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Abstract: In this paper, we consider the mildly explosive autoregression yt = ρnyt−1 + ut, 1 ≤ t ≤ n,
where ρn = 1 + c/nν, c > 0, ν ∈ (0, 1), and u1, . . . , un are arithmetically α-mixing errors. Under
some weak conditions, such as Eu1 = 0, E|u1|4+δ < ∞ for some δ > 0 and mixing coefficients
α(n) = O(n−(2+8/δ)), the Cauchy limiting distribution is established for the least squares (LS)
estimator ρ̂n of ρn, which extends the cases of independent errors and geometrically α-mixing errors.
Some simulations for ρn, such as the empirical probability of the confidence interval and the empirical
density, are presented to illustrate the Cauchy limiting distribution, which have good finite sample
performances. In addition, we use the Cauchy limiting distribution of the LS estimator ρ̂n to illustrate
real data from the NASDAQ composite index from April 2011 to April 2021.

Keywords: mildly explosive autoregression; least squares estimator; Cauchy distribution; strong
mixing sequences
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1. Introduction

We consider the first-order autoregressive process defined by

yt = ρyt−1 + ut, 1 ≤ t ≤ n, (1)

where u1, u2, . . . , un are random errors with mean 0 and variance σ2 > 0. It is well known
that the regression coefficient ρ characterizes the properties of the process {yt}. When
|ρ| < 1, {yt} is called a stationary process (see Brockwell and Davis [1]). For example,
assume that u1, . . . , un are independent and identically distributed errors with Eu1 = 0,
Var(u1) = σ2, and E|u1|2+δ < ∞, with some δ > 0. Then, the least squares (LS) estimator
ρ̂n of ρ defined by

ρ̂n =
( n

∑
t=1

yt−1yt

)( n

∑
t=1

y2
t−1

)−1
(2)

has a normal limiting distribution:

√
n(ρ̂n − ρ)

d−→ N(0, 1− ρ2), (3)

where |ρ| < 1 (see Phillips and Magdalinos [2]). When |ρ| = 1, {yt} is called a random
walk process (see Dickey and Fuller [3], Wang et al. [4]). When |ρ| > 1, {yt} is called
an explosive process. Let u1, . . . , un be independent and identically distributed Gaussian
errors N(0, σ2) with σ2 > 0, and the initial condition y0 = 0. White [5] and Anderson [6]
showed that the LS estimator ρ̂n of ρ has a Cauchy limiting distribution:

ρn

ρ2 − 1
(ρ̂n − ρ)

d−→ C, (4)

where C is a standard Cauchy random variable. Moreover, let c be a constant, and ρ = ρn =
1 + c/nν, where ν ∈ (0, 1). If c < 0, then {yt} is called a near-stationary process (see Chan
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and Wei [7]). Let u1, . . . , un be independent and identically distributed errors with Eu1 = 0,
Var(u1) = σ2, and E|u1|2+δ < ∞, with some δ > 0. Phillips and Magdalinos [2] showed
that the LS estimator ρ̂n of ρn has a normal limiting distribution:

√
n1+ν(ρ̂n − ρn)

d−→ N(0, 1− 2c), (5)

where c < 0. If c > 0, then {yt} is called a near-explosive process or mildly explosive
process. Phillips and Magdalinos [2] also showed that the LS estimator ρ̂n of ρn has a
Cauchy limiting distribution:

nνρn
n

2c
(ρ̂n − ρn)

d−→ C, (6)

where c > 0.
It is interesting to study the near-stationary process and mildly explosive process

based on dependent errors. For example, Buchmann and Chan [8] considered the near-
stationary process whose errors were strongly dependent random variables; Phillips and
Magdalinos [9] and Magdalinos [10] studied the mildly explosive process whose errors were
moving average process with martingale differences; Aue and Horvàth [11] considered
the mildly explosive process based on stable errors; Oh et al. [12] studied the mildly
explosive process-based strong mixing (α-mixing) errors and obtained the Cauchy limiting
distribution in (6) for the LS estimator ρ̂n. It is known that the sequence of α-mixing is a
weakly dependent sequence. However, they assumed that {un, n ≥ 1} was geometrically
α-mixing, i.e., α(n) = O(|ξ|n) for some |ξ| < 1. Obviously, it was a very strong condition.
It will be more general if {un, n ≥ 1} is arithmetically α-mixing, i.e., α(n) = O(n−β) for
some β > 0. Thus, the aim of this paper is to weaken this mixing condition. We continue to
investigate the mildly explosive process based on arithmetically α-mixing errors. Compared
with Oh et al. [12], we use different inequalities of α-mixing sequences to prove the key
Lemmas 1 and 2 (see Sections 2 and 6). As important applications, some simulations and
real data of the NASDAQ composite index from April 2011 to April 2021 are also discussed
in this paper. Next, we recall the definition of α-mixing as follows:

Let N = {1, 2, . . .} and denote Fn
k = σ(ut, k ≤ i ≤ n, i ∈ N) to be the σ-field generated

by random variables uk, uk+1, . . . , un, 1 ≤ k ≤ n. For n ≥ 1, we define

α(n) = sup
m∈N

sup
A∈Fm

1 ,B∈F∞
m+n

|P(A ∩ B)− P(A)P(B)|.

Definition 1. If α(n) → 0 as n → ∞, then {un, n ≥ 1} is called a strong mixing or α-mixing
sequence. If α(n) = O(n−β) for some β > 0, then {un, n ≥ 1} is called an arithmetically
α-mixing sequence. If α(n) = O(|ξ|n) for some |ξ| < 1, then {un, n ≥ 1} is called a geometrically
α-mixing sequence.

The α-mixing sequence is a weakly dependent sequence and several linear and non-
linear time series models satisfy the mixing properties. For more works on α-mixing and
applications of regression, we refer the reader to Hall and Heyde [13], Györfi et al. [14],
Lin and Lu [15], Fan and Yao [16], Jinan et al. [17], Escudero et al. [18], Li et al. [19], and the
references therein. Many researchers have studied mildly explosive models. For example,
Arvanitis and Magdalinos [20] studied the mildly explosive process under the station-
ary conditional heteroskedasticity errors; Liu et al. [21] investigated the mildly explosive
process under the anti-persistent errors; Wang and Yu [22] studied the explosive process
without Gaussian errors; Kim et al. [23] studied the explosive process without identically
distributed errors. Furthermore, many researchers have used the mildly explosive model
to study the behavior of economic growth and rational bubble problems, see Magdalinos
and Phillips [24], Phillips et al. [25], Oh et al. [12], Liu et al. [21], and the references therein.

The rest of this paper is organized as follows. First, some conditions in Assumption (1)
and two important Lemmas 1 and 2 are presented in Section 2. Consequently, the Cauchy
limiting distribution for LS estimator ρ̂n and the confidence interval of ρn are obtained
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in Section 2 (see Theorem 1). We also give some remarks about the existing studies
of the Cauchy limiting distribution in Section 2. As applications, some simulations on
the empirical probability of the confidence interval for ρn and the empirical density for

ρn
n

ρ2
n−1

(ρ̂n − ρn) and ρ̂n
n

ρ̂2
n−1

(ρ̂n − ρn) are presented in Section 3, which agree with the Cauchy
limiting distribution in (6). In Section 4, the mildly explosive process is used to analyze
the real data from the NASDAQ composite index from April 2011 to April 2021. It is a
takeoff period of technology stocks and a faster increase in U.S. Treasury yields. Some
conclusions and future research are discussed in Section 5. Finally, the proofs of main results

are presented in Section 6. Throughout the paper, as n → ∞, let P→ and d→ respectively
denote the convergence in probability and in distribution. Let C, C1, C2, C3, · · · denote
some positive constants not depending on n, which may be different in various places. If X

and Y have the same distribution, we denote it as X d
= Y.

2. Results

We consider the mildly explosive process

yt = ρnyt−1 + ut, t = 1, . . . , n, (7)

where ρn = 1 + c/nν for some c > 0, ν ∈ ( δ
1+δ , 1), and δ > 0. In addition, u1, . . . , un are

mean zeros of α-mixing errors. Some conditions in Assumption 1 are listed as follows:

Assumption 1. (A1) Let Eu1 = 0 and E|u1|4+δ < ∞ for some δ > 0;
(A2) Let {un, n ≥ 1} be a strictly stationarity sequence of arithmetically α-mixing with

α(n) = O(n−(2+8/δ)), where δ is defined by (A1);
(A3) Let ρn = 1 + c/nν for some c > 0, and ν ∈ ( δ

1+δ , 1), where δ is defined by (A1); in
addition, let y0 = oP(

√
nν).

In order to prove the limiting distribution of the LS estimator ρ̂n of ρn, the normalized
sample covariance ∑n

t=1 yt−1ut can be approximated by the product of the stochastic sequences

Xn =
1√
nν

n

∑
t=1

ρ
−(n−t)−1
n ut and Yn =

1√
nν

n

∑
j=1

ρ
−j
n uj. (8)

Then, we have the following lemmas:

Lemma 1. Let the conditions (A1)–(A3) hold. Then, as n→ ∞,

ρ−n
n
nν

n

∑
t=1

n

∑
j=t

ρ
t−j−1
n ujut

L2−→ 0, (9)

ρ−2n+1
n
nν

n

∑
t=1

t−1

∑
j=1

ρ
t−j−1
n ujut

L2−→ 0, (10)

where
L2−→ means convergence in the mean square.

Lemma 2. Let the the conditions (A1)–(A3) hold. Then, as n → ∞, the sequences {Xn, n ≥ 1}
and {Yn, n ≥ 1} defined by (8) satisfy

(Xn, Yn)
d−→ (X, Y), (11)

where X and Y are two independent N(0, σ2

2c ) random variables with c > 0 and

σ2 =
∞

∑
k=−∞

Cov(u0, uk) > 0. (12)
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Combining this with Lemmas 1 and 2, we have the following Cauchy limiting distri-
bution for the LS estimator ρ̂n of ρn as follows:

Theorem 1. Let the conditions of Lemmas 1 and 2 be satisfied. Then, as n→ ∞, we have

(ρ−n
n
nν

n

∑
t=1

yt−1ut,
ρ−2n

n
n2ν

n

∑
t=1

y2
t−1

)
d−→ (XY, Y2), (13)

nνρn
n

2c
(ρ̂n − ρn)

d−→ C, (14)

where X and Y are two independent N(0, σ2

2c ) random variables defined by (11), and C is a standard
Cauchy random variable.

Remark 1. Let (A2)∗: Let {un, n ≥ 1} be a strictly stationarity sequence of geometrically α-
mixing; (A3)∗ Let ρn = 1 + c/nν with some c > 0, ν ∈ (0, 1), and y0 = oP(

√
nν). Under the

assumptions (A.1), (A2)∗, and (A3)∗, Oh et al. [12] considered the mildly explosive process (7) and
obtained Lemmas 1 and 2 and Theorem 1, which extended Theorem 4.3 of Phillips and Magdalinos [2]
based on independent errors to geometrically α-mixing errors. In order to weaken geometrically
α-mixing, we use the inequalities from Doukhan and Louhichi [26] and Yang [27] to re-prove the
key Lemmas 1 and 2. Thus, the mixing coefficients need to satisfy α(n) = O(n−(2+8/δ)) for some
δ > 0. For details, please the proofs of Lemmas 1 and 2 in Section 6. If positive parameter δ coming
from moment condition E|u1|4+δ < ∞ is large, then the mixing coefficient α(n) = O(n−(2+8/δ)) is
weak. Similarly, if positive parameter δ is small, then the mixing coefficient α(n) = O(n−(2+8/δ))
becomes strong. If δ = δn → 0, then α(n) is a geometrically decaying. So the condition ν ∈ ( δ

1+δ , 1)
in assumption (A3) becomes ν ∈ (0, 1). Thus, we extend the results of Phillips and Magdalinos [2]
and Oh et al. [12] to arithmetically α-mixing case. In Section 3, we give some simulations for the
LS estimator ρ̂n in a mildly explosive process, which agree with Theorem 1. Meanwhile, the mildly
explosive model is used to analyze the data of the NASDAQ composite index from April 2011 to
April 2021 in Section 4.

Remark 2. For some c > 0, ν ∈ ( δ
1+δ , 1), and δ > 0, we take ρn = 1 + c/nν in (14) and obtain

nνρn
n

2c
(ρ̂n − ρn) =

ρn
n

2(ρn − 1)
(ρ̂n − ρn)

d−→ C (15)

and
ρn

n
ρ2

n − 1
(ρ̂n − ρn)

d−→ C, (16)

where it uses the fact that ρ2
n − 1 = (c/nν + 2)c/nν ∼ 2c/nν = 2(ρn − 1). Here, an ∼ bn

means an/bn → 1, as n → ∞. Moreover, by Proposition A.1 of Phillips and Magdalinos [2], it

has ρ−n
n n
nν = o(1). Combining nνρn

n = o(n) with nνρn
n

2c (ρ̂n − ρn) = OP(1), we have ρ̂n/ρn
P−→ 1

and (ρ̂n/ρn)n P−→ 1 (or see Oh et al. [12]). Let 0 < α < 1 be the significance level. Then, as in
Phillips et al. [25], (14) in Theorem 1 suggests that a 100(1− α)% confidence interval for ρn can be
constructed as [

ρ̂n −
ρ̂2

n − 1
ρ̂n

n
Cα, ρ̂n +

ρ̂2
n − 1
ρ̂n

n
Cα

]
:= [ρ̂nL, ρ̂nU ], (17)

where ρ̂nL and ρ̂nU are the lower bound and upper bound for ρn respectively, and Cα is the two-
tailed α percentile critical value of the standard Cauchy distribution. For example, C0.1 = 6.315,
C0.05 = 12.7, and C0.01 = 63.65674.
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3. Simulations

In this section, we conduct some simulations to evaluate the LS estimator ρ̂n defined
by (2). The experimental data {yt, t ≥ 1} are a realization from the following first-order
autoregressive model

yt = ρnyt−1 + ut, t = 1, . . . , n, (18)

where y0 = 0, ρn = 1 + c/nν for some c > 0, ν ∈ ( δ
1+δ , 1), and δ > 0. In addition, u1, u2, . . .

are mean zero random errors. Let the error vector (u1, . . . , un)
> satisfy the Gaussian model

such that
(u1, . . . , un)

> d
= Nn(0, Σn). (19)

Here, 0 = 0n×1, and Σn is the covariance matrix satisfying

Σn = (ξ |i−j|)1≤i,j≤n (20)

for some |ξ| < 1. Σn is a positive symmetric matrix. Moreover, it is easy to check that
the sequence {un, n ≥ 1 is geometrically α-mixing. For any moment of Gaussian random
variable, it is finite. Combining this with Remark 1, ν ∈ ( δ

1+δ , 1) is ν ∈ (0, 1).
Firstly, we show the simulation of the empirical probability of the confidence interval

(CI) for ρn defined by (17). We consider the following parameter settings

n ∈ {100, 500, 1000}, c ∈ {0.5, 1}, ν ∈ {0.5, 0.6, 0.7, 0.8}, ξ ∈ {−0.3, 0.3}.

The number of replications is always set at 10000 and the level of significance is 0.05. Let
I(·) be the indicator function. Applying (17), we calculate the empirical probability of the
true value ρn, i.e.,

1
10000

10000

∑
l=1

I(ρ̂(l)nL ≤ ρn ≤ ρ̂
(l)
nU),

where ρ̂
(l)
nL and ρ̂

(l)
nU are the two CI bounds of ρn in the lth replication. The results are shown

in Tables 1 and 2.

Table 1. Empirical probability of 95% CI of ρn with ξ = −0.3.

ν

n = 100 n = 500 n = 1000

c = 0.5 c = 1 c = 0.5 c = 1 c = 0.5 c = 1

CI CI CI CI CI CI

0.5 0.9501 0.9777 0.9629 0.9721 0.9611 0.9733
0.6 0.9405 0.9681 0.9508 0.9637 0.9582 0.9748
0.7 0.9433 0.9687 0.9464 0.9613 0.9248 0.9493
0.8 0.9464 0.9481 0.9323 0.9394 0.9208 0.9293

Table 2. Empirical probability of 95% CI of ρn with ξ = 0.3.

ν

n = 100 n = 500 n = 1000

c = 0.5 c = 1 c = 0.5 c = 1 c = 0.5 c = 1

CI CI CI CI CI CI

0.5 0.9472 0.9541 0.9572 0.9624 0.9536 0.9571
0.6 0.9371 0.9592 0.9569 0.9576 0.9522 0.9587
0.7 0.9724 0.9498 0.9476 0.9554 0.9619 0.9515
0.8 0.9972 0.9721 0.9919 0.9475 0.9961 0.9536

From Tables 1 and 2, we see that the CIs under ξ = 0.3 were relatively better than
ξ = −0.3. It may be that the volatility of Σn with ξ = −0.3 is relatively larger than the one
with ξ = 0.3. The CIs had good finite sample performance when c was relatively large, and
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ν was between 0.5 and 0.7. When c = 1, it can be seen that the empirical probability was
close to the nominal probability 95%.

Next, by (15), (16), ρ̂n/ρn
P−→ 1, and (ρ̂n/ρn)n P−→ 1, we give some histograms

to illustrate
ρn

n
ρ2

n − 1
(ρ̂n − ρn)

d−→ C and
ρ̂n

n
ρ̂2

n − 1
(ρ̂n − ρn)

d−→ C,

where C is a standard Cauchy random variable. We consider the following parameter settings

n ∈ {500, 1000, 1500}, c ∈ {0.5}, ν ∈ {0.5}, ξ ∈ {−0.3, 0.3}.

The red line in Figures 1–4 is the density of the standard Cauchy random variable.

Figure 1. Histograms of ρn
n

ρ2
n−1 (ρ̂n − ρn) with ξ = −0.3 and n = [500, 1000, 1500].

Figure 2. Histograms of ρ̂n
n

ρ̂2
n−1 (ρ̂n − ρn) with ξ = −0.3 and n = [500, 1000, 1500].

Figure 3. Histograms of ρn
n

ρ2
n−1 (ρ̂n − ρn) with ξ = 0.3 and n = [500, 1000, 1500].
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Figure 4. Histograms of ρ̂n
n

ρ̂2
n−1 (ρ̂n − ρn) with ξ = 0.3 and n = [500, 1000, 1500].

According to Figures 1–4, the histograms ρn
n

ρ2
n−1

(ρ̂n − ρn) and ρ̂n
n

ρ̂2
n−1

(ρ̂n − ρn) under
ξ = 0.3 were relatively better than the ones under ξ = −0.3 (the volatility of Σn with
ξ = −0.3 was relatively larger than the one with ξ = 0.3). As the sample n increased, the
histograms ρn

n
ρ2

n−1
(ρ̂n − ρn) and ρ̂n

n
ρ̂2

n−1
(ρ̂n − ρn) were close to the red line of the density of

the standard Cauchy random variable. Thus, the results in Figures 1–4 and Tables 1 and 2
agree with (14) in Theorem 1. Since the histograms with different c and ν were similar, we
omit them here.

4. Real Data Analysis

In this section, we use the mildly explosive model (7) and confidence interval estima-
tion in (17) to study the NASDAQ composite index during an inflation period. Similar
to Phillips et al. [25] and Liu et al. [21], we consider the log-NASDAQ composite index
for the period from April 2011 to April 2021, which contained 2522 observations denoted
by yt = log(Pt), 1 ≤ t ≤ n = 2522. In addition, we let P0 = 1 and y0 = log(P0) = 0.
The scatter plots of {yt} are shown in Figure 5. According to Figure 5, the process of {yt}
was increasing. Then, we used the Augmented Dickey Fuller Test (ADF Test, see [28]) to
conduct the unit root test. The ADF test was −3.069 with Lag order 1, while the p-value of
the ADF test was 0.1257. This means that the process of {yt} was nonstationary. Thus, the
mildly explosive model yt = ρnyt−1 + ut was considered to fit the process of {yt}. We let
ût = yt − ρ̂nyt−1 be the residuals of errors ut, 1 ≤ t ≤ n, where ρ̂n is the LS estimator of ρn
defined by (2). Then, the residuals’ autocorrelation function (ACF) of û1, . . . , ûn is shown
in Figure 6.

According to Figure 6, the autocorrelation coefficients for the residuals were around
0 as the Lag increased, which satisfied the property of α-mixing data. Then, the curves

of the LS estimator ρ̂n defined by (2), lower bound ρ̂nL = ρ̂n − ρ̂2
n−1
ρ̂n

n
Cα and upper bound

ρ̂nU = ρ̂n +
ρ̂2

n−1
ρ̂n

n
Cα, for ρn are also shown in Figure 7, Cα defined by (17) is the value of the

standard Cauchy distribution with significance level α. With α = 0.05, the curves of ρ̂n, ρ̂nL,
and ρ̂nU are presented in Figure 7.

According to Figure 7, the values of ρ̂n approached 1 as sample n increased, while
the lower bound ρ̂nL and upper bound ρ̂nU were around 1. In addition, by (17), we let
ŷtL = ρ̂nLyt−1, and ŷtU = ρ̂nUyt−1, t = 2, . . . , n. The curves of ŷtL and ŷtU are also shown
in Figure 5. According to Figure 5, the curve yt was between curves ŷtL and ŷtU , while the
curve widths of ŷtL and ŷtU were very small. Furthermore, the period from April 2011 to
April 2021 was the takeoff period of technology stocks and a faster increase in U.S. Treasury
yields. Thus, these real data are a good use of the mildly explosive model and the Cauchy
limiting distribution of the LS estimator in Theorem 1.
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Figure 5. Time series for the log-NASDAQ composite index from April 2011 to April 2021.
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Figure 6. The autocorrelation coefficients based on the residuals.
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5. Conclusions and Discussion

The study of the mildly explosive process has received much attention from re-
searchers, as it can be used to test the explosive behavior of economic growth. Phillips and
Magdalinos [2] considered the mildly explosive process (7) based on independent errors
and obtained the Cauchy limiting distribution of the LS estimator ρ̂n of ρn. Oh et al. [12]
extended Phillips and Magdalinos [2] to geometrically α-mixing errors. Obviously, the
assumption of geometrically α-mixing was very strong. Thus, we considered the mildly
explosive process based on arithmetically α-mixing errors. Under the condition of the
mixing coefficients α(n) = O(n−(2+8/δ)) for some δ > 0, we re-proved the key Lemmas 1
and 2. Consequently, the Cauchy limiting distribution for ρn in Theorem 1 also held true.
In order to illustrate the main result of the Cauchy limiting distribution, some simulations
of the empirical probability of the confidence interval and the empirical density for ρn
were presented in Section 4. It had a good finite sample performances. As an application,
we used the mildly explosive process to analyze real data from the NASDAQ composite
index from April 2011 to April 2021. It was a takeoff period of technology stocks and a
faster increase in U.S. Treasury yields. Moreover, it is of interest for researchers to study
the random walk process, near-stationary process, mildly explosive process, and explosive
process under heteroskedasticity errors (see Arvanitis and Magdalinos [20]), anti-persistent
errors (see Liu et al. [21]), and other missing dependent data in the future.

6. Proofs of Main Results

Lemma 3 ([13], Corollary A.2). Suppose that ξ and η are random variables, which are G and
H-measurable, respectively, and that E|η|p < ∞, E|ξ|q < ∞, where p, q > 1 and 1

p + 1
q < 1.

Then,
|Eξη − EξEη| ≤ 8(E|ξ|p)1/p(E|η|q)1/q(α(G,H))

1− 1
p−

1
q .

Lemma 4 ([27], Lemma 3.2). Let {Xn}n≥1 be an α-mixing sequence. Suppose that p and q are
two positive integers. Set ηl = ∑

(l−1)(p+q)+p
(l−1)(p+q)+1 Xj for 1 ≤ l ≤ k. If s > 0, r > 0 with 1

s +
1
r = 1,

then there exists a constant C such that∣∣∣E exp{it
k

∑
l=1

ηl} −
k

∏
l=1

E exp{itηl}
∣∣∣ ≤ C|t|α

1
s (q)

k

∑
l=1

(E|ηl |r)1/r.

Lemma 5 ([27], Lemma 3.3). Let {Xn}n≥1 be a mean zero α-mixing sequence. Let r > 2. If there
exist τ > 0 and λ > r(r+τ)

2τ such that α(n) = O(n−λ) and E|Xi|r+τ < ∞, then, for any given
ε > 0,

E
∣∣∣ n

∑
i=1

Xi

∣∣∣r ≤ C
{

nε
n

∑
i=1

E|Xi|r +
( n

∑
i=1

(E|Xi|r+τ)
2

r+τ

) r
2
}

, n ≥ 1,

where C is a positive constant as C := C(r, τ, λ, ε), not depending on n.

Proof of Lemma 1. It is seen that

E
∣∣∣ρ−n

n
nv

n

∑
t=1

n

∑
j=t

ρ
t−j−1
n ujut

∣∣∣2 ≤ ρ−2n
n
n2ν

n

∑
t=1

n

∑
j=t

n

∑
s=1

n

∑
k=s

ρ
−(j−t)−(k−s)−2
n |Eutujusuk|

≤ C1
ρ−2n

n
n2ν ∑

1≤t1≤t2≤t3≤t4≤n
|Eut1 ut2 ut3 ut4 |. (21)

Similar to Doukhan and Louhichi [26], for any q ≥ 2, we denote

Aq(n) = ∑
1≤t1≤...≤tq≤n

|Eut1 ut2 . . . utq | (22)
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and
Vq(n) = ∑ |Cov(ut1 . . . utm , utm+1 . . . utq)|, (23)

where the sum is considered over {t1, . . . , tq} fulfilling 1 ≤ t1 ≤ . . . ≤ tq ≤ n with
r = tm+1 − tm = max

1≤i<q
(ti+1 − ti). Clearly,

Aq(n) ≤ ∑
1≤t1≤...≤tq≤n

|Eut1 . . . utm Eutm+1 . . . utq |

+ ∑
1≤t1≤...≤tq≤n

|Cov(ut1 . . . utm , utm+1 . . . utq)|. (24)

The first term on the right-hand side of the last inequality in (24) is bounded by

∑
1≤t1≤...≤tq≤n

|Eut1 . . . utm Eutm+1 . . . utq | ≤
q−1

∑
m=1

Am(n)Aq−m(n), (25)

(see [26]). Then, it follows from (24) to (25) that

Aq(n) ≤
q−1

∑
m=1

Am(n)Aq−m(n) + Vq(n). (26)

Assume that E|u1|∆ < ∞ for some ∆ > q, q ≥ 2 and α(n) = O(n−
∆q

2(∆−q) ). Then, by
Lemma 3, it has

|Cov(ut1 . . . utm , utm+1 . . . utq)|

≤ 8α1− q
∆ (r)[E|ut1 . . . utm |

∆
m ]

m
∆ [E|ut1 . . . utm |

∆
q−m ]

q−m
∆ . (27)

Using the Hölder inequality, we have that

[E|ut1 . . . utm |
∆
m ]

m
∆ ≤ [E|ut1 |

∆]
1
∆ [E|ut2 . . . utm |

∆
m−1 ]

m−1
∆ ≤ . . . ≤ [E|u1|∆]

m
∆ . (28)

Consequently, by (27) and (28),

|Cov(ut1 . . . utm , utm+1 . . . utq)| ≤ 8α1− q
∆ (r)[E|u1|∆]

q
∆ , (29)

which implies

Mr,q = sup |Cov(ut1 . . . utm , utm+1 . . . utq)| ≤ 8α1− q
∆ (r)[E|u1|∆]

q
∆ , (30)

where the supremum is taken over all 1 ≤ t1 ≤ . . . ≤ tq and 1 ≤ m < q with tm+1 − tm ≥ r.

By the assumption α(n) = O(n−
∆q

2(∆−q) ), we have

Mr,q = O(r−
∆q

2(∆−q) (1−
q
∆ )
) = O(r−

∆q
2(∆−q)

∆−q
∆ ) = O(r−q/2). (31)

In addition, by (31), we have

Vq(n) ≤
n

∑
t1=1

n−1

∑
r=1

(r + 1)q−2Mr,q ≤ C1

n

∑
t1=1

n−1

∑
r=1

rq−2−q/2 ≤ C2nq/2. (32)

Thus, by (22)–(24), (26), (32), we obtain

Aq(n) ≤
q−1

∑
m=1

Am(n)Aq−m(n) + Vq(n) ≤ C4nq/2. (33)
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Since E|u1|4+δ < ∞ with some δ > 0, α(n) = O(n−(2+8/δ)) and the second-order
stationarity of {un, n ≥ 1}, then the conditions E|u1|∆ < ∞, ∆ > q, q ≥ 2, and α(n) =

O(n−
∆q

2(∆−q) ) for (33) are satisfied with q = 4, ∆ = 4 + δ and δ > 0. Consequently, by (21)
and (33), we obtain

E
∣∣∣ρ−n

n
nv

n

∑
t=1

n

∑
j=t

ρ
t−j−1
n ujut

∣∣∣2 ≤ C1
ρ−2n

n
n2ν

A4(n) ≤ C2
ρ−2n

n n2

n2ν
= o(1),

by using the fact that ρ−n
n n
nν = o(1), i.e., for each c > 0, ρ−n

n = o(nν−1) (see Proposition A.1
of [2]). The proof of (9) is complete. On the other hand, the proof of (10) is similar, so it is
omitted.

Proof of Lemma 2. By the Cramér-Wold device, it is sufficient to show that

aXn + bYn
d−→ N

(
0,

(a2 + b2)σ2

2c

)
, ∀a, b ∈ R, (34)

where Xn and Yn are defined by (8), and σ2 > 0 is defined by (12). Denote

aXn + bYn =
1√
nν

n

∑
i=1

ξni,

where
ξni = (aρ−i

n + bρ
−(n−i)−1
n )ui, 1 ≤ i ≤ n.

Similar to Oh et al. [12], let {kn}, {pn}, and {qn} be sequences of positive integers.

Then, we split the sum
n
∑

i=1
ξni into large pn blocks and small qn blocks. Define kn ∼ n1−ν/2,

pn ∼ nν/2 − nν/4, and qn ∼ nν/4. So, we have qn/pn → 0 and kn(pn + qn)/n → 1 as
n→ ∞.

Denote

1√
nν

n

∑
i=1

ξni =
1√
nν

kn

∑
m=1

ynm +
1√
nν

kn

∑
m=1

y′nm +
1√
nν

y′′nkn
, (35)

where

ynm =
(m−1)(pn+qn)+pn

∑
i=(m−1)(pn+qn)+1

ξni, 1 ≤ m ≤ k,

y′nm =
m(pn+qn)

∑
j=(m−1)(pn+qn)+pn+1

ξnj, 1 ≤ m ≤ k,

y′′nkn
=

n
∑

l=k(pn+qn)+1
ξnl .

Next, we will show that

1√
nν

kn

∑
m=1

ynm
d−→ N

(
0,

(a2 + b2)σ2

2c

)
(36)

and
1√
nν

kn

∑
m=1

y′nm
P−→ 0,

1√
nν

y′′nkn

P−→ 0. (37)
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Since E|u1|4+δ < ∞, and α(n) = O(n−(2+8/δ)), we use Lemma 5 with ε = 1 and obtain

kn

∑
m=1

(E|ynm|4)
1
4

≤ C1

kn

∑
m=1

[
pn

(m−1)(pn+qn)+pn

∑
i=(m−1)(pn+qn)+1

E|ξni|4 +
( (m−1)(pn+qn)+pn

∑
i=(m−1)(pn+qn)+1

(E|ξni|4+δ)
2

4+δ

)2] 1
4

≤ C2

kn

∑
m=1

p1/2
n = O(kn p1/2

n ). (38)

By condition (A3), (38), and Lemma 4 with r = s = 2, we obtain

∣∣∣E exp
(

it
kn

∑
m=1

ynm√
nν

)
−

kn

∏
m=1

E exp
(

it
ynm√

nν

)∣∣∣
≤ C1tα1/2(qn)

1√
nν

kn

∑
m=1

(E|ynm|2)
1
2

≤ C1tα1/2(qn)
1√
nν

kn

∑
m=1

(E|ynm|4)
1
4

≤ C2
1

nν/2 q−(2+8/δ)/2
n kn p1/2

n

≤ C3
1

nν/2 n−(1+4/δ)ν/4n1−ν/2nν/4

≤ C4n1−ν(1+ 1
δ ) → 0, (39)

since ν > δ
1+δ and ν(1 + 1

δ ) > 1.
For m = 1, 2, . . . , kn, it can be checked that

E(y2
nm) = E

( (m−1)(pn+qn)+pn

∑
i=(m−1)(pn+qn)+1

(aρ−i
n + bρ

−(n−i)−1
n )ui

)2

= E
( pn

∑
i=1

(aρ
−(m−1)(pn+qn)−i
n + bρ

−(n−(m−1)(pn+qn)−i)−1
n )u(m−1)(pn+qn)+i

)2

=
pn−1

∑
j=−(pn−1)

pn−|j|

∑
i=1

(I1 + I2)Eu0uj,

where

I1 = a2ρ
−2(m−1)(pn+qn)−2i−|j|
n + b2ρ

−2(n−(m−1)(pn+qn)−i)+|j|−1
n ,

I2 = abρ−n−1
n

(
ρ
−|j|
n + ρ

|j|
n

)
.

Similar to Oh et al. [12], there is ∑
pn−1
j=−(pn−1) ρ

−|j|
n Eu0uj → σ2 > 0, where σ2 is defined

by (12). Combining this with ρ−n
n n
nν = o(1) and kn pn ∼ n, we establish that
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kn

∑
m=1

E(
ynm√

nν
)2 =

1
nν

kn

∑
m=1

pn−1

∑
j=−(pn−1)

pn−|j|

∑
i=1

(I1 + I2)Eu0uj

=
kn

∑
m=1

a2ρ
−2(m−1)(pn+qn)+2
n

nν(ρ2
n − 1)

pn−1

∑
j=−(pn−1)

ρ
−|j|
n (1− ρ

−2(pn−|j|)
n )Eu0uj

+
kn

∑
m=1

b2ρ
−2(n−(m−1)(pn+qn))+2
n

nν(ρ2
n − 1)

pn−1

∑
j=−(pn−1)

ρ
|j|
n (ρ

2(pn−|j|)
n − 1)Eu0uj

→ (a2 + b2)σ2

2c
. (40)

Meanwhile, for all η > 0, by (38), (40), and the Markov inequality, we have

E[(
ynm√

nν
)2 I(| ynm√

nν
| > η)] =

1
nν

E[y2
nm I(| ynm√

nν
| > η)]

≤ 1
η2n2ν

(Ey4
nm)

1
2 P(|ynm|2 > nν)

≤ cpn

η2n2ν
Ey2

nm = O(p2
n/n2ν),

which implies

kn

∑
m=1

E[(
ynm√

nν
)2 I(| ynm√

nν
| > η)] = O(kn p2

n/n2ν) = o(1). (41)

Consequently, (36) follows from (39), (40), and (41) immediately.
On the other hand, similar to the proof of (36), we have

1√
nν/2

kn

∑
m=1

y′nm
d−→ N

(
0,

(a2 + b2)σ2

2c

)
, (42)

which implies

1√
nν

kn

∑
m=1

y′nm
P−→ 0. (43)

Furthermore, by the proof of (38) and kn(pn + qn)/n→ 1, we obtain

E(
1√
nν

y′′nkn
)2 =

1
nν

E(y′′nk)
2 ≤ 1

nν
(E(y′′nk)

4)1/2

≤ C
nν

( n

∑
l=kn(pn+qn)+1

aρ−l
n + bρ

−(n−l)−1
n

)2
= o(1). (44)

Thus, by (43) and (44), the proof of (37) is complete. Combining (35), (36) and (37), we
obtain the result of (34).

Proof of Theorem 1. Similar to the proofs of Theorem 4.3 of Phillips and Magdalinos [2]
and Theorem 1 of Oh et al. [12], by Lemmas 1 and 2, it is easy to obtain the results (13) and
(14). We omit the details here.
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