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Abstract: The non-causal (“forward-looking”) solution used routinely in academic macroeconomics
may represent a violation of a law of entropy, namely that the direction of time is one way (from the
past and towards the present), and that the variance of economic processes increases with time. In
order to re-establish a degree of compatibility with the law of entropy, so called hybrid forms are
required add-ins to DSGE (Dynamic Stochastic General Equilibrium) models. However, the solution
that uses hybrid forms is a particular special case of a causal solutions of autoregressive distributed
lags, VARs and recursive and simultaneous equations models well known from empirical macro
econometrics. Hence, hybrid forms of small scale DSGE models can be analysed and tested against
competing model equations, using an econometric encompassing framework.
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1. Introduction

Cross-disciplinary examinations of economics have started to emerge; see, for exam-
ple, ref. [1] (neuroscience) and [2] (physics), as well as [3,4] from within economics. As
noted by [5], who write from the perspective of neuroscience, these analyses have implica-
tions for macroeconomic theories, in particular for how decision making is represented in
macroeconomic models. One important aspect of decision making is related to expecta-
tions formation about future outcomes of variables that are important in agents’ valuation
systems. If expectations are formed in humans’ brains mainly through computation of
similarities (correlations can be a special case), macro models that are solved conditional on
history can be more defensible than models that invoke the assumption that agents form
anticipations by working out the mathematical expectations, ultimately from assumed
knowledge about future probability distributions, cf. [6,7].

In time series analysis and in dynamic econometrics, the solution of stochastic differ-
ence equations from historically given initial conditions is known as the causal solution
of a dynamic model, cf. ([8], Ch. 3.1) It might be noted, in passing, that the term “causal”
used in this context does not correspond in any way to the definitions of causality used in
the literature about causal inference in economics, see [9–12] among others.

The causal solution covers single-equation autoregressive distributed lags (ADLs),
VARs, and recursive and simultaneous equation models. However, in academic macroeco-
nomics, a completely different solution, which is called the “forward-looking solution”, has
become the dominant solution type. It is closely associated with the abovementioned theory
of model consistent rational expectations, which is a particular special case of expectations
formation mainly by the use of logic, rather than by use of similarities and heuristics

There is some danger of creating an artificial distinction here, as research have showed
that rational expectations (in the original meaning of unbiased forecasts on average) can be
achieved by learning [13,14]. However, macroeconomic DGPs are characterized by non-
stationarities that are due to intermittent location shifts (breaks) which may significantly
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hamper the possibility of learning fast enough to avoid repeated forecast failures, cf. [15,16]
([17], Ch. 12). However, these research questions go beyond the scope of this paper.

There are other inter-disciplinary issues with forward-looking solutions as well. In
this note, we comment on the possible inconsistency of this solution type with the thermo-
dynamic laws that physicists have, for a long time, regarded as the laws that apply most
basically to the real world. The second law specifies that heat will not pass spontaneously
from a hotter to a colder body without some change in the system. Or, as a generalization,
that the process of heat conduction cannot be completely reversed at any finite cost. Besides
forbidding the construction of perpetual motion machines, the second law defines entropy:
Because energy dissipates as heat whenever work is carried out, heat cannot be collected
back into useful, organized form. The evolution of the universe will be characterized by
increased randomness, also known in physics as disorder. The universe is expanding faster
than it can equilibrate.

It may be of interest for students, but also for developers and users of macroeconomic
models, to note that the law of increasing disorder (entropy) means that the universe is
one way and not reversible. The second law is therefore the expression in physical form of
what we call time. Models that imply that the economy can run equally well forward or
backward may therefore violate the law of entropy.

However, care must be taken, since the second law (entropy is non-decreasing with
time) only holds for closed systems. Open systems can be characterized by limited (or
controlled) internal entropy. In economics, this can give rise to the question about whether
the degree of entropy implied by solutions of models is relative to the status of models
as open (in practice, with exogenous random variables) or closed (systems of equations).
The distinction between open and closed models is well established in economics, and is
important in particular with regard to identification and estimation.

In an operational environment in which a model’s solutions is used for forecasting,
the distinction between open and closed becomes less clear. The reason is that the future
values of the exogenous variables in an open model will be unknown and will have to
be forecasted as well. In principle, and often in practice, we can think of those forecasts
as the solutions of a set of equations for the exogenous variables, so the model used for
forecasting is, in effect, a closed model.

As noted above, there is another conceptual distinction central in time series econo-
metrics, which is between causal and non-causal solutions of a dynamic equation (closed
as well as open). A causal solution fundamentally depends only on knowledge about
initial conditions, and is thus consistent with the idea that time runs one way, from history
and to the present. A non-causal solution runs the other way, from the distant future and
backwards to the present. Mathematically, the two types of solutions work equally well.
For example, subject only to the assumption of no “unit-roots”, both solutions generate
random variables that are covariance stationary time series ([17], Ch. 3) . Nevertheless, time
series statisticians usually have little patience with the non-causal solution, and remarks
such as “irrelevant” or “without practical interest” are not uncommon in those disciplines
([8], p. 81). Relevant exceptions exist, however. Recently, progress has been made in the
use of non-causal solutions of autoregressive processes with explosive roots that generate
bubbles; see [18].

One area of model building in which the non-causal solution has obtained a strong
foothold is in macroeconomics. Over the last few decades, academic macro economists
developed a strong taste for non-causal solutions. DSGE models in particular seem to
depend on that class of solutions. DSGE models are manifestations of the microeconomic
hegemony in economics, which has resulted from the “New Classical Counter Revolution
(NCCR)”, a term attributed to Wren-Lewis [19,20].

Returning to the second law of thermodynamics, macrodynamic models that are
characterized by causal solutions are at least weakly compatible with the law of entropy. It
can be remarked that the stationary version of the causal solution most likely overstates
the tendency of evolving economies to reach steady states (equilibria). The “degree of
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compatibility” is, however, higher for models that have causal solutions that contain
stochastic trends (due to unit-roots at the zero-frequency), which has become standard in
the development of modern empirical econometric macro models.

The issues that we point out follow directly from the use of non-causal solutions to
derive the evolution paths of endogenous variables of DSGE models. Non-causal solutions
imply that the variables become independent of the historical evolution of the system. A
typical macro economic model equation characterized by so-called pure forward-looking
behaviour has this property, which strongly refutes the second law of thermodynamics.
Unsurprisingly, producers of DSGE models have been forced to replace the “pure” forward-
looking behaviour with hybrid forms, which re-install an element historical dependency
in the final solution, but which are completely ad hoc when judged against the principles
laid down by the leaders of NCCR. Nevertheless, as we shall see, the future dependency is
clearly also present in the solution of the hybrid form.

In this note, we show for simple models that the root of the violation has to do with
the implementation of model consistent rational expectations in DSGE models, for all or
some of the economic agents. It is beyond the scope of this paper to cover the different
modifications that have disseminated from the NCCR, but we venture to believe that the
main thrust of the argument is also relevant to models in which learning provides an
asymptotic justification for the rational expectations hypothesis, cf. ([13], Ch. 1.4) [21,22]
among others.

2. Causal and Non Causal Solutions

The future dependency of solutions that are typical of DSGE models can be shown by
the use of a simple dynamic model equation for a time series yt (t = 0,±1,±1, . . . ):

yt = a0 + abyt−1 + et, , (1)

a0,ab are parameters and et (t = 0,±1,±1, . . . ) is a second time series independent of yt, as
well as of yt−j (lags) and yt+j (leads).

However, before stepping into the territory of future dependency we can, as a reference,
define what we mean by a causal solution. It is determined by an initial condition y0,
considered to be known, and by the whole history of the random process et (t = 1, 2, . . . ).
After repeated substitution (backwards in time) to the initial condition, we may write it as:

yt = a0

t−1

∑
i=0

ai
1 +

t−1

∑
i=0

ai
bet−i + at

by0 (2)

If et was a deterministic sequence, for example et = e∗ (a fixed number) for all t, (2) is the
solution of a linear difference equation. The solution has the property of global asymptotic
stability in the case where the autoregressive parameter ab is between −1 and 1, and it is
unstable if ab = ±1.

The interpretation where et is a random process is more interesting for empirical
macroeconomic modelling, as the difference equation in this case generates another ran-
dom process, namely yt (t = 1, 2, . . . ). In the simplest case, we can take et as a white noise
process, with constant expectation zero and a fixed variance (σ2

e ), −1 < ab < 1 represents
the stationary case, since (2) “delivers” yt (t = 1, 2, . . . ) as a stationary time series with
unconditional (steady-state) expectation and variance that do not depend on time. Never-
theless, as the system evolves from t = 1, to t = 2, t = 3 and so forth, its variance (entropy)
is indeed increasing, and the time independent unconditional variance only characterizes
the stationary state. Just as an ecosystem attains a climax, economic system can reach a
steady state [23].

ab = ±1 is the integrated case, or unit-root case. Following custom, ab = 1 defines
a random-walk process, and the casual solution is then the sum of a deterministic trend
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(a0t + y0) and a stochastic trend
t−1
∑

i=0
et−i. Consequently, the variance of yt is a monotonously

increasing function of time in this case.
Within the framework of causal processes, |ab| > 1 gives rise to explosive dynamics.

The solution will not be stationary: the importance of the initial conditions, for example,
will grow exponentially with time, instead of declining. Such solutions are called explosive
for obvious reasons. Explosive solutions are very relevant in economics, and maybe more
so when they have some form of check imposed or built into the process, i.e., a mechanism
that stops the explosive process, at least for a period.

The above definitions and sub-categories of a causal solution (i.e., stable/stationary
and unstable/non-stationary) generalize to model equations with higher-order dynamics,
and to systems of such equations. There can also be linear combinations of non-stationary
variables, which define variables that are stationary, which is the property of cointegration.
The causal solution of such a system requires that the associated characteristic roots are
located inside or on the unit-circle; there are no roots outside the unit-circle (the general-
ization of |ab| > 1). This has proven to be an adaptable framework for the development
of empirical macro econometric models More flexibility and generality can be achieved
through specification of non-linear functional forms, and by opening up for location shifts
(random Markov-switching or IIS), and volatility components (ARCH effects).

However, it was the phenomenon of future dependency that we wanted to take a
closer look at. To introduce it, we can imagine ourselves being interested in answering the
question: Can there be a stationary solution of (1) in the case of |ab| > 1, which we just
referred to as the explosive case?

The answer to these questions is yes. To find the solution, we re-normalize (1), so that
yt depends on the lead variable yt+1 instead of the lag:

yt =
−a0

ab
+

1
ab

yt+1 +
1
ab

et (3)

and consider repeated forward insertion on the right-hand side in this process, giving:

yt =
−a0

ab

h−1
∑

i=0

(
1
ab

)i
+

(
1
ab

)h
yt+h +

1
ab

h−1
∑

i=0

(
1
ab

)i
et+i (4)

after h− 1 substitutions. Clearly, since 0 < a−1
b < 1 (assuming positive ab for simplicity),

this solution implies that the unconditional expectation and variance of yt is independent
of time. Hence, the time series generated by (1), is indeed a stationary process.

The challenge represented by (4) is instead one of relevance. The future dependence of
the solution seems to make it necessary to know the whole sequence of future shocks, and
for a finite horizon h, the terminal condition yT+h. In many disciplines, these requirement
simply seems unrealistic, and the non-causal solution is therefore often dismissed as
unpractical or “unnatural” ([8], p. 81). However, as mentioned, progress has been made in
the use of non-causal solutions of processes which generate bubbles in financial markets [18].
That said, and keeping in mind that (1) is a closed system, it appears that (4) does not
respect the second law of entropy, as the direction of time has been reversed.

3. The Non-Causal Solution in DSGE Models

As noted above, academic macroeconomics after the NCCR stands out as a field where
the non-causal solution principle has thrived. As a result, non-causal processes play a large
role, particularly in DSGE models, which have become something of an industry standard.

The reason is that from the start, DSGE models took on board a specific interpretation
of rational expectations, namely that the economic agents form mathematical expectations
about the future values of the model’s variables by utilizing the equations of the model.
Said differently, households and firms behave like (some) economic forecasters do and use
the optimal point forecast, which minimizes the mean squared forecast error (assuming
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that the model is a close approximation to the real-world data generation process (DGP),
and that the DGP of the future is the same as the DGP of the past).

A structural equation that appears frequently in macro theories is (see e.g., [24], Ch.8):

yt = a0 + a f
>0

Et[yt+1] + ab
≥0

yt−1 + bxt + εt, (5)

where the difference from the earlier equations is that we have defined the variable et as
the sum of one observable time series variable xt, and one unobservable variable εt:

et = xt + εt

and that we have introduced a new parameter, Et[yt+1], which is the conditional expectation
of the variable yt+1, given the information available for forecasting it at the end of period t.

Setting ab = 0 would be the case of a pure forward-looking model equation as derived
from microeconomic theory including rational expectations. It is a defining trait of the
canonical monetary policy model [21].

ab > 0 (the positive sign does not represent any loss of generality) defines the hybrid
form, and it is this version that dominates in DSGE models that are used in practice. The
motivation is that, for reasons that are ad hoc, e.g., “sluggishness in the data” ([25], p. 15),
“enhance the empirical coherence of the model” ([26], p. 104), “account for inertia in the
data” ([21], p. 2066), the preferred model consistent expectations theory only becomes partly
implemented. For example, when the variable yt represents inflation, the theoretically
correct specification would be to set ab = 0, but the hybrid form with ab > 0 is nevertheless
used in the DSGE model with the suggested interpretation that a proportion of the firms
follows indexation rules, or other rules of thumb, rather than being fully rational price
setters.

Similar “softening up” of the theoretical core specification is used for the model
equations representing other parts of the macroeconomy. In the consumption and savings
department, for example, a proportion of the households are allowed to be credit rationed,
or for other reasons place excessive emphasis on today’s or yesterday’s wage income.

3.1. The Pure Form of the Model

Nevertheless, the pure form, with ab = 0, is useful for seeing how the non-causality of
the solution is affected by the fact that instead of yt+1 on the right-hand side of in (3), we
have Et[yt+1] in

yt = a0 + a f Et[yt+1] + bxt + εt. (6)

In order to find a solution, we need to specify the information that the agents base their
expectations on. We can follow custom and assume that εt is a white-noise process, so that
εt+i (i = 1, 2, ...) cannot be predicted from (end of) period t information, while xt follows
the autoregressive process

xt = cx1xt−1 + εxt, (7)

where −1 < cx1 < 1, and εxt is a white-noise process, independent of the structural
disturbance εt.

Following ([27], pp. 100–110) the solution can be attained in two steps:

1. Find Et[yt+1].
2. Solve for yt.

Step 1. makes use of the non-causal solution (forward recursion) and agents assumed
ability to form expectations based on the equations of the model.

We commence by re-writing (6) by using the expectation error, defined as:

ut+1 = yt+1 − Et[yt+1],
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to obtain:
yt = a0 + a f yt+1 + bxt + εt − a f ut+1. (8)

Identical equations hold for yt+i (i = 1, 2, . . . , h):

yt+i = a0 + a f yt+i+1 + bxt+i + εt+i − a f ut+i+1, (9)

and iterating forward leads to the expressions for yt (only simplified by setting a0 = 0)

yt = ah
f yt+h +

h−1

∑
i=0

(ai
f bxt+i + ai

f εt+i)−
h

∑
i=1

ai
f ut+i, (10)

The same type of (non-causal) solution is found for yt+1. When we take account of the
process (7) that governs xt and xt+1, it becomes

yt+1 = ah
f yt+1+h +

h−1

∑
i=0

(ai
f bcx1xt+i + ai

f εxt+1+i + ai
f εt+1+i)−

h

∑
i=1

ai
f ut+1+i (11)

and represents all the information that the agents have available for forecasting yt+1
optimally. Hence, by applying the conditional expectation, we get

Et[yt+1] = ah
f Et[yt+1+h] + bcx1

h−1

∑
i=0

ai
f Et[xt+i], (12)

since conditional on period t, the expectation of the three last sums in (11) are zero. More-
over, from knowledge of the process (7), we can find how the agents specify expectations
about xt, xt+1, xt+2, . . . , xt+h−1:

Et[xt] = xt

Et[xt+i] = ci
x1xt, i = 1, 2, . . . ,

and (12) therefore becomes:

Et[yt+1] = ah
f Et[yt+1+h] + bcx1

h−1

∑
i=0

(a f cx1)
ixt. (13)

We next follow custom and impose on the solution that the expectation horizon extends
towards infinity, h→ ∞.

Et[yt+1] = lim
h→∞

ah
f Et[yt+1+h] + bcx1

∞

∑
i=0

(a f cx1)
ixt (14)

Subject to the two assumptions:

−1 < a f < 1 (15)

−1 < a f cx1 < 1 (16)

the optimal forecast for yt+1 therefore becomes

Et[yt+1] =
bcx1

1− a f cx1
(17)
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The second step in the solution algorithm is quickly carried out in this case: Substitution
for Et[yt+1] in the structural equation (6), and keeping in mind that we have simplified by
a0 = 0, gives the solution for yt as

yt =
b

1− a f cx1
xt + εt, (18)

showing that all dynamics have been purged from the solution, despite starting from the
dynamic formulation in (6) (or the formulation with forecast error (8)). Hence, this way of
modelling expectations, as agents who are rational forecasters and who know the true DGP,
now and in the future, is “taking away” dynamics—reducing the degree of entropy of the
system.

Written in solution equation form, the system is seen to consist of (7), determining xt,
and (18), which gives yt given xt. This is a particular special case of the recursive nature of
closed-form solutions, for small or medium-scale DSGE models ([26], p. 172). It means that
even though (18) is static, hence the there is no dynamic response to a “y-shock”, there are
implied dynamic responses in yt to a shock elsewhere in the system, namely in εt in the
marginal model equation for xt (7).

Since the process for xt is an integral part of the system, we can guess that dynamics
in the y-equation can re-emerge by allowing higher-order dynamics in that process. For
concreteness, we use second-order dynamics:

xt = cx1xt−1 + cx2xt−2 + εxt, (19)

and by re-calculating Et[xt+i] we obtain the solution:

yt =
b

1− a f (cx1 + cx2)
xt +

ba f cx2

1− a f (cx1 + cx2)
xt−1 + εt (20)

which is a distributed lag (DL) model equation, known from econometric text books,
cf. ([28], Ch. 7).

In DSGE models, this theory has been applied to both wage and price setting under
the name Calvo-style price setting or New-Keynesian Phillips Curve (NKPC) [29–31].

There are special applications and interpretations that can be mentioned. In the price
NKPC, where yt is the rate of change of the general price level, xt has been measured by
the wage-share, the output-gap (log GDP as deviation from trend) and the unemployment
rate (in which case one would set b < 0). In some presentations, notably the influential
article by [32], the disturbance term is omitted, which suggests a stronger interpretation
which is often referred to as the NKPC holding in “exact form”. In the wage NKPC, xt has
been attempted measured by a wage pressure indicator, i.e., combining variables that one
think can proxy households’ wage bargaining power and firms’ ability to pay [33].

In both applications, it is seen that that a nominal price/wage shock which lasts for
one period affects the nominal wage/price change in the same period as the shock occurs.
There are no dynamic responses to such a shock. Since xt follows a dynamic process, there
will, however, be dynamic inflation responses to an impulse to εxt. This is also true when
the solution equation for yt is the static equation in (18).

Nevertheless, it is widely recognized that a DSGE model cannot really survive with
so very constrained dynamics, and they are therefore filled up with the hybrid forms
mentioned above.

3.2. The Hybrid Form of the Model

As an important special case, the hybrid form of (6) is

yt = a0 + a f Et[yt+1] + abyt−1 + bxt + εt. (21)
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where ab > 0, and the simplest expressions for the solution is obtained if we assume
a f + ab < 1. It is important to note that the extended model equation does not follow from
the same microeconomic theory as is used to derive (6). From that perspective, (21) is an ad
hoc softening of the theoretical core.

The solution for yt, given (21) and (19) is derived by following the same two steps as
above. It is:

yt = r1yt−1 +
b

a f r2
kx1xt +

b
a f r2

kx2xt−1 +
1

a f r2
εt (22)

where r1 and r2 are the two roots of

r2 − 1
a f

r +
ab
a f

= 0,

and we assume (with only a little loss of generality) that r1 < 1 and r2 > 1, see ([34,35] for
details. The expressions for kx1 and kx2 are found in Appendix A.

Although the notation is somewhat cluttered, we can recognize (22) as an ADL model
equation, well known from dynamic econometrics. Hence, despite the future dependency
in the structural model equation representation (5), the solution of the hybrid version of
the model produces an ADL model equation for inflation which is causal and conditional
on xt. In practice, (22) can be estimated by OLS, and the results compared with competing
models for the focus variable, for example of inflation.

In fact, the point that the forward solution implies restrictions on the stochastic differ-
ence equations that time series econometricians normally will use is more general. Hence,
for example, Ref. [36] proposed a new evaluation methodology of small-scale DSGE models
based on sequential tests conducted in a Vector Autoregressive (VAR) model. This approach
contributes to earlier important literature about the empirical assessment of contesting
model of expectations formations models; see [37–39] among others. Since, for example,
the New-Keynesian Phillips curve reviewed in the next section was a new model when it
was presented, a testing phase of the models encompassing capabilities could have been
expected. That did not happen, and the model’s success was instead largely by default,
because it was micro-founded, and because had a good fit (but in hybrid form, which no
longer has a clear micro foundation).

For large-scale DSGE models, and for models with lead-in-variables more generally,
the closed form solution is not practical. Therefore, a method often referred to as the
Fair–Taylor algorithm is often used; see [40]. Although several versions exist, the main
method is to loop repeatedly through a solution sample of finite length, treating the past
and terminal conditions as fixed. Hence, this method makes the non-causal nature of the
solution even clearer than the closed form solution does. In practice, though, by using
extended solution paths, the algorithms are designed to make the solution path of interest
independent of the terminal conditions. Hence for example, if the solution period of interest
is between T1 and T2, the algorithm adds k periods after T2. The sub-path between T1 and
T2 has to be independent of the terminal condition. As pointed out by [41], this can be
achieved by pushing the terminal condition sufficiently far into the future.

One way of deciding a terminal condition is, with reference to the correspondence
principle, to solve the deterministic and static version of the dynamic model. In the case of
the hybrid model Equation (21), the terminal condition such determined becomes:

yterm
T2+k =

a0

1− a f − ab
,

which is identical to the unconditional expectation of yt (long-run mean). Whether the
marginal model equation for xt is (7) or (19) does not matter, as long as they are specified
without constant terms. Still, the sketched algorithm is only directly applicable in determin-
istic form. Stochastic simulation of macro econometric models with future dated variables
still appear to be no common task [41].
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4. Empirical Illustration

In this section, we illustrate the estimation of the closed-form solution for the US
inflation dataset in the seminal article by [32]—GG hereafter. The endogenous variable
yt is the quarterly inflation rate (measured as the change in the natural logarithm of the
GDP deflator) and xt is the (natural logarithm) of the wage share. GG presented several
estimates of a f and ab. â f is typically larger than âb, and the sum was very close to unity, cf.
Table 2 in GG.

Using a typical pair of estimates, (â f ,âb = (0.62, 0.36), the implied numbers for the
roots associated with (21) are r̂1 = 0.54 and r̂2 = 1.07.

However, when (22) is estimated on the same dataset, we obtain:

yt = 0.8732
(0.043)

yt−1 + 0.06879
(0.036)

xt − 0.04608
(0.030)

xt−1

+ 0.0012
(0.0004)

OLS, 1960(1)-1997(4), Number of observations: 152
Robust standard errors (HACSE) in brackets below the estimates

where the coefficient of the lag yt−1 is 0.87, which is considerably larger than the 0.54 that
the theory predicts.

There are several possible explanations of this puzzle. It may be a bias in the OLS
estimates of r1, even if the hybrid model holds exactly in the data (i.e., we would not have
estimated the true parameter, even if we started from the true DGP). The well-known
Hurwicz bias goes in the opposite direction (it underestimates the true parameter), and in
any case, the size of that bias is normally much lower than the gap between 0.87 (estimated)
and 0.54 (hypothesized if the hybrid model is correct) ([17], Ch. 4).

However, we can investigate the possibility that estimation bias is the explanation by
conducting a Monte Carlo experiment.

The results are summarized in Figure 1, which plots the sequence of r̂1 estimates (with
95% confidence bound) that we would expect to obtain if the hybrid estimated by GG was
a good empirical model of US inflation. The plot shows that the bias is small for the initial
sample with 50 observations, and that it is reduced as the sample is extended.

Hence, the explanation of the difference between theoretically derived parameter
(0.54) and estimated parameter (0.87) is likely to lie elsewhere. The existing literature has
investigated several other econometric issues, but the possibility of severe mis-specification
has also received empirical support; see ([34], Ch. 7) and [42], among others. Specifically,
the underlying theory does not allow for unanticipated shifts, although crises, breaks
and regimes shifts are relatively common in real economies. Ref. [42] demonstrated that
potentially spurious outcomes can arise when location shifts are not modelled and rational
expectations are, in fact, irrelevant.
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Figure 1. Monte Carlo simulation of recursive OLS estimation of the autoregressive coefficient in
Equation (22), with ±2 standard errors (MCSD) indicated by the distance between the dashed lines,
assuming that the hybrid model estimated by GG is the DGP. The true parameter is 0.54. Results
based on 1K replications.

5. Discussion

A reasonable summary of our assessment may be that the consistent implementation
of the second law of thermodynamics would at some point become incompatible with
the solutions of macroeconomic models that have disseminated from the NCCR. This is
because a necessary step in the solution is to solve the model forward in time, and then
introduce the principle of model consistent rational expectations as a way of making the
non-causal solution practical, in terms of observable variables. The result is a solution in
the form of either a static model equation, or a model that has a finite distributed lag in the
forcing variable.

When the theoretical version of the model is put to the side, and is replaced by the
hybrid model equation, the solution takes the form of the well-known ADL model equation.
Viewed from that angle, the hybrid form gives a solution which has much in common with
the type of empirical model equation that a time series econometrician would take as a
natural starting point for an empirical modelling project.

However, to rationalize the ADL model by “softening up” the rational expectations
core is like fording the river to fetch water. The ADL model equation, the VAR, recursive
systems and simultaneous equations models, are all well founded in the theory of time
series analysis and dynamic econometric modelling. Hence, we can just as well say that
the ADL model equation, and its multiple-equation counterparts, represent models that
are consistent with expectations that are based on experience by recognition of similarities.
At the same time, they are robust to any pockets of model-based rational expectations
behaviour that might exist.

More generally, to assess the empirical relevance of their theory equations, DSGE
modellers should find it useful to apply the embedding check proposed by [43], retaining
their equation and testing it against alternatives. Hendry and Johansen showed that
when the theory is complete and correct, the theory model can be retained after selection
with parameter estimates that have the same distributions as when the model is directly
estimated without selection. Hence, there is little danger of valuable empirical models
being lost for macroeconomics by testing any specific theory-driven model equation against
both location breaks as well as other theoretical views, including those that drill deeper



Entropy 2022, 24, 1728 11 of 12

into the implications of expectations and of how they are formed; see [14,20,44,45] among
others.
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NKPC New-Keynesian Phillips Curve.
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Appendix A

The constants kx1 and kx2 are well defined when
∣∣∣ rxj

r2

∣∣∣ < 1, j = 1, 2, where rx1 and rx2

are the roots of the characteristic equation associated with (19). They can be expressed as
(cf. Nymoen et al. [35]):

kx1 = − r2

rx2 − rx1
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r2
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r2

−
rx2
r2
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r2
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