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Abstract: Device-to-device (D2D) technology enables direct communication between devices, which
can effectively solve the problem of insufficient spectrum resources in 5G communication technology.
Since the channels are shared among multiple D2D user pairs, it may lead to serious interference
between D2D user pairs. In order to reduce interference, effectively increase network capacity, and
improve wireless spectrum utilization, this paper proposed a distributed resource allocation algo-
rithm with the joint of a deep Q network (DQN) and an unsupervised learning network. Firstly,
a DQN algorithm was constructed to solve the channel allocation in the dynamic and unknown
environment in a distributed manner. Then, a deep power control neural network with the unsu-
pervised learning strategy was constructed to output an optimized channel power control scheme
to maximize the spectrum transmit sum-rate through the corresponding constraint processing. As
opposed to traditional centralized approaches that require the collection of instantaneous global
network information, the algorithm proposed in this paper used each transmitter as a learning agent
to make channel selection and power control through a small amount of state information collected
locally. The simulation results showed that the proposed algorithm was more effective in increasing
the convergence speed and maximizing the transmit sum-rate than other traditional centralized and
distributed algorithms.

Keywords: device-to-device; channel selection; power control; deep reinforcement learning; unsu-
pervised learning

1. Introduction

With the development of wireless communication technology and the increasing num-
ber of mobile devices, a large amount of data traffic needs to be transmitted over wireless
networks, due to the increase in user demands for high data transmission services [1–5].
Operators often deploy more base stations (BSs) in multiple frequency bands to relieve
mobile congestion, but this also leads to significant cost expenditures. The emerging device-
to-device (D2D) technology enables direct communication between devices and offloads
the heavy mobile traffic from BSs at a low cost [6]. In the existing technology, there are
mainly two multiplexing modes, namely, underlay mode and overlay mode. In underlay
mode, DUEs (Device User Equipment) and CUs (Cellular Users) are allowed to transmit
data at the same time, which unavoidably generates interference between DUEs and CUs.
However, this paper focuses on the overlay mode. In this mode, a part of the spectrum
resources can be used by D2D pairs alone, which eliminates the interference caused by
partitioning orthogonal spectrum resources for DUEs and CUs [7]. In most scenarios, the
number of available channels in a D2D network is usually much smaller than that of DUEs.
As a result, multiple DUEs have to share the same channel, resulting in serious co-channel
interference among DUEs.

In order to reduce the co-channel interference between D2D users, the problem of
the channel selection and the power allocation has been widely studied. According to the
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differences of the required channel state information (CSI), models to solve the mentioned
problem above can be categorized into centralized [8–13] and distributed [14,15] models.
In general, centralized models require global CSI, while distributed models require only
local CSI.

In centralized models, the iterative algorithms, such as the fractional programming
(FP) [8] and the weighted minimum mean square error (WMMSE) [9], are known to be
the most advanced optimization methods. Both algorithms not only require the complete
global CSI, but are also mathematically accurate and easy-to-handle models. Besides, deep
learning techniques are also used in centralized models to solve the resource allocation
problem in wireless networks due to low computational complexity [10–13]. However, it is
a great challenge to obtain the global CSI in time for non-stationary wireless environments
because of the following facts. For one thing, the channel state information varies quickly
with non-stationary wireless environments. For another, large-scale information exchanges
are needed for collecting the global CSI. As a result, the above aspects undoubtedly increase
the difficulty in applying the centralized methods to non-stationary wireless environments.
Therefore, most of the algorithms of centralized models are not applicable to practical
large-scale network scenarios.

Distributed models can better account for the timeliness and relevance of informa-
tion in real wireless networks. In distributed models, channel selection is usually time-
dependent and varies according to some patterns based on channel state information. In
the distributed model, Tan et al. [14] proposed to train a separate deep Q network that
handled both channel selection and transmit power control for D2D user pairs. The main
drawback of this algorithm was that the deep Q network (DQN) learning algorithm was
not easily applied to problems that contained both discrete and continuous variables. To
solve this problem, Nasir et al. [15] proposed to use a deep Q-network for the discrete
channel allocation in the bottom layer, and a deep deterministic policy gradient (DDPG)
for the continuous power allocation in the top layer. In the algorithm present in [15], the
deterministic policy of the DDPG was highly dependent on the accuracy of the Q-value
estimation. However, the neural network at the beginning of the training leads to a poor
Q-value prediction, and the training with the DDPG strategy becomes less effective as the
size of the neural network increases. The above two shortcomings reduce the efficiency
of the deterministic strategy of the DDPG for action exploration, and thus the spectrum
utilization cannot be improved efficiently and quickly with continuous power allocation
from the DDPG.

Except for deep supervised learning and deep reinforcement learning, deep unsu-
pervised learning is also widely used to solve the continuous power allocation problem
for the physical layer of wireless networks. Since unsupervised learning techniques can
directly model and analyze the data without labels, they can prevent inappropriate label
sets from degrading the performance of neural networks. For example, researchers have
used unsupervised learning techniques for power control solutions in D2D communica-
tion systems [16,17]; Liang et al. constructed integrated networks based on the idea of
integrated learning and used unsupervised learning techniques for power control and
for maximizing the sum-rate of multiple transceiver pairs in wireless networks [18]. As
opposed to the deterministic strategy of the DDPG, which trains network parameters
indirectly by estimating the Q value [15], the above deep unsupervised learning method
trains network parameters directly by optimizing the gradient of the target, giving it higher
network training efficiency.

Due to the scarce spectrum resources in the overlay mode, both the channel allocation
and the power control are required to reduce the co-channel interference between DUEs.
Inspired by the deep unsupervised learning approach, this paper proposes a distributed
resource allocation algorithm, which combines the deep reinforcement learning and the
deep unsupervised learning to investigate the channel selection and power control of
multichannel D2D networks for maximizing the channel transmission rate. The proposed
distributed algorithm in this paper includes a deep reinforcement learning-based deep
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neural network for channel allocation (DRLDNN-CA) and an unsupervised learning-based
deep neural network for power control (ULDNN-PC). That is, the proposed DRLDNN-CA
and the proposed ULDNN-PC can output the channel allocation scheme and the channel
power, respectively. It should be noted that the proposed DRLDNN-CA uses the local
information set collected by agents as input, while the ULDNN-PC uses a set of the local
information determined by the output channel assignment scheme of the DRLDNN-CA
as input. In addition, both the proposed DRLDNN-CA and the proposed ULDNN-PC
were executed through distribution and trained in a centralized manner to maximize the
transmit sum-rate.

The main innovation of this paper is to use deep reinforcement learning combined
with unsupervised learning for channel allocation and power control in distributed D2D
networks. First of all, the research on the interference suppression of D2D network tech-
nology is still insufficient. In addition, a centralized model requires global CSI, while a
distributed model requires only local CSI. The distributed model can better consider the
timeliness and relevance of information in real wireless networks. It is worth mention-
ing that in the distributed model, joint deep reinforcement learning and unsupervised
learning have theoretical support and practical basis, but no academic research has been
reported. In this paper, the deep reinforcement learning technology DRLDNN-CA was
proposed for channel allocation, and the unsupervised learning technology ULDNN-PC
was proposed for power control. Since unsupervised learning technology does not require
labels, inappropriate labels can be prevented from affecting neural network performance,
and unsupervised learning technology can directly model and analyze data. The results
showed that DRLDNN-CA combined with ULDNN-PC technology was more effective
than traditional centralized and distributed algorithms in improving convergence speed
and in maximizing transmission and rate.

The rest of this paper is organized as follows. The system model of a multichannel
D2D network is formulated in Section 2. In Section 3, the maximization problem of the
transmit sum-rate for the multichannel D2D network is formulated. In Section 4, we
first provide brief overviews for both reinforcement learning and unsupervised learning,
and then describe the local state information available for distributed models, and finally
propose the joint deep reinforcement learning and unsupervised learning framework for the
computation of distributed resource allocation. Simulations and comparisons are presented
in Section 5, and conclusions are shown in Section 6.

2. System Model and Related Works
2.1. System Model

The system model of a multichannel D2D network with distributed control is shown
in Figure 1.

In this paper, a multichannel D2D network with n links sharing m channels (n > m)
is considered. The sets of links and channels are denoted as n = {1, . . . , N} and
m = {1, . . . , M}, respectively. As shown in Figure 1, link n consists of a D2D user transmit-
ter (DUE T) and receiver (DUE R). Since DUE #1 and DUE #2 use channel 1 at the same
time, the DUE #1T transmitter will cause interference to the DUE #2R receiver, and the DUE
#2T transmitter will cause interference to the DUE #1R receiver. Similarly, since DUE 3 and
DUE 4 use channel 2 at the same time, the DUE #3R receiver and the DUE #4R receiver will
receive interference from the DUE #4T and DUE #3T, respectively. In this paper, we assume
that the time slot system is fully synchronized and the length of a time slot is fixed, and
that a link will select a channel at the beginning of each time slot.

In this paper, the channel model used is composed by large-scale fading and small-
scale fading. Similar to [19], the small-scale fading between the transmitter and its receiver
is assumed to be block fading, and the small-scale Rayleigh fading is described by the Jake’s
model [20]. In this paper, g(t) and g(t+1) are used to represent the small-scale Rayleigh
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fading at t and t + 1, and the following equation is used to express the correlation between
them [15].

g(t+1) = ρg(t) +
√

1− ρ2e(t) (1)

where ρ ∈ [0, 1] is used to represent the correlation between two consecutive decay-
ing blocks, and both g(0) and e(t) are complex Gaussian random variables that obey the
Rayleigh distribution.

Entropy 2022, 24, x FOR PEER REVIEW 4 of 27 
 

 

BSDUE #1T

DUE #2T

DUE #1R

DUE #2R

DUE #4R

DUE #4T

DUE #3T

DUE  #3R
Channel 2

Interference

Channel  1

 
Figure 1. System model of a multichannel D2D network. 

In this paper, a multichannel D2D network with n links sharing m channels (n > m) is 
considered. The sets of links and channels are denoted as { }1, ...,n N=  and 

{ }1,...,m M= , respectively. As shown in Figure 1, link n consists of a D2D user transmitter 
(DUE T) and receiver (DUE R). Since DUE #1 and DUE #2 use channel 1 at the same time, 
the DUE #1T transmitter will cause interference to the DUE #2R receiver, and the DUE #2T 
transmitter will cause interference to the DUE #1R receiver. Similarly, since DUE 3 and 
DUE 4 use channel 2 at the same time, the DUE #3R receiver and the DUE #4R receiver 
will receive interference from the DUE #4T and DUE #3T, respectively. In this paper, we 
assume that the time slot system is fully synchronized and the length of a time slot is fixed, 
and that a link will select a channel at the beginning of each time slot. 

In this paper, the channel model used is composed by large-scale fading and small-
scale fading. Similar to [19], the small-scale fading between the transmitter and its receiver 
is assumed to be block fading, and the small-scale Rayleigh fading is described by the 

Jake’s model [20]. In this paper, ( )tg  and ( 1)tg +  are used to represent the small-scale Ray-
leigh fading at t and t + 1, and the following equation is used to express the correlation 
between them [15]. 

( 1) 2 ( )( ) 1t ttg g eρ ρ+ = + −  (1) 

where [0,1]ρ ∈  is used to represent the correlation between two consecutive decaying 
blocks, and both (0 )g  and ( )te  are complex Gaussian random variables that obey the 
Rayleigh distribution. 

In the following, we denote k nβ →  as the large-scale path loss from transmitter k to 
receiver n over channels, denote ( )

,
t
k n mg →  as the small-scale Rayleigh fading from transmit-

ter k to the receiver on channel m. Thus, the channel gain between transmitter k and re-
ceiver n on channel m at time slot t can be expressed as follows. 

( ) ( ) 2
, ,

t t
k n m k n k n mh gβ→ → →= | |  (2) 

In addition, we define ( )
,
t
n mα  to indicate whether link n selects channel m at time slot 

t. We use ( )

, 1t

n mα =  to indicate that link n selects channel m; otherwise, ( )

, 0t

n mα = . Finally, 

we denote ( )t
np  as the transmit power of transmitter n at time slot t. Based on the above 

defined notations, the signal-to-noise ratio (SINR) on channel m at time slot t can be ex-
pressed as (3), since the channel resources are orthogonal. 

Figure 1. System model of a multichannel D2D network.

In the following, we denote βk→n as the large-scale path loss from transmitter k to
receiver n over channels, denote g(t)k→n,m as the small-scale Rayleigh fading from transmitter
k to the receiver on channel m. Thus, the channel gain between transmitter k and receiver n
on channel m at time slot t can be expressed as follows.

h(t)k→n,m = βk→n

∣∣∣g(t)k→n,m

∣∣∣2 (2)

In addition, we define α
(t)
n,m to indicate whether link n selects channel m at time slot t.

We use α
(t)
n,m = 1 to indicate that link n selects channel m; otherwise, α

(t)
n,m = 0. Finally, we

denote p(t)n as the transmit power of transmitter n at time slot t. Based on the above defined
notations, the signal-to-noise ratio (SINR) on channel m at time slot t can be expressed as
(3), since the channel resources are orthogonal.

γ
(t)
n,m =

α
(t)
n,mh(t)n→n,m p(t)n

σ2 + ∑
k 6=n

α
(t)
k,mh(t)k→n,m p(t)k

(3)

where σ2 is the additive white Gaussian noise power.
However, as the channel resources are not orthogonal, there exists interference among

the adjacent channels. For this situation, the signal-to-noise ratio (SINR) on channel m at
time slot t can be expressed as (4).

γ
(t)
n,m =

α
(t)
n,mh(t)n→n,m p(t)n

σ2 + ∑
k 6=n, |m∗−m|≤z

α
(t)
k,m∗h

(t)
k→n,m∗p(t)k

(4)
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where m* is the adjacent channel of m, and z is the maximum distance of adjacent channels.
The downlink transmit rate achieved by link n over channel m at time slot t is defined

as follows:
C(t)

n,m = log2(1 + γ
(t)
n,m) (5)

2.2. Related Works

In order to clearly make comparisons with our proposed algorithm, the state-of-the-art
algorithms for the resource allocation of D2D networks are summarized in Table 1. It can be
seen from Table 1 that the state-of-the-art algorithms extensively focus on the power control
and/or the channel allocation in D2D networks, and various deep learning technologies,
such as DQN [14,21–24], CNN [16,25], DDPG [15], DNN [16,17] and so on, are involved.
For example, Tan et al. [14] proposed to use a deep Q network to handle both the channel
selection and the power control for D2D user pairs in a distributed model; Yuan et al. [21]
proposed to use a double deep Q network for both the channel selection and the power
control for D2D user pairs in a distributed model; Nasir et al. [15] proposed to use a deep Q-
network for the discrete channel allocation, and proposed to use a deep deterministic policy
gradient (DDPG) for the continuous power allocation. Besides, unsupervised learning-
based deep neural networks have been applied for the resource allocation for D2D wireless
networks [16–18,26]. It is known that unsupervised learning techniques do not require
labels in training deep neural networks, so they can prevent inappropriate label sets from
degrading the performance of deep neural networks. When compared with the supervised
learning strategy in [25], the unsupervised learning strategy can train various deep neural
networks, such as CNN [16] and DNN, [17,18,26] more effectively and efficiently.

Table 1. Comparisons between our proposed algorithm and other state-of-the-art algorithms for D2D
wireless networks related to 5G.

Publication Algorithm Model Resource Allocation Approach

Tan et al. [14] Reinforcement DQN Channel select, Power control Distributed
Lee et al. [16] Unsupervised CNN Power control Centralized
Lee et al. [26] Unsupervised DNN Power control Centralized

Nasir et al. [15] Reinforcement DQN, DDPG Channel select, power control Distributed
Zhang et al. [25] Supervised CNN Power control Centralized
Yuan et al. [21] Reinforcement DQN Channel select, power control Distributed

Bi et al. [22] Reinforcement DQN Power control Centralized
Yu et al. [23] Reinforcement DQN Channel select, power control Distributed
Lee et al. [17] Unsupervised DNN Power control Centralized

Chandra et al. [24] Reinforcement, supervised DQN, SVM Power control Distributed
This paper Reinforcement, unsupervised DQN, DNN Channel select, power control Distributed

However, the algorithms mentioned above are still deficient for the resource allocation
of D2D wireless networks. Firstly, because of the discretized action space, DQN has
shortcomings in solving problems that contain both discrete and continuous variables. This
means that DQN cannot reach the optimal solution in solving problems with continuous
power variables. Secondly, the deterministic policy of DDPG is highly dependent on the
accuracy of the Q-value estimation. Unfortunately, the critic neural network in DDPG at the
beginning of the training easily leads to a poor Q-value prediction, which causes the training
with the DDPG strategy to be less effective as the size of the neural network increases.
Thirdly, research on the application of the unsupervised learning to aid allocations of
both the continuous power variables and the discrete channel variables in D2D networks
remain deficient.

3. Problem Formulation

To reduce the interference between channels and improve the overall spectrum effi-
ciency, the transmit sum-rate of all the D2D pairs can be maximized by optimizing the chan-
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nel and power allocation. Define α(t) = [α
(t)
1,1, α

(t)
1,2, . . . , α

(t)
N,M]

T
and p(t) = [p(t)1 , p(t)2 , . . . , p(t)N ]

T

as the channel selection and channel power at time slot t, respectively. The maximization
problem of the transmit sum-rate can be formulated as the following P1.

P1 : max
α(t),p(t)

∑N
n=1 ∑M

m=1 C(t)
n,m

s.t. C1 : 0 ≤ p(t)n ≤ Pmax, ∀n ∈ {1, . . . , N}
C2 : α

(t)
n,m ∈ {0, 1}, ∀n ∈ {1, . . . , N}, ∀m ∈ {1, . . . , M}

C3 : ∑
m

α
(t)
n,m = 1,∀n ∈ {1, . . . , N}

(6)

In problem P1, C1 indicates that the transmit power of a transmitter is non-negative
and should be less than its maximum transmit power; C2 indicates whether link n selects
channel m at time slot t; C3 indicates that each link can and only can select one channel.

The P1 problem is a non-convex mixed integer nonlinear programming problem, and
it is challenging to solve the P1 problem directly. For N links and M channels, there will be
MN channel allocation schemes for the optimization problem P1, which suggests that the
number of channel schemes will grow exponentially as the number of links increases. In
addition, the channel interference among D2D user pairs also makes the power control a
complex optimization problem [27]. It is known that the traditional centralized optimization
algorithms often require instantaneous global channel state information (CSI), and take
many iterations to achieve convergent states [15]. In order to overcome the shortcomings of
the traditional centralized optimization algorithms and reduce the computation complexity,
we propose a joint deep reinforcement learning and unsupervised learning technique
model, which can use a small amount of local information collected by agents and obtain
near-optimal solutions by decomposing the channel allocation and the power allocation
in P1.

4. Joint Deep Reinforcement Learning and Unsupervised Learning Framework
4.1. A Brief Overview of Reinforcement Learning

Reinforcement learning is a process of continuous exploration and trial-and-error,
where the agent learns strategies to maximize rewards by interacting with the environment.
The basic structure of reinforcement learning is shown in Figure 2.

Entropy 2022, 24, x FOR PEER REVIEW 7 of 27 
 

 

 
Figure 2. Basic structure of reinforcement learning. 

As shown in Figure 2, the interaction between the agent and the environment at time 
slot t is called the Markov Decision Process (MDP). All available actions made by the agent 
at time slot t comprise the action space A, and all the states that the agent observes in the 
environment make up the state space S. When the agent takes an action, the environment 
gives back a reward to evaluate the action at time slot t. The state of the agent at time slot 
t is assumed to be ts , and the reward after the action a of ts  is denoted as ( )ta sf . In ad-
dition, ( )d s  is used to represent a strategy, defined to be a mapping from states to ac-
tions, where ( )d s A∈ , s S∈ . The ultimate goal is to find a strategy that maximizes the 
long-term cumulative discounted reward, which is denoted as follows. 

( )
0

t

t t
d s

t

R f
∞

=

γ=   (7) 

where (0,1]γ ∈  represents the discount factor. 
In the following, the Q-Learning algorithm [28] is introduced. In the Q-Learning al-

gorithm, Q-values are the expected reward values obtained from the state-action (s, a) at 
time slot t under policy π, denoted as ( , )Q s aπ . 

( , ) ,t
t tQ s a R s s a aπ = = =    (8) 

Let *Qπ be the optimal Q-values *Qπ . Then the optimal *Qπ satisfies the following 
Bellman equation. 

1

* * *
1 1 1( , ) ( , ) ( , ) ( , ( ))

t

t t t
s S

Q Qs a Q s a P s s s sπ π πγ π
+

+ + +
∈

= +   (9) 

where 
1

( , )
t

P s s
+

 is the transition probability from the state s  to the next state 1ts + . Note 
that the Q-Learning algorithm updates Q-values by multiple iterations. Instead of always 
following some policy π, the agent takes action by using the ε-greedy method. That is, the 
agent takes an action by using the policy π with the probability of (1 − ε), while it takes a 
random action with the probability of ε. This enables the Q-learning algorithm to avoid 
local optimal solutions by exploring random actions. 

However, Q-values in the Q-Learning algorithm are present in a state-action table, 
which results in that the Q-learning algorithm lacks generality and is not applicable to 
large discrete state spaces. To overcome this challenge, deep learning is combined with 
the Q-Learning algorithm to form the deep Q-Network algorithm (DQN) [3], which re-
places the table with a deep neural network. The output of the DQN is denoted as 

( , ; )Q s a θ , where θ is denoted as the neural network parameters. Deep Q-learning is an 
off-policy learning method, which uses the experience replay method to store the past 

Environment

Agent

Action  State  Reward  

Figure 2. Basic structure of reinforcement learning.



Entropy 2022, 24, 1722 7 of 26

As shown in Figure 2, the interaction between the agent and the environment at time
slot t is called the Markov Decision Process (MDP). All available actions made by the agent
at time slot t comprise the action space A, and all the states that the agent observes in the
environment make up the state space S. When the agent takes an action, the environment
gives back a reward to evaluate the action at time slot t. The state of the agent at time
slot t is assumed to be st, and the reward after the action a of st is denoted as fa(st). In
addition, d(s) is used to represent a strategy, defined to be a mapping from states to actions,
where d(s) ∈ A, s ∈ S. The ultimate goal is to find a strategy that maximizes the long-term
cumulative discounted reward, which is denoted as follows.

Rt =
∞

∑
t=0

γt fd(st) (7)

where γ ∈ (0, 1] represents the discount factor.
In the following, the Q-Learning algorithm [28] is introduced. In the Q-Learning

algorithm, Q-values are the expected reward values obtained from the state-action (s, a) at
time slot t under policy π, denoted as Qπ(s, a).

Qπ(s, a) = E
[
Rt|st = s, at = a

]
(8)

Let Qπ∗ be the optimal Q-values Qπ∗. Then the optimal Qπ∗ satisfies the following
Bellman equation.

Qπ∗(s, a) = Qπ(s, a) + γ ∑
st+1∈S

P(s, st+1)Qπ∗(st+1, π∗(st+1)) (9)

where P(s, st+1) is the transition probability from the state s to the next state st+1. Note
that the Q-Learning algorithm updates Q-values by multiple iterations. Instead of always
following some policy π, the agent takes action by using the ε-greedy method. That is, the
agent takes an action by using the policy πwith the probability of (1 − ε), while it takes a
random action with the probability of ε. This enables the Q-learning algorithm to avoid
local optimal solutions by exploring random actions.

However, Q-values in the Q-Learning algorithm are present in a state-action table,
which results in that the Q-learning algorithm lacks generality and is not applicable to
large discrete state spaces. To overcome this challenge, deep learning is combined with the
Q-Learning algorithm to form the deep Q-Network algorithm (DQN) [3], which replaces
the table with a deep neural network. The output of the DQN is denoted as Q(s, a; θ),
where θ is denoted as the neural network parameters. Deep Q-learning is an off-policy
learning method, which uses the experience replay method to store the past experience
samples in the form of M = (st, a, rt+1, st+1) into the experience pool. The advantage of
setting up an experience pool is that it diversifies the data involved in training and makes
it easy for the DQN to escape the local optimal solution.

The DQN algorithm adopts the “quasi-static target network” technique, which creates
a target network with the parameter θtarget. Then the loss function of the DQN network is
defined as the mean-square Bellman error, as shown below.

L(θ) = E(st ,a,rt+1,st+1)

[
(y(st+1, rt+1)−Q(st, a; θ))2

]
(10)

where y(st+1, rt+1) = rt+1 + γmaxa′Qtarget(st+1, a′; θtarget), and Qtarget is the Q-value of the
target network.

In order to minimize the loss function (10), M batches are randomly selected from the
experience pool, and stochastic gradient descent is performed to update θ.
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4.2. A Brief Overview of Unsupervised Learning

Suren et al. [29] showed that the deep neural network using the unsupervised learning
strategy could obtain better results on the resource allocation than using deep reinforcement
learning strategy in a relatively stationary wireless network environment. When compared
with the supervised learning strategy, the unsupervised learning strategy did not require
supervision labels and could avoid decaying the performance of deep learning due to
inappropriate supervision labels.

Currently, the unsupervised learning strategy has been used for power control solu-
tions in D2D communication systems [16–18], where the negative minimum of the transmit
sum-rate objective function was used as the loss function. However, the unsupervised
learning strategy in [16–18] has shortcomings in the following two aspects. Firstly, the
unsupervised learning strategy cannot be used for the computation of the distributed
resource allocation with local state information. In addition, the unsupervised learning
strategy can only be used for power control in single-channel D2D communication systems,
while this is not possible in multichannel D2D communication systems. In this paper,
we combine the deep reinforcement learning with the unsupervised learning strategy for
power control in multichannel D2D communication systems under the framework of the
distributed resource allocation.

4.3. Local State Information Available for Distributed Models

Because centralized algorithms such as the FP algorithm [9] and WMMSE [10] algo-
rithms are obliged to collect global CSI, they are suitable for stationary models without
block fading, though not for large non-stationary models. In order for distributed execution
to take place, multi-agent learning approaches [14,15] are often used, with each agent
collecting the local state information, rather than just a single agent collecting the global
state information, which can prevent similar drawbacks in centralized execution.

Similar to [15], the transmitter n is considered as the agent n in this paper. Besides, for
collecting the local state information by each agent, both the interfering neighbor set and
the interfered neighbor set are set for link n, n ∈ {1, . . . , N}. The interfering neighbor set
of link n on the channel m is composed by those nearby transmitters, which interfere the
receiver n on the channel m at the previous time slot t− 1. The interfering neighbor set of
link n on the channel m is denoted as I(t)n,m. In order to prioritize the transmitters that use
channel m, the nearby transmitters are divided into two groups: those that occupy channel
m at time slot t− 1, and those that do not. Then, the interference intensity received at the
receiver n (i.e., h(t−1)

i→n,m) is sorted by descending order in order to prioritize the transmitter

neighbors that have the most serious interference impact on the receiver n. I(t)n,m is the set
based on the descending order of interference intensity received at the receiver n.

Similarly, the interfered neighborhood set of link n on the channel m is the set of the
receivers interfered by the transmitter n at the previous time slot t − 1. The interfered
neighborhood set of link n on the channel m is denoted as O(t)

n,m. In the same way, in order
to prioritize the nearby receivers that use channel m, those receivers are divided into two
groups. The interference intensity received at those receivers interfered by the transmitter
n (i.e., h(t−1)

n→j,m) is sorted by descending order in order to prioritize the receivers who are

severely interfered by the transmitter n. O(t)
n,m is the set based on the descending order of

interference intensity received at those receivers interfered by the transmitter n.
For the later simulation comparisons, the local state information collected by agent n

on the channel m is performed in the same way as [15], and is composed by the following
three parts. The first part is the local state information from communication information



Entropy 2022, 24, 1722 9 of 26

between the transmitter n and the receiver n on the channel m, which is denoted as κn,m, as
shown below.

κn,m =

(
α
(t−1)
n,m p(t−1)

n , C(t−1)
n , µ

(t)
n,m, h(t)n→n,m, ∑

l 6=n
α
(t−1)
l,m h(t)l→n,m p(t−1)

l

)
(11)

where µ
(t)
n,m = h(t)n→n,m/ ∑

l 6=n
α
(t−1)
l,m h(t)l→n,m p(t−1)

l .

The second part is the local state information from communication information be-
tween the receiver n and the interfering neighbors in I(t)n,m on the channel m. In order to
reflect the distributed method, c elements are indexed according to the interference intensity
as the second part information, which is denoted as νn,m, where νn,m follows the priority
standard of I(t)n,m.

νn,m =
(

α
(t−1)
i,m p(t−1)

i , C(t−1)
i , h(t)i→n,m, µ

(t−1)
i,m

∣∣∣∀i ∈ I(t)n,m

)
(12)

The third part is the local state information from communication information between
the transmitter n and the interfered neighbors in O(t)

n,m on the channel m. In order to reflect
the distributed method, c elements are indexed according to the interference intensity as the
second part information, which is denoted as ηn,m, where ηn,m follows the priority standard
of O(t)

n,m.

ηn,m =

(
h(t−1)

n→j,m, h(t−1)
j→j,m, C(t−1)

j , µ
(t−1)
j,m , ∑

l 6=n
α
(t−1)
l,m h(t−1)

l→j,m p(t−1)
l

∣∣∣∣∣∀j ∈ O(t)
n,m

)
(13)

Based on the above three parts of the local state information, the local state information
set collected by agent n on the channel m can be expressed as s(t)n,m, and is shown as follows.

s(t)n,m = {κn,m, νn,m, ηn,m} (14)

Then, the local state information set collected by agent n on all the channels is denoted
by s(t)n =

{
s(t)n,1, . . . , s(t)n,M

}
.

4.4. Proposed Framework for Resource Allocation

Our algorithm is proposed with N agents corresponding to N links in the D2D net-
work, rather than just a single agent that controls all the N links, because a single learning
agent easily suffers the similar drawbacks as centralized execution. The advantage of
the proposed algorithm with N agents is that only the local state information is obtained
for channel selection and power control. In our proposed algorithm, the transmitter n is
considered as the agent n. In addition, each agent in our proposed algorithm executes
in a distributed manner with two different deep neural networks, i.e., a deep reinforce-
ment learning-based deep neural network for channel allocation (DRLDNN-CA) and an
unsupervised learning-based deep neural network for power control (ULDNN-PC). That
is, in the process of distributed executions, each agent can leverage the DRLDNN-CA
and the ULDNN-PC to output the channel allocation scheme and the channel power, re-
spectively. Specifically, at each time slot t, the DRLDNN-CA in the agent n uses the local
state information set s(t)n collected by agent n on all the channels as input, and outputs
the channel allocation action a(t)n , while the ULDNN-PC in the agent n uses the local state
information set s(t)

n,a(t)n
collected by agent n on the channel a(t)n as input, and outputs the

channel power p(t)n by constraints. It is noted that both the proposed DRLDNN-CA and
the proposed ULDNN-PC are trained in a centralized manner for steadily maximizing the
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transmit sum-rate. The proposed framework for the resource allocation in P1 is shown in
Figure 3.

It can be seen from Figure 3 that the constrained optimization problem P1 is decom-
posed by the DRLDNN-CA and ULDNN-PC. The channel allocation problem to be solved
by the DRLDNN-CA can be described as P2, as expressed below.

P2 : max
α(t),p(t)=p∗(t)

N
∑

n=1
C(t)

n

s.t. C2 : α
(t)
n,m ∈ {0, 1}, ∀n ∈ {1, . . . , N}, ∀m ∈ {1, . . . , M}

C3 : ∑
m∈M

α
(t)
n,m = 1, ∀n ∈ {1, . . . , N}

(15)

where the optimized power allocation scheme p∗(t) is provided by the ULDNN-PC network.
Similarly, the power allocation problem to be solved by the ULDNN-PC can be described
as P3, as expressed below.

P3 : max
α(t)=α∗(t),p(t)

N
∑

n=1
C(t)

n

s.t. C1 : 0 ≤ p(t)n ≤ Pmax, ∀n ∈ {1, . . . , N}
(16)

where the optimized channel allocation scheme α∗(t) is provided by the DRLDNN-
CA network.

In the following, both the DRLDNN-CA and the ULDNN-PC are described in detail.
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where the optimized power allocation scheme *( )tp  is provided by the ULDNN-PC net-
work. Similarly, the power allocation problem to be solved by the ULDNN-PC can be 
described as P3, as expressed below. 

( ) *( ) ( )

( )

, 1
( )

1 max

P3 : max

. .  : 0 , {1,..., }

t t t

N
t
n

p n
t
n

C

s t C p P n N

α α= =

≤ ≤ ∀ ∈

  (16) 

Figure 3. Proposed framework for the resource allocation in P1.

4.4.1. DRLDNN-CA

Based on the constraint optimization problem P2, we define DRLDNN-CA as a channel
allocation neural network model, which consists of an input layer, multiple fully connected
hidden layers, and an output layer. Each fully connected hidden layer includes a fully
connected layer, a batch normalization layer, and a RELU activation function. The output
layer of the channel allocation neural network model is regarded as the adaptation value of
a link on all channels, and the channel corresponding to the maximum adaptation value is
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selected as the channel allocation scheme of the link. The DRLDNN-CA can be described
as follows:

(1) Input layer: For the agent n, the DRLDNN-CA requires the local state information
from all channels collected by the agent n. That is, the DRLDNN-CA of the agent n uses
the local state information s(t)n as its input. According to the local information, the tensor
dimension of s(t)n is M×Q(Q = 9× c + 5), where M is the number of channels, and c is the
index of the local information.

(2) Output layer: The DRLDNN-CA of the agent n uses the discrete action space
a(t)n ∈ {1, . . . , M} as its output. That is, the channel a(t)n is selected by the agent n for its
transmission, which is then transformed to the solution of the constraint optimization
problem P2 by the following rule: α

(t)
n,m = 1 if m = a(t)n , and α

(t)
n,m = 0 if m 6= a(t)n .

(3) Network update: In the DRLDNN-CA network, forward propagation is performed
to output the Q value Q(s(t)n , a, θ). According to the loss function (10) defined by the mean-
square Bellman error, the Q value Q(s(t)n , a, θ) output by the DRLDNN-CA is gradually
converged to the target Q value Qtarget(s

(t)
n , a, θ′). As the DRLDNN-CA is convergent,

the optimal policy π∗(s) = maxQ(s(t)n , a, θ∗) is obtained. Then the old weights θ of the
DRLDNN-CA are updates by the new weights θ∗, and the agent, with the aid of the
DRLDNN-CA, generates new actions to interact with the environment.

(4) Reward function: To maximize the problem P1, the reward function of the agent n
at time slot t is set to be r(t)n , and is shown as follows.

r(t)n = C(t−1)
n − ∑

j∈O(t)
n,m

I(t−1)
n→j (17)

where the reward function consists of two parts, i.e., the direct transmission rate C(t−1)
n of

agent n and the penalty term I(t−1)
n→j = log

(
1 +

α
(t−1)
j,m h(t−1)

j→j,m p∗(t−1)
j

∑l 6=n α
(t−1)
l,m h(t−1)

l→j,m p∗(t−1)
l +σ2

)
− C(t−1)

j , j ∈ O(t)
n,m.

Note that C(t−1)
n equals to C(t−1)

n,a(t)n
, and the power allocation scheme p∗(t−1) comes from the

ULDNN-PC network. The penalty term reflects, to some extent, the interference strength
of the transmitter n to all of its interfered neighbors. Obviously, the reward function r(t)n

becomes large when the direct transmission rate C(t−1)
n is large and the penalty term I(t−1)

n→j
is simultaneously small.

(5) Centralized training: To ensure that the distributed execution is more efficient,
the centralized training is set up in the DRLDNN-CA network. As shown in Figure 3,
an experience pool memory D is used. Due to the backhaul delay of one time slot, the
latest experience of memory D at time slot t is M(t) =

{
M(t)

1 , . . . , M(t)
n , . . . , M(t)

N

}
, where

M(t)
n =

(
s(t−1)

n , a(t−1)
n , r(t)n , s(t)n

)
.

In the training of the proposed DRLDNN-CA for the agent n, the DQN neural network
and target DQN neural network are first created. In addition, memory D is redeployed and
the relevant parameters, including exploration rate and the DRLDNN-CA, are initialized.
The execution of the proposed DRLDNN-CA for the agent n is described in Algorithm 1,
shown as follows.
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Algorithm 1: The proposed DRLDNN-CA for the agent n

input: Local state information s(t)n,m from (14)

output: Channel indexes a(t)n , a(t)n ∈ {1, . . . , M}
1: Create a DQN with weights θ and a target DQN with weights θ′ respectively. Initialize θ

randomly, let θ′ = θ and t = 0
2: Empty memory D
3: Set restart experience interval e, updating η and exploring ε

4: repeat
5: if t % e and t 6= 0

Restart memory D
6: if rand < ε

7: Randomly select an action a(t)n
8: else
9: Generate the action a(t)n = maxaQ(s(t)n,m, a, θ) with the DQN

10: Update the memory D by adding M(t) =
{

M(t)
1 , . . . , M(t)

n , . . . , M(t)
N

}
, where

M(t)
n =

(
s(t−1)

n , a(t−1)
n , r(t)n , s(t)n

)
11: if t mod η = 0 then
12: Randomly sample a batch of data set M(t) from memory D
13: Centralized Training: Train the DQN with M(t) and minimize the loss function
(10) to update θ

14: Let t = t + 1
15: until t > tmax
16: end
17: end

4.4.2. ULDNN-PC

Based on constraint optimization problem P3, the ULDNN-PC is defined as a power
control neural network model, which consists of one input layer, multiple fully connected
hidden layers, one output layer, and one constraint layer. Each fully connected hidden
layer includes a fully connected layer, a batch normalization layer, and a RELU activation
function, where the output constraint layer processes the output of the output layer to
satisfy the constraint. The ULDNN-PC can be described as follows:

(1) Input layer: In this paper, the ULDNN-PC network is constructed from the
constraint problem P3, which is a fully connected deep forward propagation network.
The ULDNN-PC network uses the local state information s(t)

n,a(t)n
as its input, where

a(t)n ∈ {1, 2, . . . , M} is the channel allocation scheme obtained by the DRLDNN-CA and the
tensor dimension of s(t)

n,a(t)n
is Q(Q = 9× c + 5), and c is the index of the local information.

Note that s(t)
n,a(t)n

⊂
{

s(t)n,1, s(t)n,2, . . . , s(t)n,M

}
.

(2) Output layer: In the ULDNN-PC, the fully connected hidden layers sequentially
consist of one fully connected layer, one normalized layer, and one ReLU activation layer.
In order to meet the continuous nature of the power, the activation function of the output
layer of the ULDNN-PC is defined as the Sigmoid function. That is, the output of the
ULDNN-PC a(t)

n,a(t)n
satisfies a(t)

n,a(t)n
∈ (0, 1). In order to make the output of the ULDNN-PC

satisfy the constrained optimization problem P3, the following constraint (18) is performed.

p(t)n = pmax · a(t)
n,a(t)n

(18)

(3) Centralized training: The constraint optimization problem P3 is modeled and
analyzed by the unsupervised learning strategy, where the label data are not required. The
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loss function used in the unsupervised learning strategy for centralized training is defined
as follows.

Lpc = −Ep(t−1)

(
N

∑
n=1

C(t−1)
n

)
(19)

where C(t−1)
n is the transmit sum-rate with gradient information, which allows for the

performance of back propagation of the neural network, and Ex(·) represents the operation

of expectations on x. Note that C(t−1)
n can be obtained from locally known information in

the computational environment, and the value of C(t−1)
n is equal to that of C(t)

n .
The execution of the proposed ULDNN-PC for the agent n is described in Algorithm 2,

which is shown as follows.

Algorithm 2: The proposed ULDNN-PC for the agent n

input: Local state information s(t)
n,a(t)n

determined by the DRLDNN-CA

output: a(t)
n,a(t)n

(before the constraints)

1: Create a DNN with weights θ and initialize θ

2: Set t = 0
3: repeat
4: Generate the output action a(t)

n,a(t)n
∈ (0, 1) with the DNN

5: p(t)n = pmax · a(t)
n,a(t)n

(after the constraints)

6: if agent = (N − 1) then
7: Centralized Training: Train the DNN with Lpc and minimize the loss function (19) to
update θ

8: Let t = t + 1
9: until t > tmax
10: end
11: end

4.4.3. Methodology of the DRLDNN-CA and ULDNN-PC

In this section, we make more explanations on the application of our proposed algo-
rithm, i.e., a joint of the DRLDNN-CA and ULDNN-PC, to DUEs of D2D wireless networks
in 5G. For this end, we provide a schematic diagram shown in Figure 4. As shown in
Figure 4, there are three pairs of D2D transceivers (DUEs) and one 5G base station (i.e.,
gNB). The base station of 5G (gNB) is responsible for the centralized training of both the
DRLDNN-CA and the ULDNN-PC by using the collected local state information from the
D2D DUEs. As both the DRLDNN-CA and the ULDNN-PC are trained once, the param-
eters of both the DRLDNN-CA and the ULDNN-PC are transmitted to the transmitters
of the DUEs. This means that all the transmitters of the DUEs share the same parameters
of the neural networks. Based on different local state information, the transmitters of the
DUEs can decide their channel and power schemes.

As opposed to other methods [14–18,21–26] for the resource allocation of D2D wireless
networks, our proposed framework with a joint of the DRLDNN-CA and the ULDNN-PC
is distributed for solving the resource allocation. Especially, it is based on the unsupervised
learning mechanism that the ULDNN-PC uses for the power control. Note that, concerning
the base station of 5G (gNB), the centralized training for the ULDNN-PC is easily completed,
because the whole gradient information for the ULDNN-PC can be stored in the base station
and can be used to calculate the gradient descent conveniently based on the outputs of the
neural network.

Note that transmissions of the parameters of neural networks and the local information
through the backhaul network have to take certain time slots. This means that there exist a
certain number of time delays in the updates of the parameters of neural networks and the
local state information. However, the negative effects of the time delays can be mitigated
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by the neural networks to enable nonlinear mapping [15]. In simulations, we consider the
time delays as the backhaul delay of one time slot.
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It is worth mentioning that our proposed algorithm uses the optimized schemes of
both channel and power to mitigate channel interference among the DUEs of D2D wireless
networks. To be specific, the discrete channel variable and the continuous power variable
are optimized by the joint of the DRLDNN-CA and the ULDNN-PC to maximize the system
sum-rate rates, thereby mitigating the channel interference. In the optimization process,
the ULDNN-PC is used to generate the optimized power to maximize the system sum-
rate rates, while the DRLDNN-CA, by combining the optimized power generated by the
ULDNN-PC, is used to generate the optimized channel to maximize the reward function
(17). It can also be seen from Equation (17) that the reward function can be maximized by
minimizing the channel interference among DUEs. However, it is difficult for our proposed
algorithm framework to be applied to mitigate the channel interference among cellular
users (CUs) and gNBs directly. Both the reward function of DQN and the loss functions
need to be designed elaborately to mitigate the channel interference among CUs and gNBs.

5. Simulation Results

In this section, the proposed algorithm in this paper is compared with the traditional
optimization algorithms and the deep reinforcement learning algorithms.

According to the LTE standard [30], the path loss is given by 128.1 + 37.6 log10(d)
(in dB), where d denotes the distance between a transmitter and a receiver in km. We
set Pmax = 38 dBm and σ2 = −114 dBm. Similar to [31], due to the practical front-end
dynamic range limitation, we set the upper limit of the signal-to-noise ratio to 30 dBm. In
simulations, we chose four D2D networks with different (links, channels), i.e., (20 links,
2 channels), (20 links, 4 channels), (50 links, 5 channels), and (50 links, 10 channels). The
topology of a D2D network with 20 links used in the simulation is plotted in Figure 5, where
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each D2D transmitter pair was randomly placed on a plain with an area of 500 × 500 m,
and each receiver was randomly placed around its transmitter between 10 m and 100 m.
For the sake of fairness, training parameters of all the benchmark algorithms had the
same order of the magnitude, and all the offline training were performed under the same
hardware configurations with NVIDIA GeForce RTX 3060 6G GPU, 12th Gen Intel(R)
Core(TM) i7-12700H 2.70 GHz and 16G RAM. What is more, only the CPU was used for
the online inference of all benchmark algorithms and performance comparisons among
different algorithms.
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Figure 5. The topology of the D2D network with 20 links.

In order to prevent gradient explosion, we added the Batch Normalization (BN) layer
to the network and determined the DRLDNN-CA and ULDNN-PC structures through trial
and error as shown in Figures 6 and 7, respectively. The learning rate was determined
as 0.001 and 0.0001, respectively. The DRLDNN-CA input layer dimension was M × Q,
Q = 9 × c + 5, c = 5, the respective dimensions of the fully connected hidden layer from
left to right were 80, 50 and 50, and the output layer dimension was M, where M is the
number of channels. The ULDNN-PC input layer dimension was Q, Q = 9 × c + 5, c = 5,
the respective dimensions of the fully connected hidden layer from left to right were 200,
200, and 100, and the output layer dimension was 1.
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To illustrate the proposed distributed method for the channel allocation and power
control in detail, we set up a simple example where the number of channels was 2 and the
number of links was 20. It meant that there were 20 agents corresponding to 20 links in
the proposed distributed method, and each agent contained both the DRLDNN-CA and
the DRLDNN-PC. According to the local information s(t)n =

{
s(t)n,1, . . . , s(t)n,M

}
(n = 1,2,...,20,

M = 2), the local information of the 20 links could be described as s(t)1 =
{

s(t)1,1, s(t)1,2

}
,

s(t)2 =
{

s(t)2,1, s(t)2,2

}
, . . . , s(t)20 =

{
s(t)20,1, s(t)20,2

}
. In addition, the DRLDNN-CA of the agent n

took s(t)n as its input, while the DRLDNN-PC of the agent n took one of s(t)n,1, . . . , s(t)n,M as its
input. Note that the input of the DRLDNN-PC of the agent was determined by the output
of the DRLDNN-CA.

In the following, we took the agent 1 as an example, where the local information of
the link 1 were used by both the DRLDNN-CA and the DRLDNN-PC of the agent 1 to
obtain the channel allocation scheme and the power allocation scheme. According to the
local information set described in Section 4.3, the dimension of all the local information is
M × Q, where M = 2, Q = 9 × c + 5, and c is the number of interference indexes of the local
information set. Assume c = 5. Then, the local information s(t)1 contains 100 elements, s(t)1,1

contains 50 elements, and s(t)1,2 contains 50 elements, which are shown as follows.

s(t)1,1 =


0. , −1.22838546, 0.06711202, −1., 0. ,
1.9003183, 1.9003183 , 1.9003183 , 1.9003183 , 0.24436685 ,
· · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · ,
0.21980716, 0.1375979 , 0.58749212 , 0.34550899, 0.7405233 ,
−0.94919191, −0.96879865 , −0.99465654, −0.91036299, −0.36410471,

 (20)

s(t)1,2 =


1.7218569 , 2.12528973, −0.89313561, −0.73803674, −0.42873594,
3.68788099, 4.09131381, 1.79593686 , 1.65594349 , 1.40660372 ,
· · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · ,
1.73109764, 2.18301908, 0.1232268 , 0.03551651 , 0.04313387 ,
−0.90344739, −0.93558354, −0.98836712, −0.96701174 , −0.92352049

 (21)

s(t)1 =
{

s(t)1,1, s(t)1,2

}
=



0. , −1.22838546, 0.06711202 , −1. , 0. ,
1.9003183 , 1.9003183 , 1.9003183 , 1.9003183 , 0.24436685 ,
0.21980716, 0.1375979 , 0.58749212 , 0.34550899, 0.7405233 ,
−0.94919191, −0.96879865 , −0.99465654, −0.91036299, −0.36410471,
· · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · ,
1.7218569 , 2.12528973, −0.89313561, −0.73803674, −0.42873594,
3.68788099, 4.09131381, 1.79593686 , 1.65594349 , 1.40660372 ,
1.73109764, 2.18301908, 0.1232268 , 0.03551651 , 0.04313387 ,
−0.90344739, −0.93558354, −0.98836712, −0.96701174 , −0.92352049


(22)

Let the local information s(t)1 =
{

s(t)1,1, s(t)1,2

}
as the input of the DRLDNN-CA of the

agent 1. Assume that the output of the DRLDNN-CA is shown as (23).

output = [0.0058, 0.0353] (23)

We regarded the output layer of DRLDNN-CA as the adaptation value of a link on
all channels, and selected the channel with the maximum adaptation value as the channel
allocation scheme of the link. Hence, α

(t)
1,2 = 1 and α

(t)
1,1 = 0. It meant that the channel

allocation scheme could be expressed as a(t)1 = 2.
The dimension of the input of the ULDNN-PC was Q, Q = 9 × c + 5. That is, the

dimension of the input layer of ULDNN-PC was 50. Note that the ULDNN-PC of the
agent 1 used a set of the local information determined by the output channel allocation
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scheme of the DRLDNN-CA of the agent 1 as input. Based on the above, the input layer of
DRLDNN-CA is s(t)

1,a(t)1

, which is denoted as:

s(t)
1,a(t)1

= s(t)1,2 =


1.7218569 , 2.12528973, −0.89313561, −0.73803674, −0.42873594,
3.68788099, 4.09131381, 1.79593686 , 1.65594349 , 1.40660372 ,
· · · , · · · , · · · , · · · , · · · , · · · , · · · , · · · ,
1.73109764, 2.18301908, 0.1232268 , 0.03551651 , 0.04313387 ,
−0.90344739, −0.93558354, −0.98836712, −0.96701174 , −0.92352049

 (24)

Assume that the output of the ULDNN-PC is expressed as (25). In order to meet the
constraints in this paper, we take p(t)1 = pmax · a(t)

1,a(t)1

, where Pmax = 38 dBm. Then, the

output power of the ULDNN-PC is 3.289 W.

a
1,a(t)1

= a1,2 = [0.5203] (25)

Our proposed algorithm was used to compare with five benchmark algorithms in this
paper. For convenience, our proposed algorithm is denoted as ‘Proposed DRLDNN-CA +
ULDNN-PC’. The first benchmark algorithm is called the ‘Joint DQN + DDPG’ as proposed
in [15]. The second is called the ‘Joint DQN’ as proposed in [14], where the transmit power
is discretized into 10 levels for comparisons. The third and the fourth are different variants
from the optimal fractional planning (FP) algorithm [8]. The third is called the ‘Ideal FP’,
which requires a fully real-time CSI to run the fractional planning algorithm and ignores
the delay between performing the centralized optimization and passing the optimization
results to the transmitter. The fourth is called the ‘Delayed FP’, which indicates a delay of
one time slot to run the fractional planning algorithm. The last is the random allocation
algorithm, called the ‘Random’.

In the training phase, four episodes with each running for 5000 time slots were used to
train our proposed DRLDNN-CA and ULDNN-PC. In order to speed up the convergence
rate, the memory D was always reset at the beginning of each episode.

The average transmit sum-rate for 20 links and 2 channels (N = 20, M = 2) is shown
in Figure 8, while that for 20 links and 4 channels (N = 20, M =4) is shown in Figure 9. As
seen from Figures 8 and 9, within the training of the first episode, our proposed algorithm
was superior to both the Joint DQN [14] and the Joint DQN + DDPG [15] in the convergent
rate and the average transmit sum-rate. It also can be seen from comparisons between
Figures 8 and 9 that the advantage of our proposed algorithm over other algorithms became
more and more obvious. For example, within the training of the second episode, our
proposed algorithm was close to both the Joint DQN and the Joint DQN + DDPG in
Figure 8 with 20 links and 2 channels, while our proposed algorithm was superior to both
the Joint DQN and the Joint DQN + DDPG in Figure 9 with 20 links and 4 channels.

The average transmit sum-rate for 50 links and 5 channels (N = 50, M = 5) is shown in
Figure 10, while that for 50 links and 10 channels (N = 50, M =10) is shown in Figure 11.
It also can be seen from Figures 10 and 11 that our proposed algorithm was superior to
other algorithms with the increasing of the channel (M) at 50 links. The gap in the obtained
transmit sum-rate became more and more obvious as both the links and the channels
increased, which indicates that our proposed algorithm can obtain larger average transmit
sum-rates than other algorithms at larger links and channels.

The train results of the average of sum-rate performance and the train results of the
variance of sum-rate performance are summarized in Tables 2 and 3. The results in Table 2
show that our proposed algorithm could obtain larger average transmit sum-rate than other
benchmark algorithms, which suggests that our proposed algorithm has better scalability
than other benchmark algorithms. The results in Table 3 show that the multi-channel and
multi-link transmit sum-rate of our proposed method was stable and efficient.
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Table 2. Train results of average of sum-rate performance.

N Links M Channels Proposed Joint DQN + DDPG Joint DQN Ideal FP Delayed FP Random

20
2 2.59 2.57 2.55 2.57 2.38 0.95
4 4.26 4.23 3.85 3.82 3.57 2.03

50
5 3.64 3.16 3.32 3.19 2.91 1.60
10 5.63 3.56 2.84 4.67 4.23 2.95

Table 3. Train results of variance of sum-rate performance.

N Links M Channels Proposed Joint DQN + DDPG Joint DQN Ideal FP Delayed FP Random

20
2 3.76 3.70 4.02 1.98 2.25 2.68
4 5.74 5.75 10.14 8.37 6.93 6.16

50
5 8.85 11.38 13.56 17.07 11.55 5.39
10 26.66 45.04 39.51 31.87 34.73 30.96

When the training was finished, all the algorithms with their trained policies were used
in the test phase for further comparisons. In the test phase, deployments were randomly
generated, which were different from those used in the training phase. In order to get the
test results more quickly, we set one episode for 5000 times slots. Figure 12 shows the test
results of the proposed algorithm and other benchmark algorithms in different channels
and different links. It can be seen from the figure that the performance of the algorithm
proposed in this paper was relatively stable with the increase in the number of channels
and links, and the transmit sum-rates were higher than other benchmark algorithms with
the increase in the number of channels and links.

The test results of the average of sum-rate performance and the test results of the
variance of sum-rate performance are summarized in Tables 4 and 5. Results in Table 4
show that our proposed algorithm with the trained policy obtained larger average transmit
sum-rates than other benchmark algorithms, which suggests that our proposed algorithm
has better scalability than other benchmark algorithms. Results in Table 5 show that the
multi-channel and multi-link transmit sum-rate of our proposed method was stable and
efficient, and the transmit sum-rate did not degrade with the increase in the number of
channels and links.
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Table 4. Test results of average of sum-rate performance.

N Links M Channels Proposed Joint DQN + DDPG Joint DQN Ideal FP Delayed FP Random

20
2 2.41 2.42 2.38 2.46 2.26 0.85
4 3.98 3.97 3.76 3.82 3.53 1.85

50
5 4.05 3.47 3.65 3.29 3.03 1.79
10 6.10 4.26 3.24 4.71 4.32 3.23

Table 5. Test results of variance of sum-rate performance.

N Links M Channels Proposed Joint DQN + DDPG Joint DQN Ideal FP Delayed FP Random

20
2 2.07 2.21 2.42 1.36 1.55 2
4 3.02 3.14 5.20 6.97 5.53 4.64

50
5 4.98 5.73 5.57 5.24 5.09 5.28
10 8.98 34.30 18.81 12.52 14.32 13.23

As the channels are not orthogonal, the interference from adjacent channels comes into
existence to impair the system sum rate. In the following, we evaluated the performance of
our proposed joint algorithm of the DRLDNN-CA and the ULDNN-PC by comparisons
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with other benchmark algorithms as the interference from adjacent channels occurred. We
first made comparisons on the training phase at 50 links and 10 channels as the maximum
distance of adjacent channels equal to 1, i.e., z = 1. This means that the interference existed
among the channels n, n + 1, and n− 1. The simulation results are shown in Figure 13. It can
be seen from Figure 13 that the average transmit sum-rates of all the algorithms decayed
during the training phase because of the interference from adjacent channels. However, our
proposed algorithm was superior to other benchmark algorithms as the training iterations
exceeded 5000. After the training phase, the well-trained neural networks were then used
for testing. The testing results are shown in Figure 14. The testing results indicate that our
proposed joint algorithm of the DRLDNN-CA and the ULDNN-PC outperformed the other
benchmark algorithms in the testing phase.
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Further, we made comparisons on the training phase at 50 links and 10 channels as
the maximum distance of adjacent channels equaled 2, i.e., z = 2. This means that the
interference existed among the channels n, n + 1, n + 2, n − 1, and n − 2. The simulation
results are shown in Figure 15. It can be seen from Figure 15 that the average transmit
sum-rates of all the algorithms decayed more seriously during the training phase because
the interference from adjacent channels became increasingly large with the increase in the
maximum distance of adjacent channels. However, our proposed algorithm was superior
to other benchmark algorithms as the training iterations exceeded 7500. In the same
way, the well-trained neural networks were used for testing after the training phase. The
testing results are shown in Figure 16. The testing results in Figure 16 indicate that our
proposed joint algorithm of the DRLDNN-CA and the ULDNN-PC outperformed the other
benchmark algorithms in the testing phase.
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The simulation results show that our proposed joint algorithm of the DRLDNN-CA
and the ULDNN-PC still works well when the interference from adjacent channels exists in
the D2D wireless network.

Next, we tested the performance of the proposed DRLDNN-CA + ULDNN-PC algo-
rithm in energy efficiency. Figure 17 shows the comparison results between the proposed
DRLDNN-CA + ULDNN-PC algorithm and the other benchmark algorithms with the
increase in the number of channels and links. It can be seen from Figure 17 that the en-
ergy efficiency obtained by the proposed algorithm was higher than the other benchmark
algorithms in terms of the number of channels and links.
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Finally, we considered the legitimacy of transmission power under the constraints
presented in this paper. We tested the transmit power obtained by the proposed DRLDNN-
CA + ULDNN-PC distributed algorithm and plotted the variation curves of the transmit
power, as seen in Figure 18, with the increase in the number of channels and links. It can
be seen from Figure 18 that the transmit power obtained by the proposed DRLDNN-CA +
ULDNN-PC distributed algorithm was within the power constraint range, which proves
the reliability of the proposed algorithm.
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6. Conclusions

With centralized training and distributed execution, a joint deep Q network and
unsupervised learning network, i.e., the joint DRLDNN-CA and ULDNN-PC, has been pro-
posed to address the problem of channel selection and power control in multichannel D2D
networks and to maximize sum-rate. With the increase in links and channels in the D2D
network, the proposed joint DRLDNN-CA and ULDNN-PC increasingly outperformed
other benchmark algorithms. The well-trained joint DRLDNN-CA and ULDNN-PC was
more scalable in the average transmit sum-rate for randomly generated deployments than
other benchmark algorithms.
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