the <h2> of the three
types of sites for each satellite were significantly different. Considering the difference as
significant if the p-value < 0.05, we found that most of the comparisons were significantly
different (Table 4). Moreover, as shown by the box plots (Figure 13), the increasing trend
of h2 from fire-unaffected sites to two-fire-affected sites was consistent with the spectral
behavior of the pixel time series analyzed by means of the periodogram. The larger value
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of h2 for two-fire-affected sites indicates a larger strength of the long-range correlation
structure consistent with the relatively larger value of the periodogram at long periods
observed for pixels affected by two fires.

Table 4. p-value of the Student’s t-test for <h2>.

Aqua-EVI Aqua-NDVI Terra-EVI Terra-NDVI

No Fire–One Fire 0.073337 0.001878 0.666646 0.778663
One Fire–Two Fires 1.83 × 10−23 0.325468 6.25 × 10−10 6.94 × 10−14

No Fire–Two Fires 3.20 × 10−16 2.06 × 10−6 0.001233 3.14 × 10−5

The hq range, which is the difference between the largest and the smallest hq, could be
used to discriminate between monofractal and multifractal signals, since a very small value
of the hq range indicates that small and large fluctuations of the series are almost similarly
scaled. Consistent with [37], for an hq range > 0.15, the series can be considered multifractal.
Therefore, the calculation of the multifractal parameters was performed only for those pixel
residual series with an hq range > 0.15. Figure 14 shows, as an example, the multifractal
spectrum of a MODIS Terra NDVIr series of a site not affected by any fire. The spectrum
is characterized by the well-known parabolic shape, whose width, W, asymmetry, R, and
maximum, α0, are the main parameters. Figures 15–18 show the box plots of the hq range,
W, R, and α0, respectively, for each type of satellite and site. On average, the fire-unaffected
sites were characterized by a slightly smaller multifractality degree than the fire-affected
sites, as indicated by the hq range and W box plots. The asymmetry was, on average,
positive for most of the series of any type and site, while the box plot of the maximum, α0,
indicates a clear increase from fire-unaffected sites to sites affected by two fires.

We applied the two-sample Student’s t-test to <hq range>, and the p-values are listed
in Table 5. For most of the site and satellite types, the <hq range> for the three types of sites
was significantly different.

Table 5. p-values of the Student’s t-test for <hq range>.

Aqua-EVI Aqua-NDVI Terra-EVI Terra-NDVI

No Fire–One Fire 0.897719 0.042757 0.321087 0.960532
One Fire–Two Fires 6.95 × 10−11 0.595574 3.14 × 10−7 0.688014
No Fire–Two Fires 8.71 × 10−9 0.007061 1.77 × 10−7 0.679548
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The application of the two-sample Student’s t-test to <W>, <R> and <α0> confirmed
such general discrimination among the sites (p-value < 0.05), as shown in Tables 6–8.

Table 6. p-values of the Student’s t-test for multifractal width <W>.

Aqua-EVI Aqua-NDVI Terra-EVI Terra-NDVI

No Fire–One Fire 0.733290 0.045961 0.288707 0.348462
One Fire–Two Fires 7.66 × 10−10 0.669236 1.26 × 10−6 0.941305
No Fire–Two Fires 3.04 × 10−8 0.010015 7.83 × 10−7 0.230172

Table 7. p-values of the Student’s t-test for asymmetry <R>.

Aqua-EVI Aqua-NDVI Terra-EVI Terra-NDVI

No Fire–One Fire 0.909562 0.562129 0.194883 0.904868
One Fire–Two Fires 0.001069 0.745943 0.009704 0.711969
No Fire–Two Fires 0.003398 0.778580 0.790529 0.880401

Table 8. p-values of the Student’s t-test for α0.

Aqua-EVI Aqua-NDVI Terra-EVI Terra-NDVI

No Fire–One Fire 0.225453 3.77 × 10−4 0.125898 0.002197
One Fire–Two Fires 3.39 × 10−25 0.757963 8.55 × 10−13 1.70 × 10−8

No Fire–Two Fires 7.87 × 10−17 5.84 × 10−6 0.002117 2.45 × 10−13

4. Discussion

In this study, we analyzed the time series of NDVI and EVI to examine the impact
of fires on the dynamics of vegetation, by using the Multifractal Detrended Fluctuation
Analysis. In particular, we investigated the spectral, persistence, and multifractal properties
of the analyzed data.

As a general result, the NDVI and EVI signals were modulated by two main periodici-
ties, the yearly and quasi bi-annual cycles, while the spectral content of the low-frequency
band (approximately above three years) increased from fire-unaffected to two-fire-affected
sites. The larger spectral content characterizing two-fire-affected sites indicated a stronger
correlation structure for this type of site, and this is consistent with the analysis of the
persistence, which was the largest for two-fire-affected sites. In agreement with [25], the
larger value of persistence, indicated by the h2 exponent, might suggest a larger capability
of recovery after a fire. A larger persistence could indicate that “the investigated ecosystems
are governed by positive feedback mechanisms, which tend to destabilize the system under
external forces, driving unstable growth-generating phenomena” [25]. The average largest
persistence of the VI of the two-fire-affected sites could be due to a cumulative status of
the effects of the first and second fire, each one contributing to drive growth-generating
phenomena, leading to an overall larger recovery capability.

The hq range, the multifractal width, W, the asymmetry, R, and the maximum, α0,
are generally used to quantify the multifractality of a time series. The larger the values
of the hq range and multifractal width, W, the higher the multifractality degree of the
series. A higher multifractality degree indicates a larger heterogeneity of the time series,
which means that the series is characterized by more complex dynamics. The multifractal
asymmetry, R, measures the skewness of the multifractal spectrum, which quantifies the
relative dominance of the small/large fluctuations in the series. The time dynamics of a
series featured by the right-skewed multifractal spectrum is mainly dominated by the small
fluctuations, while that of series characterized by a left-skewed multifractal spectrum is
mainly governed by the large fluctuations. The maximum, α0, conveys information about
the structure of the series: small values of α0 mean that the underlying process loses the
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fine structure and appears more regular, while large values indicate that the underlying
system is finer in structure and the series is more complex [38].

A general trend could be observed in these four parameters: the hq range and W
increased from the sites not affected by any fire to the sites affected by two fires, taking
intermediate values for the sites affected by only one fire. Such increasing trend of the hq
range and width, W, indicated that the VI series of fire-affected sites were characterized
by a more heterogeneous behavior than the fire-unaffected sites. The larger heterogeneity
of the time dynamics of NDVI and EVI of fire-affected sites could be in relation to the
more effective positive feedback mechanisms that would drive the recovery processes. The
growth-generation processes lead the vegetation recovery of fire-affected sites, contrarily
to the vegetation of fire-unaffected sites, whose relatively more random (or less persistent)
fluctuations could explain the larger homogeneous character of their time dynamics. The
occurrence of the first fire changes the dynamics of vegetation, which gradually recovers
after fire. The occurrence of the second fire further strengthens such recovery process,
and vegetation dynamics would be characterized by a “more focused” behavior, exerting
“more focused actions” aimed at restabilizing those conditions existing before the fire. This
situation could be reflected in the more heterogeneous behavior of the time dynamics of
VI series.

The multifractal spectrum was averagely left-skewed for all the data, whatever the
type of sensor and the type of site were. This indicates that the vegetation was dominated
by the large fluctuations that govern its dynamics regardless of the occurrence of one or
more fires.

The relative increase of the maximum of the multifractal spectrum from fire-unaffected
to two-fire-affected sites suggests that the occurrence of fires changes the time structure of
the series, which become finer. This behavior could be in relation to the relative increase
of the persistence, indicated by the h2 exponent, and of the heterogeneity of the series,
depicted by the width, W; in fact, the occurrence of a fire forces the vegetation system to
“react” with a higher resilience, reflected in the higher complexity of the fire-affected sites.

5. Conclusions

In this study, we analyzed several statistical characteristics of vegetation dynamics
of the area burned by the Camp Fire (California) in 2018 with the NDVI and EVI data
of MODIS Aqua and Terra satellites covering nearly two decades and for three different
types of sites: affected by two fires, affected by one fire, and not affected by any fire. In
particular, all the VI series were modulated by two main periodicities (6 months and 1 year),
which are the principal meteo-climatic cycles, characterizing the vegetation dynamics. The
spectral content at long periods (>15–20 months) of the fire-affected sites was larger than
that of the fire-unaffected ones, suggesting that the degree of the long-range correlation
of the fire-affected sites was higher than that of the sites not affected by any fire. These
spectral features, along with the larger heterogeneity and larger range of variation of
the VI series of fire-affected sites, indicated that the recovery process of the fire-affected
sites is characterized by positive feedback mechanisms, driving the growth-generating
phenomena, which become even more effective in those sites affected by multiple fires.
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