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Abstract: We extend the problem of secure source coding by considering a remote source whose
noisy measurements are correlated random variables used for secure source reconstruction. The
main additions to the problem are as follows: (1) all terminals noncausally observe a noisy measure-
ment of the remote source; (2) a private key is available to all legitimate terminals; (3) the public
communication link between the encoder and decoder is rate-limited; and (4) the secrecy leakage
to the eavesdropper is measured with respect to the encoder input, whereas the privacy leakage is
measured with respect to the remote source. Exact rate regions are characterized for a lossy source
coding problem with a private key, remote source, and decoder side information under security,
privacy, communication, and distortion constraints. By replacing the distortion constraint with a
reliability constraint, we obtain the exact rate region for the lossless case as well. Furthermore, the
lossy rate region for scalar discrete-time Gaussian sources and measurement channels is established.
An achievable lossy rate region that can be numerically computed is also provided for binary-input
multiple additive discrete-time Gaussian noise measurement channels.

Keywords: information theoretic security; secure source coding; remote source; private key; side
information

1. Introduction

Consider multiple terminals that observe correlated random sequences and wish to
reconstruct these sequences at another terminal, called a decoder, by sending messages
through noiseless communication links, i.e., the distributed source coding problem [1].
A sensor network where each node observes a correlated random sequence that needs
to be reconstructed at a distant node is a classic example of this problem [2] (p. 258).
Similarly, function computation problems in which a fusion center observes messages
sent by other nodes to compute a function are closely related problems that can be used
to model various recent applications [3,4]. Since messages sent over communication
links can be public, security constraints are imposed on these messages against an eaves-
dropper in the same network [5]. If all sent messages are available to the eavesdropper,
it is necessary to provide an advantage to the decoder over the eavesdropper to enable
secure source coding. Providing side information that is correlated with the sequences
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that should be reconstructed to the decoder can provide such an advantage over the
eavesdropper that can also have side information, as in [6–8]. Allowing for the eaves-
dropper to access only a strict subset of all messages is also a method to enable secure
distributed source coding, which was considered in [9–11]; see also [12], in which a
similar method was applied to enable secure remote source reconstruction. Similarly, a
private key that is shared by legitimate terminals and hidden from the eavesdropper can
also provide such an advantage, as in [13,14].

Source coding models in the literature commonly assume that dependent multi-
letter random variables are available and should be compressed. For secret-key agree-
ment [15,16] and secure function computation problems [17,18], which are instances of
the source coding with the side information problem [19] (Section IV-B), the correla-
tion between these multiletter random variables was posited in [20,21] to stem from an
underlying ground truth that is a remote source, such that its noisy measurements are
these dependent random variables. Such a remote source allows one to model the cause
of correlation in a network, so we also posit that there is a remote source whose noisy
measurements are used in the source coding problems discussed below, which is similar
to the models in [22] (p. 78) and [23] (Figure 9). Furthermore, in the chief executive officer
(CEO) problem [24], there is a remote source whose noisy measurements are encoded,
such that a decoder can reconstruct the remote source by using encoder outputs. Our
model is different from the model in the CEO problem, since in our model, the decoder
aims to recover encoder observations rather than the remote source that is considered
mainly to describe the cause of correlation between encoder observations. Thus, we
define the secrecy leakage as the amount of information leaked to an eavesdropper about
encoder observations. Since the remote source is common for all observations in the
same network, we impose a privacy leakage constraint on the remote source because each
encoder output observed by an eavesdropper leaks information about unused encoder
observations, which might later cause secrecy leakage when the unused encoder obser-
vations are employed [25–27]; see [28–30] for joint secrecy and joint privacy constraints
imposed due to multiple uses of the same source.

1.1. Summary of Contributions

We extend the lossless and lossy source coding rate region analyses by considering
a remote source that should be kept private, decoder and eavesdropper side information,
and a private key shared by the encoder and decoder. Considering that one encoder
provides insights with enough richness to extend the results to multiple encoders [31], in
this work, we consider the single encoder case. A summary of the main contributions is
as follows.

• We characterize the lossy secure and private source coding region when noisy mea-
surements of a remote source are observed by all terminals, and there is one private
key available.

• Requiring reliable source reconstruction, we also characterize the rate region for the
lossless secure and private source coding problem.

• A Gaussian remote source and independent additive Gaussian noise measurement
channels are considered to establish their lossy rate region under squared error distortion.

• We provide an achievable lossy secure and private source coding region for a binary
remote source and its measurements through additive Gaussian noise channels, which
includes computable differential entropy terms.

1.2. Organization

This paper is organized as follows. In Section 2, we introduce the lossless and lossy se-
cure and private source coding problems with decoder and eavesdropper side information
and a private key under storage, secrecy, privacy, and reliability or distortion constraints.
In Section 3, we characterize the rate regions for the introduced problems, which include
three parts that correspond to different private key rate regimes. In Section 4, we evaluate
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the lossy rate region for Gaussian sources and channels with squared error distortion.
In Section 5, we consider a binary modulated remote source measured through additive
Gaussian noise channels and provide an inner bound for the lossy rate region with Ham-
ming distortion. In Section 6, we provide the proof for the lossy secure and and private
source coding region.

1.3. Notation

Uppercase X represents random variables and lowercase x their realizations from
a set X , denoted by calligraphic letters. A discrete random variable X has proba-
bility distribution PX and a continuous random variable X probability density func-
tion (pdf) pX . A subscript i denotes the position of a variable in a length-n sequence
Xn = X1, X2, . . . , Xi, . . . , Xn. Boldface uppercase X = [X1, X2, . . .]T represent vector ran-
dom variables, where T denotes the transpose. [1 : m] denotes the set {1, 2, . . . , m} for
an integer m ≥ 1. Define [a]− = min{a, 0} for a ∈ R. Function Hb(x) = −x log x −
(1−x) log(1−x) is the binary entropy function, where logarithms are to the base 2.
A binary symmetric channel (BSC) with crossover probability ε is denoted by BSC(ε).
X ∼ Bern(β) with X = {0, 1} is a binary random variable with Pr[X = 1] = β. The ∗-
operator represents p ∗ q = (1− 2q)p + q. Function Q(·) denotes the complementary
cumulative distribution function of the standard Gaussian distribution. The function
sgn(·) represents the signum function.

2. System Model

We consider the lossy source coding model with one encoder, one decoder, and an
eavesdropper (Eve), depicted in Figure 1. The encoder Enc(·, ·) observes a noisy measure-
ment X̃n of an i.i.d. remote source Xn ∼ Pn

X through a memoryless channel PX̃|X in addition

to a private key K ∈ [1 : 2nR0 ]. The encoder output is an index W that is sent over a link
with limited communication rate. Decoder Dec(·, ·, ·) observes index W, private key K, and
another noisy measurement Yn of the same remote source Xn through another memory-

less channel PYZ|X in order to estimate X̃n as ̂̃Xn. The other noisy output Zn of PYZ|X is
observed by Eve in addition to index W. Assume K is uniformly distributed, hidden from
Eve, and independent of the source output and its noisy measurements. The source and
measurement alphabets are finite sets.

PX

Enc(·, ·)K

PYZ|X

PX̃|X

Dec(·, ·, ·)

K

Eve

W

Xn

Yn

X̃n

Xn

Zn

̂̃Xn

W

Figure 1. Source coding with noisy measurements (X̃n, Yn) of a remote source Xn and with a uniform
private key K under privacy, secrecy, communication, and distortion constraints.

We next define the rate region for the lossy secure and private source coding problem
defined above.
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Definition 1. A lossy tuple (Rw, Rs, R`, D) ∈R4
≥0 is achievable given a private key with

rate R0≥0, if for any δ>0 there exist n≥1, an encoder, and a decoder, such that

1
n

log
∣∣W ∣∣ ≤ Rw + δ (storage) (1)

1
n

I(X̃n; W|Zn) ≤ Rs + δ (secrecy) (2)

1
n

I(Xn; W|Zn) ≤ R` + δ (privacy) (3)

E
[
d
(

X̃n, ̂̃Xn(Yn, W, K)
)]
≤ D + δ (distortion) (4)

where d(x̃n, ̂̃xn) = 1
n ∑n

i=1 d(x̃i, ̂̃xi) is a per-letter bounded distortion metric. The lossy secure
and private source coding regionRD is the closure of the set of all achievable lossy tuples. ♦

In (2) and (3), we consider conditional mutual information terms to take account of
unavoidable secrecy and privacy leakages due to Eve’s side information, i.e., I(X̃n; Zn) and
I(Xn; Zn), respectively; see also [21,32]. Furthermore, we consider conditional mutual
information terms rather than corresponding conditional entropy terms, the latter of
which is used in [6,14,33–35], to characterize the secrecy and privacy leakages simplifies
our analysis.

We next define the rate region for the lossless secure and private source coding problem.

Definition 2. A lossless tuple (Rw, Rs, R`)∈R3
≥0 is achievable given a private key with rate

R0 ≥ 0, if for any δ > 0 there exist n ≥ 1, an encoder, and a decoder, such that we have
(1)–(3) and

Pr
[

X̃n 6= ̂̃Xn(Yn, W, K)
]
≤δ (reliability). (5)

The lossless secure and private source coding region R is the closure of the set of all
achievable lossless tuples. ♦

3. Secure and Private Source Coding Regions
3.1. Lossy Source Coding

The lossy secure and and private source coding regionRD is characterized below; see
Section 6 for its proof.

Define [a]− = min{a, 0} for a ∈ R.

Theorem 1. For given PX, PX̃|X, PYZ|X, and R0, the region RD is the set of all rate tuples
(Rw, Rs, R`, D) satisfying

Rw ≥ I(U; X̃|Y) (6)

and if R0 < I(U; X̃|Y, V), then

Rs ≥ I(U; X̃|Z) + R′ − R0 (7)

R` ≥ I(U; X|Z) + R′ − R0 (8)

where we have

R′ = [I(U; Z|V, Q)− I(U; Y|V, Q)]− (9)
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and if I(U; X̃|Y, V) ≤ R0 < I(U; X̃|Y), then

Rs ≥ I(V; X̃|Z) (10)

R` ≥ I(V; X|Z) (11)

and if R0 ≥ I(U; X̃|Y), then

Rs ≥ 0 (12)

R` ≥ 0 (13)

for some

PQVUX̃XYZ = PQ|V PV|U PU|X̃PX̃|XPXPYZ|X (14)

such that E
[
d
(
X̃, ̂̃X(U, Y)

)]
≤ D for some reconstruction function ̂̃X(U, Y). The region RD is

convexified by using the time-sharing random variable Q, required due to the [·]− operation. One
can limit the cardinalities to |Q| ≤ 2, |V| ≤ |X̃|+ 3, and |U | ≤ (|X̃|+ 3)2.

We remark that (12) and (13) show that one can simultaneously achieve strong secrecy
and strong privacy, i.e., the conditional mutual information terms in (2) and (3), respectively,
are negligible, by using a large private key K, which is a result missing in some recent
works on secure source coding with a private key.

3.2. Lossless Source Coding

The lossless secure and and private source coding regionR is characterized next; see
below for a proof sketch.

Proposition 1. For given PX, PX̃|X, PYZ|X, and R0, the region R is the set of all rate tuples
(Rw, Rs, R`) satisfying

Rw ≥ H(X̃|Y) (15)

and if R0 < H(X̃|Y, V), then

Rs ≥ H(X̃|Z) + R′′ − R0 (16)

R` ≥ I(X̃; X|Z) + R′′ − R0 (17)

where we have

R′′ = [I(X̃; Z|V, Q)− I(X̃; Y|V, Q)]− (18)

and if H(X̃|Y, V) ≤ R0 < H(X̃|Y), then

Rs ≥ I(V; X̃|Z) (19)

R` ≥ I(V; X|Z) (20)

and if R0 ≥ H(X̃|Y), then

Rs ≥ 0 (21)

R` ≥ 0 (22)

for some

PQVX̃XYZ = PQ|V PV|X̃PX̃|XPXPYZ|X . (23)
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One can limit the cardinalities to |Q| ≤ 2 and |V| ≤ |X̃|+ 2.

Proof Sketch. The proof for the lossless regionR follows from the proof for the lossy region
RD, given in Theorem 1 above, by choosing U = X̃, such that we have reconstruction

function ̂̃X(X̃, Y) = X̃, so we achieve D = 0. Thus, the reliability constraint in (5) is satisfied
because d(·, ·) is a distortion metric.

4. Gaussian Sources and Additive Gaussian Noise Channels

We evaluate the lossy rate region for a Gaussian example with squared error distortion
by finding the optimal auxiliary random variable in the corresponding rate region. Consider
a special lossy source coding case in which (i) there is no private key; (ii) the eavesdropper’s
channel observation Zn is less noisy than the decoder’s channel observation Yn, such that
we obtain a lossy source coding region with a single auxiliary random variable that should
be optimized.

We next define less noisy channels, considering PYZ|X .

Definition 3 ([36]). Z (or eavesdropper) is less noisy than Y (or decoder) if

I(L; Z) ≥ I(L; Y) (24)

holds for any random variable L, such that L− X− (Y, Z) form a Markov chain. ♦

Corollary 1. For given PX, PX̃|X, PYZ|X, and R0 = 0, the region RD when the eavesdropper is
less noisy than the decoder is the set of all rate tuples (Rw, Rs, R`, D) satisfying

Rw ≥ I(U; X̃|Y) = I(U; X̃)− I(U; Y) (25)

Rs ≥ I(U; X̃|Z) = I(U; X̃)− I(U; Z) (26)

R` ≥ I(U; X|Z) = I(U; X)− I(U; Z) (27)

for some

PUX̃XYZ = PU|X̃PX̃|XPXPYZ|X (28)

such that E
[
d
(
X̃, ̂̃X(U, Y)

)]
≤D for some reconstruction function ̂̃X(U, Y). One can limit the

cardinality to |U |≤ |X̃|+3.

Proof Sketch. The proof for Corollary 1 follows from the proof for Theorem 1 by con-
sidering the bounds in (6)–(8) since R0 = 0. Furthermore, R′ defined in (9) is 0 for the
less noisy condition considered, which follows because (Q, V)−U − X − (Y, Z) form a
Markov chain.

Suppose the following scalar discrete-time Gaussian source and channel model for the
lossy source coding problem depicted in Figure 1

X = ρxX̃ + Nx (29)

Y = ρyX + Ny (30)

Z = ρzX + Nz (31)
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where we have remote source X ∼ N (0, 1), fixed correlation coefficients ρx, ρy, ρz ∈ (−1, 1),
and additive Gaussian noise random variables

Nx∼N (0, 1−ρ2
x) (32)

Ny∼N (0, 1−ρ2
y) (33)

Nz∼N (0, 1−ρ2
z) (34)

such that (X̃, Nx, Ny, Nz) are mutually independent, and we consider the squared error

distortion, i.e., d(x̃, ̂̃x)=(x̃−̂̃x)2
. Note that (29) is an inverse measurement channel PX|X̃ that

is a weighted sum of two independent Gaussian random variables, imposed to be able to
apply the conditional entropy power inequality (EPI) [37] (Lemma II); see [20] (Theorem 3)
and [38] (Section V) for binary symmetric inverse channel assumptions imposed to apply
Mrs. Gerber’s lemma [39]. Suppose |ρz| > |ρy|, such that Y is less stochastically degraded
than Z, since then there exists a random variable Ỹ such that PỸ|X = PY|X and PỸZ|X =

PZ|XPỸ|Z [40] (Lemma 6), so Z is also less noisy than Y since less noisy channels constitute a
strict superset of the set of stochastically-degraded channels and both channel sets consider
only the conditional marginal probability distributions [2] (p. 121).

We next take the liberty to use the lossy rate region in Corollary 1, characterized for
discrete memoryless channels, for the model in (29)–(31). This is common in the literature
since there is a discretization procedure to extend the achievability proof to well-behaved
continuous-alphabet random variables and the converse proof applies to arbitrary random
variables; see [2] (Remark 3.8). For Gaussian sources and channels, we use differential
entropy and eliminate the cardinality bound on the auxiliary random variable. The lossy
source coding region for the model in (29)–(31) without a private key is given below.

Proposition 2. For the model in (29)–(31), such that |ρz| > |ρy| and R0 = 0, the regionRD with
squared error distortion is the set of all rate tuples (Rw, Rs, R`, D) satisfying, for α ∈ (0, 1],

Rw ≥
1
2

log
(1− ρ2

xρ2
y(1− α)

α

)
(35)

Rs ≥
1
2

log
(1− ρ2

xρ2
z(1− α)

α

)
(36)

R` ≥
1
2

log
(1− ρ2

xρ2
z(1− α)

1− ρ2
x(1− α)

)
(37)

D ≥
α(1− ρ2

xρ2
y)

1− ρ2
xρ2

y(1− α)
. (38)

Proof Sketch. For the achievability proof, let U ∼ N (0, 1−α) and Θ ∼ N (0, α), as in [41]
([Equation (32)]) and [42] (Appendix B), be independent random variables for some
α ∈ (0, 1] such that X̃ = U + Θ and U− X̃− X− (Y, Z) form a Markov chain. Choose the

reconstruction function ̂̃X(U, Y) as the minimum mean square error (MMSE) estimator,
and given any fixed D > 0, auxiliary random variables are chosen such that the distortion
constraint is satisfied. We then have, for the squared error distortion,

D = E
[(

X̃− ̂̃X(U, Y)
)2
]
(a)
=

1
2πe

e2h(X̃|U,Y) (39)
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where equality in (a) is achieved because X̃ is Gaussian and the reconstruction function
is the MMSE estimator [43] (Theorem 8.6.6). Define the covariance matrix of the vector
random variable [X̃, U, Y] as KX̃UY and of [U, Y] as KUY, respectively. We then have

h(X̃|U, Y) = h(X̃, U, Y)− h(U, Y)

=
1
2

log
(

2πe
det(KX̃UY)

det(KUY)

)
(40)

where det(·) is the determinant of a matrix; see also [12] (Section F). Combining (39) and (40),
and calculating the determinants, we obtain

D =
α(1− ρ2

xρ2
y)

1− ρ2
xρ2

y(1− α)
. (41)

One can also show that

I(U; X̃)=h(X̃)−h(X̃|U)=
1
2

log
( 1

α

)
(42)

I(U; X)=h(X)−h(X|U)=
1
2

log
( 1

1− ρ2
x(1− α)

)
(43)

I(U; Y)=h(Y)−h(Y|U)=
1
2

log
( 1

1− ρ2
xρ2

y(1− α)

)
(44)

I(U; Z)=h(Z)−h(Z|U)=
1
2

log
( 1

1− ρ2
xρ2

z(1− α)

)
. (45)

Thus, by calculating (25)–(27), the achievability proof follows.
For the converse proof, one can first show that

I(U; X̃)− I(U; Y) = h(Y|U)− h(X̃|U) (46)

I(U; X̃)− I(U; Z) = h(Z|U)− h(X̃|U) (47)

I(U; X)− I(U; Z) = h(Z|U)− h(X|U) (48)

which follow since h(X̃) = h(X) = h(Y) = h(Z). Suppose

h(X̃|U) =
1
2

log(2πeα) (49)

for any α ∈ (0, 1] that represents the unique variance of a Gaussian random variable; see [20]
(Lemma 2) for a similar result applied to binary random variables. Thus, by applying the
conditional EPI, we obtain

e2h(Y|U) (a)
= e2h(ρxρyX̃|U) + e2h(ρy Nx+Ny)

= 2πe
(
ρ2

xρ2
yα + ρ2

y(1− ρ2
x) + 1− ρ2

y
)

= 2πe
(
1− ρ2

xρ2
y(1− α)

)
(50)

where (a) follows because U − X̃ − (Nx, Ny) form a Markov chain and (Nx, Ny) are in-
dependent of X̃, so (Nx, Ny) are independent of U, and equality is satisfied since, given
U, ρxρyX̃ and (ρyNx + Ny) are conditionally independent and they are Gaussian random
variables, as imposed in (49) above; see [20] (Lemma 1 and Equation (28)) for a similar
result applied to binary random variables by extending Mrs. Gerber’s lemma. Similarly,
we have

e2h(Z|U) = 2πe
(
1− ρ2

xρ2
z(1− α)

)
(51)
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which follows by replacing (Y, ρy, Ny) with (Z, ρz, Nz) in (50), respectively, because the
channel PY|U can be mapped to PZ|U with these changes due to (29)–(31) and the Markov
chain relation U − X̃− X− (Y, Z). Furthermore, we have

e2h(X|U) (a)
= e2h(ρx X̃|U) + e2h(Nx)

= 2πe
(
ρ2

xα + 1− ρ2
x
)

= 2πe
(
1− ρ2

x(1− α)
)

(52)

where (a) follows because Nx is independent of U, and equality is achieved since, given U,
ρxX̃ and Nx are conditionally independent and are Gaussian random variables. Therefore,
by applying (46)–(52) to (25)–(27), the converse proof for (35)–(37) follows.

Next, consider

h(X̃|U, Y) = −I(U; X̃|Y) + h(X̃|Y)
(a)
= −h(Y|U) + h(X̃|U) + h(Y|X̃)

(b)
=

1
2

log
( α

1− ρ2
xρ2

y(1− α)

)
+ h(ρxρyX̃+ρyNx+Ny|X̃)

(c)
=

1
2

log
( α

1− ρ2
xρ2

y(1− α)

)
+ h(ρyNx+Ny)

=
1
2

log
(

2πe
α(ρ2

y(1− ρ2
x) + (1− ρ2

y))

1− ρ2
xρ2

y(1− α)

)
=

1
2

log
(

2πe
α(1− ρ2

xρ2
y)

1− ρ2
xρ2

y(1− α)

)
(53)

where (a) follows by (25) and (46), and since h(Y) = h(X̃), (b) follows by (49) and (50),
and (c) follows because (Nx, Ny) are independent of X̃. Furthermore, for any random

variable X̃ and reconstruction function ̂̃X(U, Y), we have [43] (Theorem 8.6.6)

E
[(

X̃− ̂̃X(U, Y)
)2
]
≥ 1

2πe
e2h(X̃|U,Y). (54)

Combining the distortion constraint given in Corollary 1 with (53) and (54), the con-
verse proof for (38) follows.

5. Multiple Binary-input Additive Gaussian Noise Channels

Consider next a binary remote source X ∈ {−1, 1} and its binary noisy measurement
X̃ ∈ {−1, 1} observed by the encoder, which represents a practical setting with binary
quantizations. For instance, a static random-access memory (SRAM) start-up output at a
nominal temperature is a binary value obtained by quantizing sums of Gaussian random
variables [28,44]. Suppose the noisy channel PYZ|X outputs consist of a single discrete-time
additive Gaussian noise channel output Y observed by the decoder and two independent
discrete-time additive Gaussian noise channel outputs Z = [Z1, Z2]

T observed by the
eavesdropper, in which the eavesdropper obtains more information by measuring the
remote source twice. Furthermore, assume that X is uniformly distributed, the binary
channel PX̃|X is symmetric such that Pr[X̃ 6= X] = p for p ∈ [0, 1], and we also have

Y = ρyX + Ny (55)

Z =

[
Z1
Z2

]
= ρzX

[
1
1

]
+

[
Nz1

Nz2

]
(56)
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where we have fixed correlation coefficients ρy, ρz ∈ (−1, 1) and additive Gaussian noise
random variables

Ny∼N (0, 1−ρ2
y) (57)

Nz1∼N (0, 1−ρ2
z) (58)

Nz2∼N (0, 1−ρ2
z) (59)

such that (X, Ny, Nz1 , Nz2) are mutually independent. Consider the Hamming distortion,
i.e., d(x̃, ̂̃x)=1{x̃ 6= ̂̃x}. Impose the condition |ρz| > |ρy| such that Z1 and Z2 are less noisy
than Y, so Z is also less noisy than Y, which follows by applying similar steps as being
applied in Section 4. Thus, for R0 = 0, the regionRD characterized in Corollary 1 is also
valid for such binary-input additive Gaussian noise channels when one replaces Z with Z.
A computable achievable lossy secure and private source coding region for such channels
is given next.

Proposition 3. For the setting with multiple binary-input additive Gaussian noise channels,
defined above, such that |ρz| > |ρy| and R0 = 0, the region RD with Hamming distortion
includes the set of all rate tuples (Rw, Rs, R`, D) satisfying, for an independent random variable
C ∼ Bern(p ∗ q) with any q ∈ [0, 0.5] and for any λ ∈ [0, 1],

Rw ≥ λ
(

1− Hb(q)− h
(
ρyX + Ny

)
+ h
(
ρy(1−2C) + Ny

))
(60)

Rs ≥ λ

(
1− Hb(q)− h

([
ρzX + Nz1

ρzX + Nz2

])
+ h

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

]))
(61)

R` ≥ λ

(
1− Hb(p ∗ q)− h

([
ρzX + Nz1

ρzX + Nz2

])
+ h

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

]))
(62)

D ≥ λq + (1− λ)

(
p ∗Q

(
ρy√

1− ρ2
y

))
(63)

where random variable Y =
(
ρyX + Ny

)
has pdf

1
2

(
e
− (y+ρy)2

2(1−ρ2
y) + e

− (y−ρy)2

2(1−ρ2
y)

)
√

2π(1− ρ2
y)

(64)

the random variable sY =
(
ρy(1−2C) + Ny

)
has pdf

(p ∗ q)
e
− (sy+ρy)2

2(1−ρ2
y)√

2π(1− ρ2
y)

+ (1−(p ∗ q))
e
− (sy−ρy)2

2(1−ρ2
y)√

2π(1− ρ2
y)

(65)

the vector random variable
[

Z1
Z2

]
=

([
ρzX + Nz1

ρzX + Nz2

])
has joint pdf

1
2

(
e
−
(
(z1+ρz)2+(z2+ρz)2

)
2(1−ρ2

z) + e
−
(
(z1−ρz)2+(z2−ρz)2

)
2(1−ρ2

z)

)
2π(1− ρ2

z)
(66)
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and the vector random variable
[

sZ1
sZ2

]
=

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

])
has joint pdf

(p ∗ q)
e
−
(
(sz1+ρz)2+(sz2+ρz)2

)
2(1−ρ2

z)

2π(1− ρ2
z)

+ (1−(p ∗ q))
e
−
(
(sz1−ρz)2+(sz2−ρz)2

)
2(1−ρ2

z)

2π(1− ρ2
z)

. (67)

Proof. We first evaluate (25)–(27) by choosing a binary uniformly distributed U and a
channel PX̃|U such that Pr[X̃ 6= U] = q for any q ∈ [0, 0.5]. We have

I(U; X̃) = H(X̃)− H(X̃|U)
(a)
= 1− Hb(q) (68)

I(U; X) = H(X)− H(X|U)
(b)
= 1− Hb(p ∗ q) (69)

where (a) and (b) follow by relabeling the input and output symbols to represent the
channels PX̃|U and PX|X̃ as BSC(q) and BSC(p), respectively, which follows since entropy is
preserved under a bijective mapping for discrete random variables. For relabeled symbols,
the channel PX|U is a BSC(p ∗ q) since it is a concatenation of two BSCs, so denote the
independent random noise component in this channel as C ∼ Bern(p ∗ q). Then, we obtain

h(Y|U) = h(ρyX + Ny|U)
(a)
= h(ρy(1−2C) + Ny) = h(sY) (70)

where (a) follows since symbols {−1, 1} correspond to the antipodal modulation of binary
symbols, and since (C, Ny, U) are mutually independent. One can compute (70) numerically
by using the pdf

p
sY(sy) =

1

∑
c=0

PC(c)p
sY|C(sy|c) = (p ∗ q)

e
− (sy+ρy)2

2(1−ρ2
y)√

2π(1− ρ2
y)

+ (1−(p ∗ q))
e
− (sy−ρy)2

2(1−ρ2
y)√

2π(1− ρ2
y)

. (71)

Similarly, we can compute

h(Y) = h(ρyX + Ny) (72)

numerically by using the pdf

pY(y) = ∑
x∈{−1,1}

PX(x)pY|X(y|x) =
1
2

(
e
− (y+ρy)2

2(1−ρ2
y) + e

− (y−ρy)2

2(1−ρ2
y)

)
√

2π(1− ρ2
y)

. (73)

Next, consider

h(Z|U) = h

((
ρzX

[
1
1

]
+

[
Nz1

Nz2

])∣∣∣∣U
)

(a)
= h

([
ρz(1−2C) + Nz1

ρz(1−2C) + Nz2

])
= h

([
sZ1
sZ2

])
(74)

where (a) follows since (C, Nz1 , Nz2 , U) are mutually independent. Denote

sZ = [sZ1, sZ2]
T . (75)
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We can compute (74) numerically by using the joint pdf

p
sZ(sz) = p

sZ1 sZ2
(sz1, sz2) =

1

∑
c=0

PC(c)p
sZ1 sZ2|C(sz1, sz2|c)

= (p ∗ q)
e
−
(
(sz1+ρz)2+(sz2+ρz)2

)
2(1−ρ2

z)

2π(1− ρ2
z)

+ (1−(p ∗ q))
e
−
(
(sz1−ρz)2+(sz2−ρz)2

)
2(1−ρ2

z)

2π(1− ρ2
z)

(76)

which follows since sZ|C is a jointly Gaussian vector random variable with independent
components sZ1|C and sZ2|C, since every scalar linear combination of the components is
Gaussian; see [45] (Theorem 1). Similarly, we can compute

h(Z) = h

([
ρzX + Nz1

ρzX + Nz2

])
(77)

numerically by using the joint pdf

pZ(z) = pZ1Z2(z1, z2) = ∑
x∈{−1,1}

PX(x)pZ1Z2|X(z1, z2|x)

=
1
2

(
e
−
(
(z1+ρz)2+(z2+ρz)2

)
2(1−ρ2

z) + e
−
(
(z1−ρz)2+(z2−ρz)2

)
2(1−ρ2

z)

)
2π(1− ρ2

z)
. (78)

Now, we consider the expected distortion. First, choose the reconstruction function

̂̃X1(U, Y) = U (79)

for the binary uniformly distributed U and the channel PX̃|U such that Pr[X̃ 6= U] = q for
any q ∈ [0, 0.5], as considered above. For this reconstruction function and choices of U and
PX̃|U , we obtain the expected distortion

E
[
d
(
X̃, ̂̃X1(U, Y)

)]
= q. (80)

Second, choose the reconstruction function

̂̃X2(U, Y) = sgn(Y) (81)

and consider U. We then obtain

E
[
d
(
X̃, ̂̃X2(U, Y)

)]
= p ∗Q

(
ρy√

1− ρ2
y

)
(82)

which follows since the channel Psgn(Y)|X̃ can be considered as a concatenation of two

BSCs with crossover probabilities p and Q

(
ρy√

1− ρ2
y

)
, where the former follows since

Pr[X̃ 6= X] = p and the latter because X ∈ {−1, 1} and

Pr[X 6= sgn(Y)] = Pr[X 6= sgn(ρyX + Ny)] = Pr[Ny > ρy]. (83)

Therefore, the proof for the achievable lossy secure and private source coding region follows
by combining (68)–(70), (72), (74), (77), (80), and (82) by applying time sharing, with time-
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sharing parameter λ ∈ [0, 1], between the two reconstruction functions in (79) and (81) with
corresponding U and PX̃|U , since for constant U the terms in (25)–(27) are zero.

Remark 1. The proof of Proposition 3 follows similar steps as those in [46] (Section II) and it seems
that the achievable lossy secure and private source coding region given in Proposition 3 is optimal.
Considering (Rw, Rs, R`), one can apply Mrs. Gerber’s lemma to show that the choice of U such
that PX̃|U is a BSC(q) after relabeling the input and output symbols is optimal, since Mrs. Gerber’s
lemma is valid for all binary-input symmetric memoryless channels with discrete or continuous
outputs [47]. This result follows because convexity is preserved; see also [48] (Appendix B) for an
alternative proof of convexity preservation for independent BSC measurements. However, it is not
entirely clear how to prove that the sign operation used for estimation suffices for the rate region.

6. Proof for Theorem 1
6.1. Achievability Proof for Theorem 1

Proof Sketch. We leverage the output statistics of random binning (OSRB) method [16,49,50]
for the achievability proof by following the steps described in [51] (Section 1.6).

Let (Vn, Un, X̃n, Xn, Yn, Zn) be i.i.d. according to PVUX̃XYZ that can be obtained

from (14) by fixing PU|X̃ and PV|U , such that E[d
(
X̃, ̂̃X)] ≤ (D + ε) for any ε > 0. To each

vn assign two random bin indices Fv ∈ [1 : 2nR̃v ] and Wv ∈ [1 : 2nRv ]. Furthermore, to each
un assign three random bin indices Fu ∈ [1 : 2nR̃u ], Wu ∈ [1 : 2nRu ], and Ku ∈ [1 : 2nR0 ],
where R0 is the private key rate defined in Section 2. Public indices F = (Fv, Fu) represent
the choice of a source encoder and decoder pair. Furthermore, we impose that the messages
sent by the source encoder Enc(·, ·) to the source decoder Dec(·, ·, ·) are

W = (Wv, Wu, K + Ku) (84)

where the summation with the private key is in modulo- 2nR0 , i.e., one-time padding.
The public index Fv is almost independent of (X̃n, Xn, Yn, Zn) if we have [49] (Theorem 1)

R̃v < H(V|X̃, X, Y, Z)
(a)
= H(V|X̃) (85)

where (a) follows since (X, Y, Z) − X̃ − V form a Markov chain. The constraint in (85)
suggests that the expected value, taken over the random bin assignments, of the variational
distance between the joint probability distributions Unif[1:2nR̃v ] · PX̃n and PFvX̃n vanishes

when n→ ∞. Moreover, the public index Fu is almost independent of (Vn, X̃n, Xn, Yn, Zn)
if we have

R̃u < H(U|V, X̃, X, Y, Z)
(a)
= H(U|V, X̃) (86)

where (a) follows from the Markov chain relation (X, Y, Z)− X̃− (U, V).
Using a Slepian–Wolf (SW) [1] decoder that observes (Yn, Fv, Wv), one can reliably

estimate Vn if we have [49] (Lemma 1)

R̃v + Rv > H(V|Y) (87)

since then the expected error probability, taken over random bin assignments, vanishes
when n → ∞. Furthermore, one can reliably estimate Un by using a SW decoder that
observes (K, Vn, Yn, Fu, Wu, K + Ku) if we have

R0 + R̃u + Ru > H(U|V, Y). (88)
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To satisfy (85)–(88), for any ε > 0 we fix

R̃v = H(V|X̃)− ε (89)

Rv = I(V; X̃)− I(V; Y) + 2ε (90)

R̃u = H(U|V, X̃)− ε (91)

R0 + Ru = I(U; X̃|V)− I(U; Y|V) + 2ε. (92)

Since all tuples (vn, un, x̃n, xn, yn, zn) are in the jointly typical set with high probability,
by the typical average lemma [2] (p. 26), the distortion constraint (4) is satisfied.

Communication Rate: (90) and (92) result in a communication (storage) rate of

Rw = R0 + Rv + Ru
(a)
= I(U; X̃|Y) + 4ε (93)

where (a) follows since V −U − X̃−Y form a Markov chain.
Privacy Leakage Rate: Since private key K is uniformly distributed, and is indepen-

dent of source and channel random variables, we can consider the following virtual scenario
to calculate the leakage. We first assume for the virtual scenario that there is no private key
such that the encoder output for the virtual scenario is

ĎW = (Wv, Wu, Ku). (94)

We calculate the leakage for the virtual scenario. Then, given the mentioned properties of
the private key and due to the one-time padding step in (84), we can subtract H(K) = nR0
from the leakage calculated for the virtual scenario to obtain the leakage for the original
problem, which follows from the sum of (91) and (92) if ε → 0 when n → ∞. Thus, we
have the privacy leakage

I(Xn; W, F|Zn) = I(Xn; ĎW, F|Zn)− nR0

(a)
= H(ĎW, F|Zn)−H(ĎW, F|Xn)−nR0

(b)
= H(ĎW, F|Zn)− H(Un, Vn|Xn) + H(Vn|ĎW, F, Xn) + H(Un|Vn, ĎW, F, Xn)− nR0

(c)
≤ H(ĎW, F|Zn)− nH(U, V|X) + 2nεn − nR0 (95)

where (a) follows because (ĎW, F) − Xn − Zn form a Markov chain, (b) follows since
(Un, Vn) determine (Fu, Wu, Ku, Fv, Wv), and (c) follows since (Un, Vn, Xn) is i.i.d. and
for some εn > 0 such that εn → 0 when n → ∞ because (Fv, Wv, Xn) can reliably
recover Vn by (87) because of the Markov chain relation Vn − Xn − Yn and, similarly,
(Fu, Wu, Ku, Vn, Xn) can reliably recover Un by (88) because of H(U|V, Y) ≥ H(U|V, X)
that is proved in [21] (Equation (55)) for the Markov chain relation (V, U)− X−Y.

Next, we consider the term H(ĎW, F|Zn) in (95) and provide single letter bounds on
it by applying the six different decodability results given in [21] (Section V-A) that are
applied to an entirely similar conditional entropy term in [21] (Equation (54)) that measures
the uncertainty in indices conditioned on an i.i.d. multi-letter random variable. Thus,
combining the six decodability results in [21] (Section V-A) with (95) we obtain

I(Xn; W, F|Zn) ≤ n
(
[I(U; Z|V)− I(U; Y|V) + ε]− + I(U; X|Z) + 3εn − R0

)
. (96)

The equation (92) implicitly assumes that private key rate R0 is less than (I(U; X̃|V)−
I(U; Y|V)+ 2ε) = (I(U; X̃|Y, V) + 2ε), where the equality follows from the Markov chain
relation (V, U)− X̃−Y. The communication rate results are not affected by this assumption,
since X̃n should be reconstructed by the decoder. However, if the private key rate R0 is
greater than or equal to (I(U; X̃|Y, V) + 2ε), then we can remove the bin index Ku from the
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code construction above and apply one-time padding to the bin index Wu, such that we
have the encoder output

Ď

ĎW = (Wv, Wu + K) (97)

where the summation with the private key is in modulo- 2nRu = 2n(I(U;X̃|Y,V)+2ε). Thus, one
then does not leak any information about Wu to the eavesdropper because of the one-time
padding step in (97). We then have privacy leakage

I(Xn; Ď

ĎW, F|Zn) = I(Xn; Wv, F|Zn)

(a)
≤ H(Xn|Zn)− H(Xn|Zn, Wv, Fv) + ε′n
(b)
≤ H(Xn|Zn)− H(Xn|Zn, Vn) + ε′n
(c)
= nI(V; X|Z) + ε′n (98)

where (a) follows for some ε′n such that ε′n → 0 when n → ∞ since by (86) Fu is almost
independent of (Vn, Xn, Zn); see also [52] (Theorem 1), (b) follows since Vn determines
(Fv, Wv), and (c) follows because (Xn, Zn, Vn) are i.i.d.

Note we can reduce the privacy leakage given in (98) if R0 ≥ (I(U; X̃)− I(U; Y) +
4ε) = (I(U; X̃|Y) + 4ε), where the equality follows from the Markov chain relation U −
X̃−Y, since then we can apply one-time padding to both bin indices Wv and Wu with the
sum rate

Rv + Ru
(a)
= I(V; X̃)− I(V; Y) + 2ε+ I(U; X̃|V)− I(U; Y|V)+2ε

(b)
= I(U; X̃)− I(U; Y) + 4ε (99)

where (a) follows by (90) and (92), and (b) follows from the Markov chain relation V−U−
X̃−Y. Thus, one then does not leak any information about (Wv, Wu) to the eavesdropper
because of the one-time padding step, so we then obtain the privacy leakage of

I(Xn; F|Zn) = I(Xn; Fv|Zn) + I(Xn; Fu|Zn, Fv)
(a)
≤ 2ε′n (100)

where (a) follows since by (85) Fv is almost independent of (Xn, Zn) and by (86) Fu is almost
independent of (Vn, Xn, Zn).

Secrecy Leakage Rate: Similar to the privacy leakage analysis above, we first consider
the virtual scenario with the encoder output given in (94), and then calculate the leakage
for the original problem by subtracting H(K) = nR0 from the leakage calculated for the
virtual scenario. Thus, we obtain

I(X̃n; W, F|Zn) = I(X̃n; ĎW, F|Zn)− nR0

(a)
= H(ĎW, F|Zn)− H(ĎW, F|X̃n)− nR0

(b)
= H(ĎW, F|Zn)− H(Un, Vn|X̃n) + H(Vn|ĎW, F, X̃n) + H(Un|Vn, ĎW, F, X̃n)

(c)
≤ H(ĎW, F|Zn)− nH(U, V|X̃) + 2nε′n − nR0

(d)
≤ n

(
[I(U; Z|V)− I(U; Y|V) + ε]− + I(U; X̃|Z) + 3ε′n − R0

)
(101)

where (a) follows from the Markov chain relation (ĎW, F) − X̃n − Zn, (b) follows since
(Un, Vn) determine (ĎW, F), (c) follows because (Vn, Un, X̃n) are i.i.d. and because (Fv, Wv, X̃n)
can reliably recover Vn by (87) due to the Markov chain relation Vn − X̃n −Yn and, similarly,
(Fu, Wu, Ku, Vn, X̃n) can reliably recover Un by (88) due to H(U|V, Y)≥H(U|V, X̃) that can
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be proved as in [21] (Equation (55)) for the Markov chain relation (V, U)− X̃ − Y, and (d)
follows by applying the six decodability results in [21] (Section V-A) that are applied to (95)
with the final result in (96) by replacing X with X̃.

Similar to the privacy leakage analysis above, if we have R0 ≥ (I(U; X̃|Y, V) + 2ε),
then we can eliminate Ku and apply one-time padding as in (97), such that no information
about Wu is leaked to the eavesdropper, we have

I(X̃n; Ď

ĎW, F|Zn) = I(X̃n; Wv, F|Zn)

(a)
≤ H(X̃n|Zn)− H(X̃n|Zn, Wv, Fv) + ε′n
(b)
≤ H(X̃n|Zn)− H(X̃n|Zn, Vn) + ε′n
(c)
= nI(V; X̃|Z) + ε′n (102)

where (a) follows because by (86) Fu is almost independent of (Vn, X̃n, Zn), (b) follows
since Vn determines (Fv, Wv), and (c) follows because (X̃n, Zn, Vn) are i.i.d.

If R0 ≥ (I(U; X̃|Y) + 4ε), we can apply one-time padding to hide (Wv, Wu), as in the
privacy leakage analysis above. We then have the secrecy leakage of

I(X̃n; F|Zn) = I(X̃n; Fv|Zn) + I(X̃n; Fu|Zn, Fv)
(a)
≤ 2ε′n (103)

where (a) follows since by (85) Fv is almost independent of (X̃n, Zn) and by (86) Fu is almost
independent of (Vn, X̃n, Zn).

Suppose that public indices F are generated uniformly at random, and the encoder
generates (Vn, Un) according to PVnUn |X̃n FvFu

that can be obtained from the proposed
binning scheme above to compute the bins Wv from Vn and Wu from Un, respectively.
Such a procedure results in a joint probability distribution almost equal to PVUX̃XYZ fixed
above [51] (Section 1.6). The privacy and secrecy leakage metrics above are expectations
over all possible public index realizations F = f . Therefore, using a time-sharing random
variable Q for convexification and applying the selection lemma [53] (Lemma 2.2) to each
decodability case separately, the achievability for Theorem 1 follows by choosing an ε > 0
such that ε→ 0 when n→ ∞.

6.2. Converse Proof for Theorem 1

Proof Sketch. Assume that for some δn >0 and n ≥ 1, there exist an encoder and a decoder,
such that (1)–(4) are satisfied for some tuple (Rw, Rs, R`, D) given a private key with rate R0.

Define Vi , (W, Yn
i+1, Zi−1) and Ui , (W, Yn

i+1, Zi−1, Xi−1, K) that satisfy the Markov
chain relation Vi −Ui − X̃i − Xi − (Yi, Zi) by definition of the source statistics. We have

D + δn
(a)
≥ E

[
d
(

X̃n, ̂̃Xn(Yn, W, K)
)]

(b)
≥ E

[
d
(

X̃n, ̂̃Xn(Yn, W, K, Xi−1, Zi−1)
)]

(c)
= E

[
d
(

X̃n, ̂̃Xn(Yn
i , W, K, Xi−1, Zi−1)

)]
(d)
=

1
n

n

∑
i=1

E
[
d
(

X̃i,
̂̃Xi(Ui, Yi)

)]
(104)

where (a) follows by (4), (b) follows since providing more information to the reconstruction
function does not increase expected distortion, (c) follows from the Markov chain relation

Yi−1 − (Yn
i , Xi−1, Zi−1, W, K)− X̃n (105)
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and (d) follows from the definition of Ui.
Communication Rate: For any R0 ≥ 0, we have

n(Rw + δn)
(a)
≥ log |W|

≥ H(W|Yn, K)− H(W|Yn, K, X̃n) (106)

(b)
=

n

∑
i=1

I(W; X̃i|X̃i−1, Yn
i+1, Zi−1, K, Yi) (107)

(c)
=

n

∑
i=1

I(X̃i−1, Yn
i+1, Zi−1, K, W; X̃i|Yi)

(d)
≥

n

∑
i=1

I(Xi−1, Yn
i+1, Zi−1, K, W; X̃i|Yi)

(e)
=

n

∑
i=1

I(Ui; X̃i|Yi) (108)

where (a) follows by (1), (b) follows from the Markov chain relation

(Yi−1, Xi−1, Zi−1)− (X̃i−1, Yn
i , K)− (X̃i, W) (109)

(c) follows because (X̃i, Yi) are independent of (X̃i−1, Yn
i+1, Zi−1, K), (d) follows by applying

the data processing inequality to the Markov chain relation in (109), and (e) follows from
the definition of Ui.

Privacy Leakage Rate: We obtain

n(R` + δn)

(a)
≥ [I(W; Yn)− I(W; Zn)] + [I(W; Xn)− I(W; Yn)]

(b)
= [I(W; Yn)− I(W; Zn)] + I(W; Xn|K)− I(K; Xn|W)− I(W; Yn|K) + I(K; Yn|W)

(c)
= [I(W; Yn)− I(W; Zn)] + [I(W; Xn|K)− I(W; Yn|K)]− I(K; Xn|W, Yn)

≥
n

∑
i=1

[
I(W; Yi|Yn

i+1)− I(W; Zi|Zi−1)
]

+
n

∑
i=1

[
I(W; Xi|Xi−1, K)− I(W; Yi|Yn

i+1, K)
]
− H(K)

(d)
=

n

∑
i=1

[
I(W; Yi|Yn

i+1, Zi−1)− I(W; Zi|Zi−1, Yn
i+1)− R0

]
+

n

∑
i=1

[
I(W; Xi|Xi−1, Yn

i+1, K)− I(W; Yi|Yn
i+1, Xi−1, K)

]
(e)
=

n

∑
i=1

[
I(W; Yi|Yn

i+1, Zi−1)− I(W; Zi|Zi−1, Yn
i+1)−R0

]
+

n

∑
i=1

[
I(W; Xi|Xi−1, Yn

i+1, Zi−1, K)− I(W; Yi|Yn
i+1, Xi−1, Zi−1, K)

]
( f )
=

n

∑
i=1

[
I(W, Yn

i+1, Zi−1; Yi)− I(W, Zi−1, Yn
i+1; Zi)− R0

]
+

n

∑
i=1

[
I(W, Xi−1, Yn

i+1, Zi−1, K; Xi)− I(W, Yn
i+1, Xi−1, Zi−1, K; Yi)

]
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(g)
=

n

∑
i=1

[
I(Vi; Yi)− I(Vi; Zi)− R0 + I(Ui, Vi; Xi)− I(Ui, Vi; Yi)

]
=

n

∑
i=1

[
− I(Ui, Vi; Zi)− R0 + I(Ui, Vi; Xi) + (I(Ui; Zi|Vi)− I(Ui; Yi|Vi))

]
(h)
≥

n

∑
i=1

[
I(Ui; Xi|Zi)− R0 + [I(Ui; Zi|Vi)− I(Ui; Yi|Vi)]

−
]

(110)

where (a) follows by (3) and from the Markov chain relation W−Xn−Zn, (b) follows since
K is independent of (Xn, Yn), (c) follows from the Markov chain relation (W, K)−Xn −Yn,
(d) follows because H(K) = nR0 and from Csiszár’s sum identity [54], (e) follows from the
Markov chain relations

Zi−1 − (Xi−1, Yn
i+1, K)− (Xi, W) (111)

Zi−1 − (Xi−1, Yn
i+1, K)− (Yi, W) (112)

( f ) follows because (Xn, Yn, Zn) are i.i.d. and K is independent of (Xn, Yn, Zn), (g) fol-
lows from the definitions of Vi and Ui, and (h) follows from the Markov chain relation
Vi −Ui − Xi − Zi.

Next, we provide the matching converse for the privacy leakage rate in (98), which is
achieved when R0 ≥ I(U; X̃|Y, V). We have

n(R` + δn)
(a)
≥ H(Xn|Zn)− H(Xn|Zn, W)

(b)
= H(Xn|Zn)−

n

∑
i=1

H(Xi|Zi, Zi−1, Xn
i+1, W, Yn

i+1)

(c)
= H(Xn|Zn)−

n

∑
i=1

H(Xi|Zi, Vi, Xn
i+1)

(d)
≥

n

∑
i=1

[H(Xi|Zi)− H(Xi|Zi, Vi)]

=
n

∑
i=1

I(Vi; Xi|Zi) (113)

where (a) follows by (3), (b) follows from the Markov chain relation

(Zn
i+1, Yn

i+1)− (Xn
i+1, W, Zi)− Xi (114)

(c) follows from the definition of Vi, and (d) follows because (Xn, Zn) are i.i.d.
The matching converse for the privacy leakage rate in (100), achieved when R0 ≥

I(U; X̃|Y), follows from the fact that conditional mutual information is non-negative.
Secrecy Leakage Rate: We have

n(Rs + δn)

(a)
≥ [I(W; Yn)− I(W; Zn)] + [I(W; X̃n)− I(W; Yn)]

(b)
= [I(W; Yn)− I(W; Zn)] + I(W; X̃n|K)− I(K; X̃n|W)− I(W; Yn|K) + I(K; Yn|W)

(c)
= [I(W; Yn)− I(W; Zn)] + [I(W; X̃n|K)− I(W; Yn|K)]− I(K; X̃n|W, Yn)

(d)
≥

n

∑
i=1

[
I(W; Yi|Yn

i+1)− I(W; Zi|Zi−1)
]
+ I(W; X̃n|Yn, K)−H(K)
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(e)
=

n

∑
i=1

[
I(W; Yi|Yn

i+1, Zi−1)− I(W; Zi|Zi−1, Yn
i+1)− R0

]
+ nH(X̃|Y)−

n

∑
i=1

H(X̃i|Yi, Yn
i+1, W, K, X̃i−1)

( f )
≥

n

∑
i=1

[
I(W, Yn

i+1, Zi−1; Yi)− I(W, Zi−1, Yn
i+1; Zi)− R0

]
+ nH(X̃|Y)−

n

∑
i=1

H(X̃i|Yi, Yn
i+1, W, K, Xi−1, Zi−1)

(g)
=

n

∑
i=1

[
I(Vi; Yi)− I(Vi; Zi)− R0

]
+ nH(X̃|Y)−

n

∑
i=1

H(X̃i|Yi, Ui, Vi)

(h)
=

n

∑
i=1

[
I(Vi; Yi)− I(Vi; Zi)− R0

]
+

n

∑
i=1

[
I(Ui, Vi; X̃i)− I(Ui, Vi; Yi)

]
=

n

∑
i=1

[
− I(Ui, Vi; Zi)− R0 + I(Ui, Vi; X̃i) + (I(Ui; Zi|Vi)− I(Ui; Yi|Vi))

]
(i)
≥

n

∑
i=1

[
I(Ui; X̃i|Zi)− R0 + [I(Ui; Zi|Vi)− I(Ui; Yi|Vi)]

−
]

(115)

where (a) follows by (2) and from the Markov chain relation W − X̃n − Zn, (b) follows
because K is independent of (X̃n, Yn), (c) and (d) follow from the Markov chain relation
(W, K)− X̃n−Yn, (e) follows because H(K) = nR0 and (X̃n, Yn) are i.i.d. and independent
of K, and from the Csiszár’s sum identity and the Markov chain relation

Yi−1 − (X̃i−1, W, K, Yn
i+1, Yi)− X̃i (116)

( f ) follows since (Yn, Zn) are i.i.d. and from the data processing inequality applied to the
Markov chain relation

(Xi−1, Zi−1)− (X̃i−1, W, K, Yn
i+1, Yi)− X̃i (117)

(g) follows from the definitions of Vi and Ui, (h) follows from the Markov chain relation
(Vi, Ui)− X̃i −Yi, and (i) follows from the Markov chain relation Vi −Ui − X̃i − Zi.

Next, the matching converse for the secrecy leakage rate in (102), achieved when
R0 ≥ I(U; X̃|Y, V), is provided.

n(Rs + δn)
(a)
≥ H(X̃n|Zn)− H(X̃n|Zn, W)

(b)
≥ H(X̃n|Zn)−

n

∑
i=1

H(X̃i|Zi, Zi−1, X̃n
i+1, W, Yn

i+1)

(c)
= H(X̃n|Zn)−

n

∑
i=1

H(X̃i|Zi, Vi, X̃n
i+1)

(d)
≥

n

∑
i=1

[H(X̃i|Zi)− H(X̃i|Zi, Vi)] =
n

∑
i=1

I(Vi; X̃i|Zi) (118)

where (a) follows by (2), (b) follows from the Markov chain relation

(Zn
i+1, Yn

i+1)− (X̃n
i+1, W, Zi)− X̃i (119)

(c) follows from the definition of Vi, and (d) follows because (X̃n, Zn) are i.i.d.
Similar to the privacy leakage analysis above, the matching converse for the secrecy

leakage rate in (103), achieved when R0 ≥ I(U; X̃|Y), follows from the fact that conditional
mutual information is non-negative.
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Introduce a uniformly distributed time-sharing random variable Q∼Unif[1 : n] that
is independent of other random variables, and define X = XQ, X̃ = X̃Q, Y =YQ, Z = ZQ,
V=VQ, and U=(UQ,Q), so

(Q, V)−U − X̃− X− (Y, Z) (120)

form a Markov chain. The converse proof follows by letting δn → 0.
Cardinality Bounds: We use the support lemma [54] (Lemma 15.4) for the cardinality

bound proofs, which is a standard step, so we omit the proof.
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