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Abstract: ROC (Receiver Operating Characteristic) analyses are considered under a variety of as-
sumptions concerning the distributions of a measurement X in two populations. These include the
binormal model as well as nonparametric models where little is assumed about the form of distri-
butions. The methodology is based on a characterization of statistical evidence which is dependent
on the specification of prior distributions for the unknown population distributions as well as for
the relevant prevalence w of the disease in a given population. In all cases, elicitation algorithms are
provided to guide the selection of the priors. Inferences are derived for the AUC (Area Under the
Curve), the cutoff c used for classification as well as the error characteristics used to assess the quality
of the classification.

Keywords: ROC; AUC; optimal cutoff; statistical evidence; relative belief; binormal; mixture
Dirichlet process

1. Introduction

An ROC (Receiver Operating Characteristic) analysis is used in medical science to
determine whether or not a real-valued diagnostic variable X for a disease or condition
is useful. If the diagnostic indicates that an individual has the condition, then this will
typically mean that a more expensive or invasive medical procedure is undertaken. So it is
important to assess the accuracy of the diagnostic variable X. These methods have a wider
class of applications but our terminology will focus on the medical context.

An approach to such analyses is presented here that is based on a characterization of
statistical evidence and which incorporates all available information as expressed via prior
probability distributions. For example, while p-values are often used in such analyses, there
are questions concerning the validity of these quantities as characterizations of statistical
evidence. As will be discussed, there are many advantages to the framework adopted here.

A common approach to the assessment of the diagnostic variable X is to estimate its
AUC (Area Under the Curve), namely, the probability that an individual sampled from the
diseased population will have a higher value of diagnostic variable X than an individual
independently sampled from the nondiseased population. A good diagnostic should give
a value of the AUC near 1 while a value near 1/2 indicates a poor diagnostic test (if the
AUC is near 0, then the classification is reversed). It is possible, however, that a diagnostic
with AUC ≈ 1 may not be suitable (see Examples 1 and 6). In particular, a cutoff value c
needs to be selected so that if X > c, then an individual is classified as requiring the more
invasive procedure. Inferences about the error characteristics for the combination (X, c),
such as the false positive rate, etc., are also required.

This paper is concerned with inferences about the AUC, the cutoff c and the error
characteristics of the classification based on a valid measure of evidence. A key aspect of
the analysis is the relevant prevalence w. The phrase “relevant prevalence” means that X will
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be applied to a certain population, such as those patients who exhibit certain symptoms,
and w represents the proportion of this subpopulation who are diseased. The value of w
may vary by geography, medical unit, time, etc. To make a valid assessment of X in an
application, it is necessary that the information available concerning w be incorporated.
This information is expressed here via an elicited prior probability distribution for w, which
may be degenerate at a single value if w is assumed known, or be quite diffuse when little is
known about w. In fact, all unknown population quantities are given elicited priors. There
are many contexts where data are available relevant to the value of w and this leads to a
full posterior analysis for w as well as for the other quantities of interest. Even when such
data are not available, however, it is still possible to take the prior for w into account so the
uncertainties concerning w always play a role in the analysis and this is a unique aspect of
the approach taken here.

While there are some methods available for the choice of c, these often do not depend
on the prevalence w which is a key factor in determining the true error characteristics of
(X, c) in an application, see [1–5]. So it is preferable to take w into account when considering
the value of a diagnostic in a particular context. One approach to choosing c is to minimize
some error criterion that depends on w to obtain copt. As will be demonstrated in the
examples, however, sometimes copt results in a classification that is useless. In such a
situation a suboptimal choice of c is required but the error characteristics can still be based
on what is known about w so that these are directly relevant to the application.

Others have pointed out deficiencies in the AUC statistic and proposed alternatives.
For example, it can be argued that taking into account the costs associated with various
misclassification errors is necessary and that using the AUC is implicitly making unrealistic
assumptions concerning these costs, see [6]. While costs are relevant, costs are not incorpo-
rated here as these are often difficult to quantify. Our goal is to express clearly what the
evidence is saying about how good (X, c) is via an assessment of its error characteristics.
With the error characteristics in hand, a user can decide whether or not the costs of mis-
classifications are such that the diagnostic is usable. This may be a qualitative assessment
although, if numerical costs are available, these could be subsequently incorporated. The
principle here is that economic or social factors be considered separately from what the
evidence in the data says, as it is a goal of statistics to clearly state the latter.

The framework for the analysis is Bayesian as proper priors are placed on the un-
known distribution FND (the distribution of X in the nondiseased population), on FD (the
distribution of X in the diseased population) and the prevalence w. In all the problems con-
sidered, elicitation algorithms are presented for how to choose these priors. Moreover, all
inferences are based on the relative belief characterization of statistical evidence where, for
a given quantity, evidence in favor (against) is obtained when posterior beliefs are greater
(less) than prior beliefs, see Section 2.2 for discussion and [7]. So evidence is determined by
how the data change beliefs. Section 2 discusses the general framework, defines relevant
quantities and provides an outline for how specific relative belief inferences are determined.
Section 3 develops the inferences for the quantities of interest for three contexts (1) X is an
ordered discrete variable with and without constraints on (FND, FD) (2) X is a continuous
variable and (FND, FD) are normal distributions (the binormal model) (3) X is a continuous
variable and no constraints are placed on (FND, FD).

There is previous work on using Bayesian methods in ROC analyses. For example, a
Bayesian analysis for the binormal model when there are covariates present is developed
in [8]. An estimate of the ROC using the Bayesian bootstrap is discussed in [9]. A Bayesian
semiparametric analysis using a Dirichlet mixture process prior is developed in [10,11]. The
sampling regime where the data can be used for inference about the relevant prevalence and
where a gold standard classifier is not assumed to exist is presented in [12]. Considerable
discussion concerning the case where the diagnostic test is binary, covering the cases where
there is and is not a gold standard test, as well as the situation where the goal is to compare
diagnostic tests and to make inference about the prevalence distribution can be found
in [13] and also see [14]. Application of an ROC analysis to a comparison of linear and
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nonlinear approaches to a problem in medical physics is in [15]. Further discussion of
nonlinear methodology can be found in [16,17].

The contributions of this paper, that have not been covered by previous published
work in this area, are as follows:

(i) The primary contribution is to base all the inferences associated with an ROC analysis
on a clear and unambiguous characterization of statistical evidence via the principle
of evidence and the relative belief ratio. While Bayes factors are also used to measure
statistical evidence, there are serious limitations on their usage with continuous
parameters as priors are restricted to be of a particular form. The approach via
relative belief removes such restrictions on priors and provides a unified treatment of
estimation and hypothesis assessment problems. In particular, this leads directly to
estimates of all the quantities of interest, together with assessments of the accuracy of
the estimates, and a characterization of the evidence, whether in favor of or against a
hypothesis, together with a measure of the strength of the evidence. Moreover, no loss
functions are required to develop these inferences. The merits of the relative belief
approach over others are more fully discussed in Section 2.2.

(ii) A prior on the relevant prevalence is always used to determine inferences even when
the posterior distribution of this quantity is not available. As such the prevalence
always plays a role in the inferences derived here.

(iii) The error in the estimate of the cut-off is always quantified as well as the errors
in the estimates of the characteristics evaluated at the chosen cut-off. It is these
characteristics, such as the sensitivity and specificity, that ultimately determine the
value of the diagnostic test.

(iv) The hypothesis H0 : AUC > 1/2 is first assessed and if evidence is found in favor of
this, the prior is then conditioned on this event being true for inferences about the
remaining quantities. Note that this is equivalent to conditioning the posterior on the
event AUC > 1/2 when inferences are determined by the posterior but with relative
belief inferences both the conditioned prior and conditioned posterior are needed to
determine the inferences.

(v) Precise conditions are developed for the existence of an optimal cutoff with the
binormal model.

(vi) In the discrete context (1), it is shown how to develop a prior and the analysis under
the assumption that the probabilities describing the outcomes from the diagnostic
variable X are monotone.

The relative belief ratio, as a measure of evidence, is seen to have a connection to
relative entropy. For example, it is equivalent, in the sense that the inferences are the same,
to use the logarithm of the relative belief ratio as the measure of evidence. The relative
entropy is then the posterior expectation of this quantity and so can be considered as
a measure of the overall evidence provided by the model, prior and data concerning a
quantity of interest.

The methods used for all the computations in the paper are simulation based and
represent fairly standard Bayesian computational methods. In each context considered,
sufficient detail is provided so that these can be implemented by a user.

2. The Problem

Consider the formulation of the problem as presented in [18,19] but with some-
what different notation. There is a measurement X : Ω → R1 defined on a population
Ω = ΩD ∪ΩND, with ΩD ∩ΩND = φ, where ΩD is comprised of those with a particu-
lar disease, and ΩND represents those without the disease. So FND(c) = #({ω ∈ ΩND :
X(ω) ≤ c})/#(ΩND) is the conditional cdf of X in the nondiseased population, and
FD(x) = #({ω ∈ ΩD : X(ω) ≤ x})/#(ΩD) is the conditional cdf of X in the diseased
population. It is assumed that there is a gold standard classifier, typically much more
difficult to use than X, such that for any ω ∈ Ω it can be determined definitively if ω ∈ ΩD
or ω ∈ ΩND. There are two ways in which one can sample from Ω, namely,



Entropy 2022, 24, 1710 4 of 24

(i) take samples from each of ΩD and ΩND separately or
(ii) take a sample from Ω.

The sampling method used affects the inferences that can be drawn. For many studies
(i) is the relevant sampling mode, as in case-control studies, while (ii) is relevant in cross-
sectional studies.

It supposed that the greater the value X(ω) is for individual ω, the more likely it is
that ω ∈ ΩD. For the classification, a cutoff value c is required such that, if X(ω) > c, then
ω is classified as being in ΩD and otherwise is classified as being in ΩND. However, X is
an imperfect classifier for any c and it is necessary to assess the performance of (X, c). It
seems natural that a value of c be used that is optimal in some sense related to the error
characteristics of this classification. Table 1 gives the relevant probabilities for classification
into ΩD and ΩND, together with some common terminology, in a confusion matrix.

Table 1. Error probabilities when X > c indicates a positive.

ΩD ΩND

X > c
TPR(c) = 1− FD(c)
sensitivity (recall) or
true positive rate

FPR(c) = 1− FND(c)
false positive rate

X ≤ c FNR(c) = FD(c)
false negative rate

TNR(c) = FND(c)
specificity or

true negative rate

Another key ingredient is the prevalence w = #(ΩD)/#(Ω) of the disease in Ω. In
practical situations, it is necessary to also take w into account in assessing the error in (X, c).
The following error characteristics depend on w,

Error(c) = misclassification rate = wFNR(c) + (1− w)FPR(c),

FDR(c) = false discovery rate =
(1− w)FPR(c)

w(1− FNR(c)) + (1− w)FPR(c)
,

FNDR(c) = false nondiscovery rate =
wFNR(c)

wFNR(c) + (1− w)(1− FPR(c))
.

Under sampling regime (ii) and cutoff c, Error(c) is the probability of making an error,
FDR(c) is the conditional probability of a subject being misclassified as positive given
that it has been classified as positive and FNDR(c) is the conditional probability of a
subject being misclassified as negative given that it has been classified as negative. In
other words, FDR(c) is the proportion of those individuals in the population consisting
of those who have been classified by the diagnostic test as having the disease, but in
fact do not have it. It is often observed that when w is very small and FNR(c) and
FPR(c) are small, then FDR(c) can be big. This is sometimes referred to as the base rate
fallacy as, even though the test appears to be a good one, there is a high probability
that an individual classified as having the disease will be misclassified. For example, if
w = FNR(c) = FPR(c) = 0.05, then Error(c) = 0.05, FDR(c) = 0.50, FNDR(c) = 2.76× 10−3

and when w = 0.01, then Error(c) = 0.05, FDR(c) = 0.84, FNDR(c) = 5.31× 10−4. In these
cases the false nondiscovery rate is quite small while the false discovery rate is large. If
the disease is highly contagious, then these probabilities may be considered acceptable but
indeed they need to be estimated. Similarly, FNDR(c) may be small when FNR(c) is large
and w is very small.

It is naturally desirable to make inference about an optimal cutoff copt and its asso-
ciated error quantities. For a given value of w, the optimal cutoff will be defined here as
copt = arg inf Error(c), the value which minimizes the probability of making an error. Other
choices for determining a copt can be made, and the analysis and computations will be
similar, but our thesis is that, when possible, any such criterion should involve the prior
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distribution of the relevant prevalence w. As demonstrated in Example 6 this can sometimes
lead to useless values of copt even when the AUC is large. While this situation calls into
question the value of the diagnostic, a suboptimal choice of c can still be made according to
some alternative methodology. For example, sometimes Youden’s index, which maximizes
1− 2Error(c) over c with w = 1/2, is recommended, or the closest-to-(0,1) criterion which
minimizes FPR(c)2 + (1− TPR(c))2, see [2] for discussion. Youden’s index and the closest-
to-(0,1) criterion do not depend on the prevalence and have geometrical interpretations in
terms of the ROC curve, but as we will see, the ROC curve does not exist in full generality
and this is particularly relevant in the discrete case. The methodology developed here
provides an estimate of the c to be used, together with an exact assessment of the error
in this estimate, as well as providing estimates of the associated error characteristics of
the classification.

Letting ĉopt denote the estimate of copt, the values of Error(ĉopt), TPR(ĉopt), FPR(ĉopt),
FNR(ĉopt) and TNR(ĉopt) are also estimated and the recorded values used to assess the
value of the diagnostic test. There are also other characteristics that may prove useful in
this regard such as the positive predictive value (PPV)

PPV(c) =
wTPR(c)

wTPR(c) + (1− w)FPR(c)
,

namely, the conditional probability a subject is positive given that they have tested positive,
which plays a role similar to FDR(c). See [14] for discussion of the PPV and the similarly
defined negative predictive value (NPV). The value of PPV(ĉopt) can be estimated in the same
way as the other quantities as is subsequently discussed.

2.1. The AUC and ROC

Consider two situations where FND, FD are either both absolutely continuous or both
discrete. In the discrete case, suppose that these distributions are concentrated on a set of
points c1 < c2 < · · · < cm. When ωD, ωND are selected using sampling scheme (i), then the
probability that a higher score is received on diagnostic X by a diseased individual than a
nondiseased individual is

AUC =

{ ∫ ∞
−∞(1− FD(c)) fND(c) dc abs. cont.

∑m
i=1(1− FD(ci))(FND(ci)− FND(ci−1)) discrete.

(1)

Under the assumption that FD(c) is constant on {c : FND(c) = p} for every p ∈ [0, 1], there
is a function ROC (receiver operating characteristic) such that 1− FD(c) = ROC(1− FND(c))
so AUC=

∫ ∞
−∞ROC(1− FND(c)) FND(dx). Putting p = 1− FND(c), then ROC(p) = 1−

FD(F−1
ND(1− p)). In the absolutely continuous case, AUC=

∫ 1
0 ROC(p) dp which is the area

under the curve given by the ROC function. The area under the curve interpretation is
geometrically evocative but is not necessary for (1) to be meaningful.

It is commonly suggested that a good diagnostic variable X will have an AUC close
to 1 while a value close to 1/2 suggests a poor diagnostic test. It is surely the case,
however, that the utility of X in practice will depend on the cutoff c chosen and the various
error characteristics associated with this choice. So while the AUC can be used to screen
diagnostics, it is only part of the analysis and inferences about the error characteristics are
required to truly assess the performance of a diagnostic. Consider an example.

Example 1. Suppose that FD = Fq
ND for some q > 1, where FND is continuous, strictly increasing

with associated density fND. Then using (1), AUC = 1− 1/(q + 1) which is approximately 1
when q is large. The optimal c minimizes Error(c) = wFq

ND(c) + (1− w)(1− FND(c)) which
implies c satisfies FND(c) = {(1− w)/qw}1/(q−1) when q > (1− w)/w and the optimal c is
otherwise c = ∞. If q = 99, then AUC = 0.99 and with w = 0.025, (1− w)/w = 39 < q
so FNR(copt) = 0.390, FPR(copt) = 0.009, Error(copt) = 0.019, FDR(copt) = 0.009 and
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FNDR(copt) = 0.010. So X seems like a good diagnostic via the AUC and the error characteristics
that depend on the prevalence although within the diseased population the probability is 0.39 of not
detecting the disease. If instead w = 0.01, then the AUC is the same but q = 99 = (1−w)/w and
the optimal classification always classifies an individual as non-diseased which is useless. So the
AUC does not indicate enough about the characteristics of the diagnostic to determine if it is useful
or not. It is necessary to look at the error characteristics of the classification at the cutoff value that
will actually be used, to determine if a diagnostic is suitable and this implies that information about
w is necessary in an application.

2.2. Relative Belief Inferences

Suppose there is a model { fθ : θ ∈ Θ} for data x together with a prior probability
measure Π, with density π, on Θ. These ingredients lead, via the principle of conditional
probability, to beliefs about the true value of θ, as initially expressed by Π, being replaced
by the posterior probability measure Π(· | x) with density π(· | x). Note that if interest
is instead in a quantity ψ = Ψ(θ), where Ψ : Θ → Ψ and we use the same notation
for the function and its range, then the model is replaced by {mψ : ψ ∈ Ψ}, where
mψ(x) =

∫
Ψ−1{ψ} fθ(x)π(θ |ψ) dθ is obtained by integrating out the nuisance parameters,

and the prior is replaced by the marginal prior πΨ(ψ) =
∫

Ψ−1{ψ} π(θ) dθ. This leads to the
marginal posterior ΠΨ(· | x) with density πΨ(· | x).

For the moment suppose that all the distributions are discrete. The principle of evidence
then says that there is evidence in favor of the value ψ if πΨ(ψ | x) > πΨ(ψ), evidence
against the value ψ if πΨ(ψ | x) < πΨ(ψ), and no evidence either way if πΨ(ψ | x) = πΨ(ψ).
So, for example, there is evidence in favor of ψ if the probability of ψ increases after seeing
the data. To order the possible values with respect to the evidence, we use the relative
belief ratio

RBΨ(ψ | x) =
πΨ(ψ | x)

πΨ(ψ)
.

Note that RBΨ(ψ | x) > (<)1 indicates whether there is evidence in favor of (against) the
value ψ. If there is evidence in favor of both ψ1 and ψ2, then there is more evidence in favor
of ψ1 than ψ2 whenever RBΨ(ψ1 | x) > RBΨ(ψ2 | x) and, if there is evidence against both ψ1
and ψ2, then there is more evidence against ψ1 than ψ2 whenever RBΨ(ψ1 | x) < RBΨ(ψ2 | x).
For the continuous case consider a sequence of neighborhoods Nε(ψ) ↓ {ψ} as ε → 0
and then

RBΨ(Nε(ψ) | x) =
ΠΨ(Nε(ψ) | x)

ΠΨ(Nε(ψ))
→ πΨ(ψ | x)

πΨ(ψ)
(2)

under very weak conditions such as πΨ(ψ) > 0 and πΨ being continuous at ψ.
All the inferences about quantities considered in the paper are derived based upon the

principle of evidence as expressed via the relative belief ratio. For example, it is immediate
that the value RBΨ(ψ0 | x) indicates whether or not there is evidence in favor of or against
the hypothesis H0 : Ψ(θ) = ψ0. Furthermore, the posterior probability ΠΨ(RBΨ(ψ | x) ≤
RBΨ(ψ0 | x) | x) measures the strength of this evidence for, if RBΨ(ψ0 | x) > 1 and this
probability is large, then there is strong evidence in favor of H0 as there is a small belief that
the true value has a larger relative belief ratio and if RBΨ(ψ0 | x) < 1 and this probability is
small, then there is strong evidence against H0 as there is high belief that the true value has
a larger relative belief ratio. For estimation it is natural to estimate ψ by the relative belief
estimate ψ(x) = arg supψ∈Ψ RBΨ(ψ | x) as this value has the maximum evidence in its favor.
Furthermore, the accuracy of this estimate can be assessed by looking at the plausible region
PlΨ(x) = {ψ : RBΨ(ψ | x) > 1}, consisting of all those values for which there is evidence
in favor, together with its size and posterior content which measures how strongly it is
believed the true value lies in this set. Rather than using the plausible region to assess the
accuracy of ψ(x), one could quote a γ−relative belief credible region
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CΨ,γ(x) = {ψ : RBΨ(ψ | x) > cγ}

where the constant cγ is the largest value such that ΠΨ(CΨ,γ(x) | x)≥ γ. It is necessary,
however, that γ≤ΠΨ(PlΨ(x) | x) as otherwise CΨ,γ(x) will contain values for which there
is evidence against, and this is only known after the data have been seen.

It is established in [7], and in papers referenced there, that these inferences possess
a number of good properties such as consistency, satisfy various optimality criteria and
clearly they are based on a direct measure of the evidence. Perhaps most significant is the
fact that all the inferences are invariant under reparameterizations. For if λ = Λ(ψ), where
Λ is a smooth bijection, then

RBΛ(λ | x) =
πΛ(λ | x)

πΛ(λ)
=

πΨ(Λ−1(λ) | x)JΛ(Λ−1(λ))

πΨ(Λ−1(λ))JΛ(Λ−1(λ))
=

πΨ((ψ) | x)
πΨ(ψ)

and so, for example, λ(x) = Λ(ψ(x)). This invariance property is not possessed by the most
common inference methods employed such as MAP estimation or using posterior means
and this invariance holds no matter what the dimension of ψ is. Moreover, it is proved
in [20] that relative belief inferences are optimally robust among all Bayesian inferences for
ψ, to linear contaminations of the prior on ψ.

An analysis, using relative belief, of the data obtained in several physics experiments
that were all concerned with examining whether there was evidence in favor of or against
the quantum model versus hidden variables is available in [21]. Furthermore, an approach
to checking models used for quantum mechanics via relative belief is discussed in [22].
Other applications of relative belief inferences to common problems of statistical practice
can be found in [7].

The Bayes factor is an alternative measure of evidence and is commonly used for
hypothesis assessment in Bayesian inference. To see why the relative belief ratio has
advantages over the Bayes factor for evidence-based inferences consider first assessing the
hypothesis H0 : Ψ(θ) = ψ0. When the prior probability of ψ0 satisfies 0 < ΠΨ({ψ0}) < 1,
then the Bayes factor is defined as the ratio of the posterior odds in favor of H0 to the prior
odds in favor of H0, namely,

BFΨ(ψ0 | x) =
{

ΠΨ({ψ0} | x)
ΠΨ({ψ0}c | x)

}{
ΠΨ({ψ0})
ΠΨ({ψ0}c)

}−1

.

It is easily shown that the Bayes factor satisfies the principle of evidence and BFΨ(ψ0 | x) > (<)1
is evidence in favor (against) H0, so in this context it is a valid measure of evidence.

One might wonder why it is necessary to consider a ratio of odds as opposed to the
simpler ratio of probabilities, as specified by the relative belief ratio, for the purpose of
measuring evidence but in fact there is a more serious issue with the Bayes factor. For
suppose, as commonly arises in applications, that ΠΨ is a continuous probability mea-
sure so that ΠΨ({ψ0}) = 0 as then the Bayes factor for H0 is not defined. The common
recommendation in this context is to require the specification of the following ingredi-
ents: a prior probability p > 0, a prior distribution ΠH0 concentrated on Ψ−1{ψ0} which
provides the prior predictive density mH0(x), a prior distribution ΠHc

0
concentrated on

Ψ−1{ψ0}c which provides the prior predictive density mHc
0
(x) and then the full prior is

taken to be the mixture Π = pΠH0 + (1− p)ΠHc
0
. With this prior the Bayes factor for H0 is

defined, as now the prior probability of ψ0 equals p, and an easy calculation shows that
BFΨ(ψ0 | x) = mH0(x)/mHc

0
(x). Typically the prior ΠHc

0
is taken to be the prior that we

might place on θ when interest is in estimating ψ.
Now consider the problem of estimating ψ and the prior is such that ΠΨ({ψ}) = 0

for every value of ψ as with a continuous prior. The Bayes factor is then not defined
for any value of ψ and, if we wished to use the Bayes factor for estimation purposes, it
would be necessary to modify the prior to be a different mixture for each value of ψ so that
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there would be in effect multiple different priors. This does not correspond to the logic
underlying Bayesian inference. When using the relative belief ratio for inference only one
prior is required and the same measure of evidence is used for both hypothesis assessment
and estimation purposes.

Another approach to dealing with the problem that arises with the Bayes factor and
continuous priors is to take a limit as in (2) and, when this is done, we obtain the result

BFΨ(Nε(ψ) | x)→ RBΨ(ψ | x)

as ε→ 0 whenever the prior density of Ψ is continuous and positive at ψ. In other words
the relative belief ratio can be also considered as a natural definition of the Bayes factor in
continuous contexts.

3. Inferences for an ROC Analysis

Suppose we have a sample of nD from ΩD, namely, xD = (xD1, . . . , xDnD ) and a
sample of nND from ΩND, namely, xND = (xND1, . . . , xNDnND ) and the goal is to make
inference about the AUC, the cutoff c and the error characteristics FNR(c), FPR(c), Error(c),
FDR(c) and FNDR(c). For the AUC it makes sense to first assess the hypothesis
H0 : AUC > 1/2 via stating whether there is evidence for or against H0 together with an
assessment of the strength of this evidence. Estimates are required for all of these quantities,
together with an assessment of the accuracy of the estimate.

3.1. The Prevalence

Consider first inferences for the relevant prevalence w. If w is known, or at least
assumed known, then nothing further needs to be done but otherwise this quantity needs
to be estimated when assessing the value of the diagnostic and so uncertainty about w
needs to be addressed.

If the full data set is based on sampling scheme (ii), then nD ∼ binomial(n, w). A
natural prior πW to place on w is a beta(α1w, α2w) distribution. The hyperparameters are
chosen based on the elicitation algorithm discussed in [23] where interval [l, u] is chosen
such that it is believed that w ∈ [l, u] with prior probability γ. Here [l, u] is chosen so
that we are virtually certain that w ∈ [l, u] and γ = 0.99 then seems like a reasonable
choice. Note that choosing l = u corresponds to w being known and so γ = 1 in that
case. Next pick a point ξw ∈ [l, u] for the mode of the prior and a reasonable choice
might be ξw = (l + u)/2. Then putting τw = α1w + α2w − 2 leads to the parameterization
beta(α1w, α2w) = beta(1+ τwξw, 1+ τw(1− ξw)) where ξw locates the mode and τw controls
the spread of the distribution about ξw. Here τw = 0 gives the uniform distribution and
τw = ∞ gives the distribution degenerate at ξw. With ξw specified, τw is the smallest
value of τw such that the probability content of [l, u] is γ and this is found iteratively.
For example, if [l, u] = [0.60, 0.70] and γ = 0.99, so w is known reasonably well, then
ξw = (l + u)/2 = 0.65 and τw = 601.1, so the prior is beta(391.72, 211.39) and the posterior
is beta(391.72 + nD, 211.39 + nND).

The estimate of w is then

w(nD, nND) = arg sup
w∈[0,1]

RB(w | nD, nND) = arg sup
w∈[0,1]

πW(w | nD, nND)

πW(w)
.

In this case the estimate is the MLE, namely, w(nD, nND) = nD/(nD + nND). The accu-
racy of this estimate is measured by the size of the plausible region Pl(nD, nND) = {w :
RB(w | nD, nND) > 1}. For example, if n = 100 and nD = 68, then w(68, 32) = 0.68 and
Pl(68, 32) = [0.647, 0.712] which has posterior content 0.651. So the data suggest that the
upper bound of u = 0.70 is too strong although the posterior belief in this interval is not
very high.
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The prior and posterior distributions of w play a role in inferences about all the quanti-
ties that depend on the prevalence. In the case where the cutoff is determined by minimizing
the probability of a misclassification, then copt, FNR(copt), FPR(copt), Error(copt), FDR(copt)
and FNDR(copt) all depend on the prevalence. Under sampling scheme (i), however, only
the prior on w has any influence when considering the effectiveness of X. Inference for
these quantities is now discussed in both cases.

3.2. Ordered Discrete Diagnostic

Suppose X takes values on the finite ordered scale c1 < c2 < · · · < cm and let pNDi =
P(X(ωND) = ci), pDi = P(X(ωD) = ci) so FND(ci) = ∑i

j=1 pNDj and FD(ci) = ∑i
j=1 pDj.

These imply that FPR(ci) = 1−∑i
j=1 pNDi, FNR(ci) = ∑i

j=1 pDi,

AUC(pND, pD) =
m

∑
i=1

(1− FNR(ci))pNDi

with the remaining quantities defined similarly. Ref. [23] can be used to obtain independent
elicited Dirichlet priors

pND ∼ Dirichlet(αND1, . . . , αNDm), pD ∼ Dirichlet(αD1, . . . , αDm) (3)

on these probabilities by placing either upper or lower bounds on each cell probability
that hold with virtual certainty γ, as discussed for the beta prior on the prevalence. If little
information is available, it is reasonable to use uniform (Dirichlet(1, . . . , 1)) priors on pND
and pD. This together with the independent prior on w leads to prior distributions for the
AUC, copt and all the quantities associated with error assessment such as FNR(copt), etc.

Data (xD, xND) lead to counts fND = ( fND1, . . . , fNDm) and fD = ( fD1, . . . , fDm)
which in turn lead to the independent posteriors

pND | fND ∼ Dirichlet(αND + fND), pD | fD ∼ Dirichlet(αD + fD). (4)

Under sampling regime (ii) this, together with the independent posterior on w, leads to
posterior distributions for all the quantities of interest. Under sampling regime (i), however,
the logical thing to do, so the inferences reflect the uncertainty about w, is to only use the
prior on w when deriving inferences about any quantities that depend on this such as copt
and the various error assessments.

Consider inferences for the AUC. The first inference should be to assess the hypothesis
H0 : AUC > 1/2 for, if H0 is false, then X would seem to have no value as a diagnostic
(the possibility that the directionality is wrong is ignored here). The relative belief ratio
RB(H0 | fND, fND) = Π(H0 | fND, fND)/Π(H0) is computed and compared to 1. If it is
concluded that H0 is true, then perhaps the next inference of interest is to estimate the AUC
via the relative belief estimate. The prior and posterior densities of the AUC are not available
in closed form so estimates are required and density histograms are employed here for this.
The set (0, 1] is discretized into L subintervals (0, 1] = ∪L

i=1((i− 1)/L, i/L], and putting
ai = (i − 1/2)/L, the value of the prior density pAUC(ai) is estimated by L(proportion
of prior simulated values of AUC in (i− 1, i]/L) and similarly for the posterior density
pAUC(ai | fND, fD). Then RBAUC(a | fND, fND) is maximized to obtain the relative belief
estimate AUC( fND, fD) together with the plausible region and its posterior content.

These quantities are also obtained for copt in a similar fashion, although copt has prior
and posterior distribution concentrated on {c1, c2, . . . , cm} so there is no need to discretize.
Estimates of the quantities FNR(copt( fND, fD)), FPR(copt( fND, fD)), Error(copt( fND, fD)),
FDR(copt( fND, fD)) and FNDR(copt( fND, fD)) are also obtained as these indicate the per-
formance of the diagnostic in practice. The relative belief estimates of these quantities are
easily obtained in a second simulation where copt( fND, fD) is fixed.

Consider now an example.
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Example 2. Simulated example.
For k = 5 and ci = i, data were generated as

fND ∼ multinomial(50, 0.5, 0.2, 0.1, 0.1, 0.1) obtaining fND = (29, 7, 4, 5, 5),

fD ∼ multinomial(100, 0.1, 0.1, 0.2, 0.3, 0.3) obtaining fD = (14, 7, 25, 33, 21).

With these choices for pND, pD the true values are AUC= 0.65, and with w = 0.65, copt = 2,
FNR(copt) = 0.200, FPR(copt) = 0.300, Errorw(copt) = 0.235, FDR(copt) = 0.168 and
FNDR(copt) = 0.347. So X is not an outstanding diagnostic but with these error character-
istics it may prove suitable for a given application. Uniform, namely, Dirichlet(1, 1, 1, 1, 1), priors
were placed on pND and pD, reflecting little knowledge about these quantities.

Simulations based on Monte Carlo sample sizes of N = 105 from the prior and posterior distribu-
tions of pND and pD were conducted and the prior and posterior distributions of the quantities of interest
obtained. The hypothesis H0 : AUC > 0.5 is assessed by RBAUC((0.50, 1.00] | fND, fD) = 3.15.
So there is evidence in favor of H0 and the strength of this evidence is measured by the posterior
probability content of (0.50, 1.00] which equals 1.0 to machine accuracy and so this is categorical
evidence in favor of H0.

For the continuous quantities a grid based on L + 1 = 25 equispaced points {0, 0.04,
0.08, . . . , 1.00} was used and all the mass in the interval (i − 1, i]/L assigned to the midpoint
(i− 1/2)/L. Figure 1 contains plots of the prior and posterior densities and relative belief ratio of the
AUC. The relative belief estimate of the AUC is AUC( fND, fD) = 0.66 with PlAUC( fND, fD) =
[0.60, 0.72] having posterior content 0.97. Certainly a finer partition of [0, 1] than just 24 intervals
is possible, but even in this relatively coarse case the results are quite accurate.

0.0 0.2 0.4 0.6 0.8 1.0

0
2

4
6

8
1

0
1

2

AUC

d
e

n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
5

1
0

1
5

AUC

R
B

Figure 1. In Example 2, plots of the prior (- - -), the posterior (—) and the RB ratio of the AUC.

Supposing that the relevant prevalence is known to be w = 0.65, Figure 2 contains plots
of the prior and posterior densities and relative belief ratio of copt. The relative belief estimate is
copt( fND, fD) = 2 with Plcopt( fND, fD) = {2} with posterior probability content 0.53 so the
correct optimal cut-off has been identified but there is a degree of uncertainty concerning this. The
error characteristics that tell us about the utility of X as a diagnostic are given by the relative
belief estimates (column (a)) in Table 2. It is interesting to note that the estimate of Error(copt)
is determined by the prior and posterior distributions of a convex combination of FPR(copt) and
FNR(copt) and the estimate is not the same convex combination of the estimates of FPR(copt) and
FNR(copt). So, in this case Error(copt) seems like a much better assessment of the performance of
the diagnostic.
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Figure 2. In Example 2, plots of the the prior (+), the posterior (×) and the RB ratio of copt.

Suppose now that the prevalence is not known but there is a beta(1 + τwξw, 1 + τw(1− ξw))
prior specified for w and consider the choice discussed in Section 3.1 where ξw = 0.65 and
τw = 601.1. When the data are produced according to sampling regime (i), then there is no posterior
for w but this prior can still be used in determining the prior and posterior distributions of copt and
the associated error characteristics. When this simulation was carried out copt( fND, fD) = 2 with
Plcopt( fND, fD) = {2} with posterior probability content 0.53. and column (b) of Table 2 gives the
estimates of the error characteristics. So other than the estimate of the FPR, the results are similar.
Finally, assuming that the data arose under sampling scheme (ii), then w has a posterior distribution
and using this gives copt( fND, fD) = 2 with Plcopt( fND, fD) = {2} with posterior probability
content 0.52 and error characteristics as in column (c) of Table 2. These results are the same as if the
prevalence is known which is sensible as the posterior concentrates about the true value more than
the prior.

Table 2. The estimates of the error characteristcs of X at copt = 2 in Example 2 where (a) w is assumed
known, (b) only the prior for w is available, (c) the posterior for w is also available.

Quantity Estimate (a) Estimate (b) Estimate (c)

FPR(copt) 0.30 0.26 0.30
FNR(copt) 0.22 0.22 0.22
Error(copt) 0.22 0.22 0.22
FDR(copt) 0.14 0.14 0.14

FNDR(copt) 0.34 0.34 0.34

Another somewhat anomalous feature of this example is the fact that uniform priors on pD
and pND do not lead to a prior on the AUC that is even close to uniform. In fact one could say
that this prior has a built-in bias against a diagnostic with AUC > 1/2 and indeed most choices
of pD and pND will not satisfy this. Another possibility is to require pND1 ≥ · · · ≥ pNDm and
pD1 ≤ · · · ≤ pDm, namely, require monotonicity of the probabilities. A result in [22] implies that
pND satisfies this iff pND = AkωND where ωND ∈ Sk, the standard (k− 1)-dimensional simplex,
and Ak ∈ Rk×k with i-ith row equal to (0, . . . , 0, 1/i, 1/(i + 1), . . . , 1/k) and pD satisfies this
iff pD = BkωD where ωD ∈ Sk and Bk = I∗k Ak where I∗k ∈ Rk×k contains all 0’s except for 1’s
on the crossdiagonal. If ωND and ωD are independent and uniform on Sk, then pD and pND are
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independent and uniform on the sets of probabilities satisfying the corresponding monotonicities and
Figure 3 has a plot of the prior of the AUC when this is the case. It is seen that this prior is biased in
favor of AUC > 1/2. Figure 3 also has a plot of the prior of the AUC when pD is uniform on the
set of all nondecreasing probabilities and pND is uniform on Sk. This reflects a much more modest
belief that X will satisfy AUC > 1/2 and indeed this may be a more appropriate prior than using
uniform distributions on Sk. Ref. [22] also provides elicitation algorithms for choosing alternative
Dirichlet distributions for ωND and ωD.
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Figure 3. Prior density of the AUC when pD is uniform on the set of nondecreasing probabilities
independent of pND uniform on the set of nonincreasing probabilities (–) as well as when pD

is uniformly distributed on the set of nondecreasing probabilities independent of pND uniform
on Sk (- -).

When H0 : AUC > 0.5 is accepted, it makes sense to use the conditional prior, given that
this event is true, in the inferences. As such it is necessary to condition the prior on the event

∑m
i=1

(
∑i

j=1 pDj

)
pNDi ≤ 1/2. In general, it is not clear how to generate from this conditional prior

but depending on the size of m and the prior, a brute force approach is to simply generate from
the unconditional prior and select those samples for which the condition is satisfied and the same
approach works with the posterior.

Here m = 5, and using uniform priors for pND and pD, the prior probability of AUC > 0.5 is
0.281 while the posterior probability is 0.998 so the posterior sampling is much more efficient. Choos-
ing priors that are more favorable to AUC > 0.5 will improve the efficiency of the prior sampling.
Using the conditional priors led to AUC( fND, fD) = 0.66 with PlAUC( fND, fD) = [0.60, 0.76]
with posterior content 0.85. This is similar to the results obtained using the unconditional prior but
the conditional prior puts more mass on larger values of the AUC hence the wider plausible region
with lower posterior content. Moreover, copt( fND, fD) = 2 with Plcopt( fND, fD) = {1, 2} with
posterior probability content approximately 1.00 (actually 0.99999) which reflects virtual certainty
that the true optimal value is in {1, 2}.

3.3. Binormal Diagnostic

Suppose now that X is a continuous diagnostic variable and it is assumed that the
distributions FD and FND are normal distributions. The assumption of normality should
be checked by an appropriate test and it will be assumed here that this has been carried
out and normality was not rejected. While the normality assumption may seem somewhat
unrealistic, many aspects of the analysis can be expressed in closed form and this allows
for a deeper understanding of ROC analyses more generally.
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With Φ denoting the N(0, 1) cdf, then FNR(c) = Φ((c− µD)/σD), FPR(c) = 1 −
Φ((c− µND)/σND) so c = µND + σNDΦ−1(1− (1− FND(c))) and

AUC =
∫ ∞

−∞
Φ
(

µD − µND
σD

+
σND
σD

z
)

ϕ(z) dz.

For given (µD, σD, µND, σND) and c, all these values can be computed using Φ except the
AUC and for that quadrature or simulation via generating z ∼ N(0, 1) is required.

The following results hold for the AUC with the proofs in the Appendix A.

Lemma 1. AUC > 1/2 iff µD > µND and when µD > µND, the AUC is a strictly increasing
function of σND/σD.

From Lemma 1 it is clear that it makes sense to restrict the parameterization so that
µD > µND but we need to test the hypothesis H0 : µD > µND first. Clearly Error(c) =
wFNR(c) + (1− w)FPR(c)→ 1− w as c→ −∞ and Error(c)→ w as c→ ∞ so, if Error(c)
does not achieve a minimum at a finite value of c, then the optimal cut-off is infinite and the
optimal error is min{w, 1− w}. It is possible to give conditions under which a finite cutoff
exists and express copt in closed form when the parameters and the relevant prevalence w
are all known.

Lemma 2. (i) When σ2
D = σ2

ND = σ2, then a finite optimal cut-off minimizing Error(c) exists iff
µD > µND and in that case

copt =
µD + µND

2
+

σ2

µD − µND
log
(

1− w
w

)
. (5)

(ii) When σ2
D 6= σ2

ND, then a finite optimal cut-off exists iff

(µD − µND)
2 + 2

(
σ2

D − σ2
ND

)
log
(

1− w
w

σD
σND

)
≥ 0 (6)

and in that case

copt =
σ2

NDµD − σ2
DµND

σ2
ND − σ2

D
− σNDσD

σ2
ND − σ2

D

{
(µD − µND)

2+

2
(
σ2

D − σ2
ND
)

log
(

1−w
w

σD
σND

) }1/2

. (7)

Note that when w = 1/2, then in (i) copt = (µD + µND)/2 as one might expect. In the case
of unequal variances there is an additional restriction beyond µD ≥ µND required to hold
if the diagnostic is to serve as a reasonable classifier. The following shows that these can be
combined in a natural way.

Corollary 1. The restrictions µD ≥ µND and (6) hold iff

µD − µND −
{

max
[

0,−2
(

σ2
D − σ2

ND

)
log
(

1− w
w

σD
σND

)]}1/2
≥ 0. (8)

So, if one is unwilling to assume constant variance, then the hypothesis H0 : (8) holds,
needs to be assessed. There is some importance to these results as they demonstrate that a
finite optimal cutoff may in fact not exist at least when considering both types of error. For
example, when µND = 1, µD = 2, σD = 1, σND = 1.5, then for any w ≤ 0.30885, the optimal
cutoff is copt = ∞ with Error(∞) = w. When copt is infinite, then one may need to consider
various cutoffs c and find one that is acceptable at least with respect to some of the error
characteristics FNR(c), FPR(c), Error(c), FDR(c) and FNDR(c).

Consider now examples with equal and unequal variances.
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Example 3. Binormal with σ2
ND = σ2

D.
There may be reasons why the assumption of equal variance is believed to hold but this needs

to be assessed and evidence in favor found. If evidence against the assumption is found, then the
approach of Example 4 can be used. A possible prior is given by π1(µND, σ2)π2(µD | σ2) where

µND | σ2 ∼ N(µ0, τ2
0 σ2), µD | σ2 ∼ N(µ0, τ2

0 σ2), 1/σ2 ∼ gamma(λ1, λ2)

which is a conjugate prior. The hyperparameters to be elicited are (µ0, τ2
0 , λ1, λ2). Consider first

eliciting the prior for (µND, σ2). For this an interval (m1, m2) is specified such that is it believed
that µND ∈ (m1, m2) with virtual certainty (say with probability γ = 0.99). Then putting
µ0 = (m1 + m2)/2 implies

γ ≤ Φ((m2 − µ0)/τ0σ)−Φ((m1 − µ0)/τ0σ) = 2Φ((m2 −m1)/2τ0σ)− 1

which implies σ ≤ (m2 − m1)/2τ0z(1+γ)/2 where z(1+γ)/2 = Φ−1((1 + γ)/2). The interval
µND ± σz(1+γ)/2 will contain an observation from FND with virtual certainty and let (l0, u0) be
lower and upper bounds on the half-length of this interval so l0/z(1+γ)/2 ≤ σ ≤ u0/z(1+γ)/2
with virtual certainty. This implies τ0 = (m2 − m1)/2u0. This leaves specifying the hyperpa-
rameters (λ1, λ2), and letting G(·, λ1, λ2) denote the cdf of the gamma(λ1, λ2) distribution, then
(λ1, λ2) satisfying

G(z2
(1+γ)/2/l2

0 , λ1, λ2) = (1 + γ)/2, G(z2
(1+γ)/2/u2

0, λ1, λ2) = (1− γ)/2 (9)

will give the specified γ coverage. Noting that G(x, λ1, λ2) = G(λ2x, λ1, 1), first specify λ1 and
solve the first equation in (9) for λ2 and then solve the second equation in (9) for λ1 and continue
this iteration until the probability content of (l0/z(1+γ)/2, u0/z(1+γ)/2) is sufficiently close to γ.
Using s2

D = ||xD − x̄D1||2, s2
ND = ||xND − x̄ND1||2, the posterior is then

µND | σ2, xND ∼ N
(
(nND + 1/τ2

0 )
−1(nND x̄ND + µ0/τ2

0 ), (nND + 1/τ2
0 )
−1σ2

)
,

µD | σ2, xD ∼ N
(
(nD + 1/τ2

0 )
−1(nD x̄D + µ0/τ2

0 ), (nD + 1/τ2
0 )
−1σ2

)
,

1/σ2 | (xND, xD) ∼ gamma(λ1 + (nD + nND)/2, λx)

where

λx = λ2 + (s2
D + s2

ND)/2 + (nD + 1/τ2
0 )
−1(nD/τ2

0 )(x̄D − µ0)
2/2 +

(nND + 1/τ2
0 )
−1(nND/τ2

0 )(x̄ND − µ0)
2/2.

Suppose the following values of the mss were obtained based on samples of nND = 25 from
FND = N(0, 1) and nD = 20 from FD = N(1, 1)

(x̄ND, s2
ND) = (−0.072, 19.638), (x̄D, s2

D) = (0.976, 16.778).

So the true values of the parameters are µND = 0, µD = 1, σ2 = 1. In this case AUC =∫ ∞
−∞ Φ(1 + z)ϕ(z) dz = 0.760. Supposing that the relevant prevalence is w = 0.4, copt = 0.5 +

log(0.6/0.4) = 0.905, FNR(copt) = Φ(0.905− 1) = 0.46, FPR(copt) = 1−Φ(0.905) = 0.18,
Error(copt) = 0.30, FDR(copt) = 0.34, FNDR(copt) = 0.27.

For the prior elicitation, suppose it is known with virtual certainty that both means lie in
(−5, 5) and (l0, u0) = (1, 10) so we take µ0 = (−5 + 5)/2 = 0, τ0 = (m2 −m1)/2u0 = 0.5
and the iterative process leads to (λ1, λ2) = (1.787, 1.056). For inference about copt it is necessary
to specify a prior distribution for the prevalence w. This can range from w being completely known
to being completely unknown whence a uniform(0,1) (beta(1, 1)) would be appropriate. Following
the developments of Section 3.1, suppose it is known that w ∈ [l, u] = [0.2, 0.6] with prior
probability γ = 0.99, so in this case ξw = (l + u)/2 = 0.4 and τw = 35.89725 and the prior is
w ∼ beta(15.3589, 22.53835).
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The first inference step is to assess the hypothesis H0 : AUC > 1/2 which is equivalent to H0 :
µND < µD by computing the prior and posterior probabilities of this event to obtain the relative
belief ratio. The prior probability of H0 given σ2 is∫ ∞

−∞
Φ((µD − µ0)/τ0σ)(τ0σ)−1 ϕ((µD − µ0)/τ0σ) dµD = 1/2

and averaging this quantity over the prior for σ2 we get 1/2. The posterior probability of this event
can be easily obtained via simulating from the joint posterior. When this is done in the specific
numerical example, the relative belief ratio of this event is 2.011 with posterior content 0.999 so
there is strong evidence that H0 : AUC > 1/2 is true.

If evidence is found against H0, then this would indicate a poor diagnostic. If evidence is found
in favor, then we can proceed conditionally given that H0 holds and so condition the joint prior and
joint posterior on this event being true when making inferences about AUC, copt, etc. So for the
prior it is necessary to generate 1/σ2 ∼ gamma(α0, β0) and then generate (µD, µND) from the
joint conditional prior given σ2 and that µD > µND. Denoting the conditional priors given σ2 by
πD(µD | σ2) and πND(µND | σ2), we see that this joint conditional prior is proportional to

πND(µND | σ2)πD(µD | σ2) = ΠND(µND < µD | µD, σ2)
πND(µND)

ΠND(µND < µD | σ2)
πD(µD | σ2).

While generally it is not possible to generate efficiently from this distribution we can use importance
sampling to calculate any expectations by generating µD ∼ µD | σ2 ∼ N(µ0, τ2

0 σ2), µND ∼
N(µ0, τ2

0 σ2 | (−∞, µD]) with ΠND(µND < µD | µD, σ2) = Φ((µD − µ0)/τ0σ) serving as the
importance sampling weight and where N(µ0, τ2

0 σ2 | (−∞, µD]) denotes the N(µ0, τ2
0 σ2) distribu-

tion conditioned to (−∞, µD] with density

Φ−1((µD − µ0)/τ0σ)(2πτ2
0 σ2)−1/2 ϕ((µND − µ0)/τ0σ)

for µND ≤ µD and 0 otherwise. Generating from this distribution via inversion is easy since
the cdf is Φ((µND − µ0)/τ0σ)/Φ((µD − µ0)/τ0σ). Note that, if we take the posterior from the
unconditioned prior and condition that, we will get the same conditioned posterior as when we use
the conditioned prior to obtain the posterior. This implies that in the joint posterior for (µND, µD, σ2)
it is only necessary to adjust the posterior for µND as was done with the prior and this is also easy
to generate from. Note that Lemma 2 (i) implies that it is necessary to use the conditional prior and
posterior to guarantee that copt exists finitely.

Since H0 was accepted, the conditional sampling was implemented and the estimate of the
AUC is 0.795 with plausible region [0.670, 0.880] which has posterior content 0.856. So the estimate
is close to the true value but there is substantial uncertainty. Figure 4 is a plot of the conditioned
prior, the conditioned posterior and relative belief ratio for this data.

With the specified prior for w, the posterior is beta (35.3589, 47.53835) which leads to estimate
0.444 for w with plausible interval (0.374, 0.516) having posterior probability content 0.782.
Using this prior and posterior for w and the conditioned prior and posterior for (µD, µND, σ2), we
proceed to an inference about copt and the error characteristics associated with this classification.
A computational problem arises when obtaining the prior and posterior distributions of copt as
it is clear from (5) that these distributions can be extremely long-tailed. As such, we transform
to cmod = 0.5 + arctan(copt)/π ∈ [0, 1] (the Cauchy cdf), obtain the estimate cmod(d) where
d = (nND, x̄ND, s2

ND, nD, x̄D, s2
D) and its plausible region and then, applying the inverse transform,

obtain copt(d) = tan(π(cmod(d) − 0.5)) and its plausible region. It is notable that relative
belief inferences are invariant under 1-1 smooth transformations, so it does not matter which
parameterization is used, but it is much easier computationally to work with a bounded quantity.
Furthermore, if a shorter tailed cdf is used rather than a Cauchy, e.g., a N(0, 1) cdf, then errors
can arise due to extreme negative values being always transformed to 0 and very extreme positive
values always transformed to 1. Figure 5 is a plot of the prior density, posterior density and
relative belief ratio of cmod. For these data copt(d) = 0.715 with plausible interval (0.316, 1.228)
having posterior content 0.860. Large Monte Carlo samples were used to get smooth estimates of
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the densities and relative belief ratio but these only required a few minutes of computer time on a
desktop. The estimated error characteristics at this value of copt are as follows: FNR(0.715) = 0.41,
FPR(0.715) = 0.22, Error(0.715) = 0.27, FDR(0.715) = 0.30, FNDR(0.715) = 0.24 which are
close to the true values.
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Figure 4. The conditioned prior (- -) and posterior (–) densities (left panel) and the relative belief ratio
(right panel) of the AUC in Example 3.
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Figure 5. Plots of the prior (- -), posterior (left panel) and relative belief ratio (right panel) of copt in
Example 3.

Example 4. Binormal with σ2
ND 6= σ2

D.
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In this case the prior is given by π1(µND, σ2
ND)π2(µD, σ2

D) where

µND | σ2
ND ∼ N(µ0, τ2

0 σ2
ND), 1/σ2

ND ∼ gamma(λ1, λ2)

µD | σ2
D ∼ N(µ0, τ2

0 σ2
D), 1/σ2

D ∼ gamma(λ1, λ2). (10)

Although this specifies the same prior for the two populations, this is easily modified to use dif-
ferent priors and, in any case, the posteriors are different. Again it is necessary to check that the
AUC > 1/2 but also to check that copt exists using the full posterior based on this prior and for
this we have the hypothesis H0 given by Corollary 1. If evidence in favor of H0 is found, the prior is
replaced by the conditional prior given this event for inference about copt. This can be implemented
via importance sampling as was done in Example 3 and similarly for the posterior.

Using the same data and hyperparameters as in Example 3 the relative belief ratio of H0 is 3.748
with posterior content 0.828 so there is reasonably strong evidence in favor of H0. Estimating the
value of the AUC is then based on conditioning on H0 being true. Using the conditional prior given
that H0 is true, the relative belief estimate of the AUC is 0.793 with plausible interval (0.683, 0.857)
with posterior content 0.839. The optimal cutoff is estimated as copt(d) = 0.739 with plausible
interval (0.316, 1.228) having posterior content 0.875. Figure 6 is a plot of the prior density, posterior
density and relative belief ratio of cmod. The estimates of the error characteristics at copt(d) are as
follows: FNR(0.739) = 0.43, FPR(0.739) = 0.19, Error(0.739) = 0.28, FDR(0.739) = 0.28,
FNDR(0.624) = 0.264.

It is notable that these inferences are very similar to those in Example 3. It is also noted that
the sample sizes are not big and so the only situation where it might be expected that the inferences
will be quite different between the two analyses is when the variances are substantially different.
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Figure 6. Plots of the prior (- -), posterior (left panel) and relative belief ratio (right panel) of copt in
Example 4.

3.4. Nonparametric Bayes Model

Suppose that X is a continuous variable, of course still measured to some finite
accuracy, and available information is such that no particular finite dimensional family of
distributions is considered feasible. The situation is considered where a normal distribution
N(µ, σ2), perhaps after transforming the data, is considered as a possible base distribution
for X but we want to allow for deviation from this form. Alternative choices can also be
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made for the base distribution. The statistical model is then to assume that the xND and
xD are generated as samples from FND and FD, where these are independent values from a
DP(a, H) (Dirichlet) process with base H = N(µ, σ2) for some (µ, σ2) and concentration
parameter a. Actually, since it is difficult to argue for some particular choice of (µ, σ2), it
is supposed that (µ, σ2) also has a prior π(µ, σ2). The prior on (FND, FD) is then specified
hierarchically as a mixture Dirichlet process,

(µND, σ2
ND) ∼ π independent of (µD, σ2

D) ∼ π,

FND | (µND, σ2
ND) ∼ DP(aND, N(µND, σ2

ND)) independent of

FD | (µD, σ2
D) ∼ DP(aD, N(µD, σ2

D)).

To complete the prior it is necessary to specify π and the concentration parameters aND
and aD. For π the prior is taken to be a normal distribution elicited as discussed in
Section 3.3 although other choices are possible. For eliciting the concentration parameters,
consider how strongly it is believed that normality holds and for convenience suppose
a = aND = aD. If F ∼ DP(a, H) with H a probability measure, then E(F(A)) = H(A)
and Var(F(A)) = H(A)(1 − H(A))/(1 + a). When F a random measure from P, then
supA P(|F(A)− H(A)| ≥ ε) = supA{1− P(max(0, H(A)− ε) < F(A) < min(1, H(A) +
ε))} which, when P ∼ DP(a, H), equals

sup
r∈[0,1]

{1− B([max(0, r− ε), min(1, r + ε)], ar, a(1− r))} (11)

where B(·, β1, β2) denotes the beta(β1, β2) measure. This upper bound on the probability
that the random F differs from H by at least ε on an event can be made as small as desirable
by choosing a large enough. For example, if ε = 0.25 and it is required that this upper
bound be less than 0.1, then this satisfied when a ≥ 9.8 and if instead ε = 0.1, then a ≥ 66.8
is necessary. Note that, since this bound holds for every continuous probability measure
H, it also holds when H is random, as considered here. So a is controlling how close it is
believed that the true distribution is to H. Alternative methods for eliciting a can be found
in [24,25].

Generating (FND, FD) from the prior for given (a, H) can only be done approxi-
mately and the approach of [26] is adopted. For this, integer n∗ is specified and measure
Pn∗ = ∑n∗

i=1 pi,n∗ I{ci} is generated where (p1,n∗ , . . . , pn∗ ,n∗) ∼ Dirichlet(a/n∗, . . . , .a/n∗) in-

dependent of c1, . . . , cn∗
iid∼ H, since Pn∗

w→ DP(a, H) as n∗ → ∞. So to carry out a priori
calculations proceed as follows. Generate

(pND1,n∗ , . . . , pNDn∗ ,n∗) ∼ Dirichlet((a/n∗)1n∗), (µND, σ2
ND) ∼ π,

(cND1, . . . , cNDn∗) | (µND, σ2
ND)

i.i.d.∼ N(µND, σ2
ND), w ∼ beta(α1w, α2w)

and similarly for (pD1,n∗ , . . . , pDn∗ ,n∗), (µD, σ2
D), and (cD1, . . . , cDn∗). Then FND,n∗(c)

= ∑{i:cNDi≤c} pNDin∗ is the random cdf at c ∈ R1 and similarly for FD,n∗ , so AUC =

∑n∗
i=1(1− FD,n∗(cNDi))pNDi,n∗ is a value from the prior distribution of the AUC. This is

done repeatedly to get the prior distribution of the AUC as in our previous discussions and
we proceed similarly for the other quantities of interest.

Now FND | xND, (µND, σ2
ND, µD, σ2

D) ∼ DP(a + nND, HND) independent of FD | xD,
(µND, σ2

ND, µD, σ2
D) ∼ DP(a + nD, HD) with HND(c) = aΦ((c− µND)/σND)/(a + nND) +

nND F̂ND(c)/(a + nND) and F̂ND(c) = ∑nND
i=1 I(−∞,c](xNDi)/nND is the empirical cdf (ecdf)

based on xND and similarly for HD. The posteriors of (µND, σ2
ND) and (µD, σ2

D) are obtained
via results in [27,28]. The posterior density of (µND, σ2

ND) given xND is proportional to

π(µND, σ2
ND)∏ñND

i=1 σ−1
ND ϕ((x̃NDi − µND)/µND)
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where ñND is the number of unique values in xND and {x̃ND1, . . . , x̃NDñND} is the set
of unique values with mean x̃ND and sum of squared deviations s̃2

ND. From this it is
immediate that

µND | σ2
ND, xND ∼ N

(
(ñND + 1/τ2

0 )
−1(ñND x̃ND + µ0/τ2

0 ), (ñNDND + 1/τ2
0 )
−1σ2

ND

)
,

1/σ2
ND | xND ∼ gamma(α0 + ñND/2, λ̃xND )

where λ̃xND = λ0 + s̃2
ND/2 + (ñND + 1/τ2

0 )
−1(ñND/τ2

0 )(x̃ND − µ0)
2/2. A similar result

holds for the posterior of (µD, σ2
D).

To approximately generate from the full posterior specify some n∗∗, put
pa,nND = a/(a + nND), qa,nND = 1− pa,nND and generate

(pND1,n∗∗ , . . . , pNDn∗∗ ,n∗∗) | xND ∼ Dirichlet(((a + nND)/n∗∗)1n∗∗),

(µND, σ2
ND) | xND ∼ π(· | xND),

(cND1, . . . , cNDn∗∗) | (µND, σ2
ND), xND

i.i.d.∼ pa,nND N(µND, σ2
ND) + qa,nND F̂ND,

w | xND ∼ beta(α1w + nD, α2w + nND)

and similarly for (pD1,n∗∗ , . . . , pDn∗∗ ,n∗∗), (µD, σ2
D) and (cD1, . . . , cDn∗∗). If the data does not

comprise a sample from the full population, then the posterior for w is replaced by its prior.
There is an issue that arises when making inference about copt, namely, the distri-

butions for copt that arises from this approach can be very irregular and particularly the
posterior distribution. In part this is due to the discreteness of the posterior distributions of
FND and FD . This does not affect the prior distribution because the points on which the
generated distributions are concentrated vary quite continuously among the realizations
and this leads to a relatively smooth prior density for copt. For the posterior, however, the
sampling from the ecdf leads to a very irregular, multimodal density for copt. So some
smoothing is necessary in this case.

Consider now applying such an analysis to the dataset of Example 3, where we
know the true values of the quantities of interest and then to a dataset concerned with the
COVID-19 epidemic.

Example 5. Binormal data (Examples 3 and 4)
The data used in Example 3 are now analyzed but using the methods of this section. The prior

on (µND, σ2
ND), (µD, σ2

D) and w is taken to be the same as that used in Example 4 so the variances
are not assumed to be the same. The value ε = 0.25 is used and requiring (11) to be less than
0.018 leads to a = 20. So the true distributions are allowed to differ quite substantially from a
normal distribution. Testing the hypothesis H0 : AUC > 1/2 led to the relative belief ratio 1.992
(maximum possible value is 2) and the strength of the evidence is 0.997 so there is strong evidence
that H0 is true. The AUC, based on the prior conditioned on H0 being true, is estimated to be
equal to 0.839 with plausible interval (0.691, 0.929) having posterior content 0.814. For these data
copt(d) = 0.850 with plausible interval (0.45, 1.75) having posterior content 0.835. The true value
of the AUC is 0.760 and the true value of copt is 0.905 so these inferences are certainly reasonable
although, as one might expect, when the length of the plausible intervals are taken into account, they
are not as accurate as those when binormality is assumed as this is correct for this data. So the DP
approach worked here although the posterior density for copt was quite multimodal and required
some smoothing (averaging 3 consecutive values).

Example 6. COVID-19 data.
A dataset was downloaded from https://github.com/YasinKhc/Covid-19 containing data on

3397 individuals diagnosed with COVID-19 and includes whether or not the patient survived the
disease, their gender and their age. There are 1136 complete cases on these variables of which 646
are male, with 52 having died, and 490 are female, with 25 having died. Our interest is in the
use of a patient’s age X to predict whether or not they will survive. More detail on this dataset

https://github.com/YasinKhc/Covid-19
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can be found in [29]. The goal is to determine a cutoff age so that extra medical attention can be
paid to patients beyond that age. Furthermore, it is desirable to see whether or not gender leads to
differences so separate analyses can be carried out by gender. So, for example, in the male group
ND refers to those males with COVID-19 that will not die and D refers to the population that will.
Looking at histograms of the data, it is quite clear that binormality is not a suitable assumption and
no transformation of the age variable seems to be available to make a normality assumption more
suitable. Table 3 gives summary statistics for the subgroups. Of some note is that condition (8),
when using standard estimates for population quantities such as w = 52/646 = 0.08 for Males
and w = 25/490 = 0.05 for females, is not satisfied which suggests that in a binormal analysis no
finite optimal cutoff exists.

Table 3. Summary statistics for the data in Example 6.

Group Number Mean std. dev. Min Max

ND males 594 48.81 17.72 0.50 85.00
D males 52 68.46 13.66 36.00 89.00

ND females 465 48.69 18.73 2.00 96.00
D females 25 77.36 12.12 48.00 95.00

For the prior, it is assumed that (µND, σ2
ND) and (µD, σ2

D) are independent values from the same
prior distribution as in (10). For the prior elicitation, as discussed in Example 3, suppose it is known
with virtual certainty that both means lie in (20, 70) and (l0, u0) = (20, 50) so we take µ0 = 45,
τ0 = (m2 − m1)/2u0 = 0.75 and the iterative process leads to (λ1, λ2) = (8.545, 1080.596)
which implies a prior on the σ’s with mode at 10.932 and the interval (7.764, 19.411) containing
0.99 of the prior probability. Here the relevant prevalence refers to the proportion of COVID-19
patients that will die and it is supposed that w ∈ [0.00, 0.15] with virtual certainty which implies
w ∼ beta(9.81, 109.66). So the prior probability that someone with COVID-19 will die is assumed
to be less than 15% with virtual certainty. Since normality is not an appropriate assumption for
the distribution of X, the choice ε = 0.25 with the upper bound (11) equal to 0.1 seems reasonable
and so a = 9.8. This specifies the prior that is used for the analysis with both genders and it is to be
noted that it is not highly informative.

For males the hypothesis AUC > 1/2 is assessed and RB = 1.991 (maximum value 2) with
strength effectively equal to 1.00 was obtained, so there is extremely strong evidence that this is
true. The unconditional estimate of the AUC is 0.808 with plausible region [0.698, 0.888] having
posterior content 0.959, so there is a fair bit of uncertainty concerning the true value. For the
conditional analysis, given that AUC > 1/2, the estimate of the AUC is 0.806 with plausible region
[0.731, 0.861] having posterior content 0.932. So the conditional analysis gives a similar estimate
for the AUC with a small increase in accuracy. In either case it seems that the AUC is indicating
that age should be a reasonable diagnostic. Note that the standard nonparametric estimate of the
AUC is 0.810 so the two approaches agree here. For females the hypothesis AUC > 1/2 is assessed
and RB = 1.994 with strength effectively equal to 1 was obtained, so there is extremely strong
evidence that this is true. The unconditional estimate of the AUC is 0.873 with plausible region
(0.742, 0.948) having posterior content 0.968. For the conditional analysis, given that AUC > 1/2,
the estimate of the AUC is 0.874 with plausible region (0.791, 0.936) having posterior content 0.956.
The traditional estimate of the AUC is 0.902 so the two approaches are again in close agreement.

Inferences for copt are more problematical in both genders. Consider the male data. The data
set is very discrete as there are many repeats and the approach samples from the ecdf about 84% of
the time for the males that died and 98% of the time for the males that did not die. The result is a
plausible region that is not contiguous even with smoothing. Without smoothing the estimate is
copt(d) = 85.5 for males, which is a very dominant peak for the relative belief ratio. The plausible
region contains 0.928 of the posterior probability and, although it is not a contiguous interval, the
subinterval [85.2, 85.8] is a 0.58-credible interval for copt that is in agreement with the evidence.
If we make the data continuous by adding a uniform(0,1) random error to each age in the data set,
then copt(d) = 86.1 and plausible interval [75.9, 86.7] with posterior content 0.968 is obtained.
These cutoffs are both greater than the maximum value in the ND data, so there is ample protection
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against false positives but it is undoubtedly false negatives that are of most concern in this context.
If instead the FNDR is used as the error criterion to minimize, then copt(d) = 35.7 and plausible
interval [26.1, 35.7] with posterior content 0.826 is obtained and so in this case there will be too
many false positives. So a useful optimal cutoff incorporating the relevant prevalence does not seem
to exist with these data.

If the relevant prevalence is ignored and w0FNR+(1− w0)FPR is used for some fixed weight
w0 to determine copt(d), then more reasonable values are obtained. Table 4 gives the estimates for
various w0 values. With w0 = 0.5 (corresponding to using Youden’s index) copt(d) = 65.7 while
if w0 = 0.7, then copt(d) = 56.7. When w0 is too small or too large then the value of copt(d) is
not useful. While these estimates do not depend on the relevant prevalence, the error characteristics
that do depend on this prevalence (as expressed via its prior and posterior distributions) can still be
quoted and a decision made as to whether or not to use the diagnostic. Table 5 contains the estimates
of the error characteristics at copt(d) for various values of w0 where these are determined using the
prior and posterior on the relevant prevalence w. Note that these estimates are determined as the
values that maximize the corresponding relative belief ratios and take into account the posterior of
w. So, for example, the estimate of the Error is not the convex combination of the estimates of FNR
and FPR based on the w0 weight. Another approach is to simply set the cutoff Age at a value at a
value c0 and then investigate the error characteristics at that value. For example, with c0 = 60,
then the estimated values are given by FNR(c0) = 0.238, FPR(c0) = 0.308, Error(c0) = 0.328,
FDR(c0) = 0.818 and FNDR(c0) = 0.028.

Similar results are obtained for the cutoff with female data although with different values.
Overall, Age by itself does not seem to be useful classifier although that is a decision for medical
practitioners. Perhaps it is more important to treat those who stand a significant chance of dying
more extensively and not worry too much that some treatments are not necessary. The clear message
from this data, however, is that a relatively high AUC does not immediately imply that a diagnostic
is useful and the relevant prevalence is a key aspect of this determination.

Table 4. Weighted error w0FNR+(1− w0)FPR determining copt(d) for Males in Example 6.

w0 = Weight of FNR copt(d) Plausible Range (post. prob.)

0.1 85.5 75.3–118.5 (0.945)
0.3 65.1 64.5–85.5 (0.868)
0.5 65.1 55.5–72.3 (0.939)
0.7 56.7 35.7–58.5 (0.919)
0.9 35.7 33.3–52.5 (0.875)

Table 5. Error characteristics for Males in Example 6 at various weights.

w0 = Weight of FNR FNR FPR Error FDR FNDR

0.1 0.918 0.008 0.008 0.458 0.073
0.3 0.368 0.183 0.213 0.733 0.043
0.5 0.368 0.183 0.213 0.733 0.038
0.7 0.158 0.358 0.363 0.823 0.018
0.9 0.003 0.753 0.688 0.893 0.003

4. Conclusions

ROC analyses represent a significant practical application of statistical methodology.
While previous work has considered such analyses within a Bayesian framework, this has
typically required the specification of loss functions. Losses are not required in the approach
taken here which is entirely based on a natural characterization of statistical evidence via
the principle of evidence and the relative belief ratio. As discussed in Section 2.2 this results
in a number of good properties for the inferences that are not possessed by inferences
derived by other approaches. While the Bayes factor is also a valid measure of evidence,
its usage is far more restricted than the relative belief ratio which can be applied with
any prior, without the need for any modifications, for both hypothesis assessment and
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estimation problems. This paper has demonstrated the application of relative belief to ROC
analyses under a number of model assumptions. In addition, as documented in points
(ii)–(vi) of the Introduction, a number of new results have been developed for ROC analyses
more generally.
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Appendix A

Proof of Lemma 1. Consider
∫ ∞
−∞ Φ(a + bz)ϕ(z) dz as a function of b, so

d
db

∫ ∞

−∞
Φ(a + bz)ϕ(z) dz =

∫ ∞

−∞
zϕ(a + bz)ϕ(z) dz

=
1√

2π
√

1 + b2
exp

(
− a2

2(1 + b2)

) ∫ ∞

−∞
z
√

1 + b2 ϕ(
√

1 + b2(z− (1 + b2)−1ab)) dz

=
1√

2π
√

1 + b2
exp

(
− a2

2(1 + b2)

)
ab

1 + b2 .

When a > 0, then
∫ ∞
−∞ Φ(a + bz)ϕ(z) dz is increasing in b for b > 0, decreasing in b for

b < 0, equals 0 when b = 0 and when a < 0 it is decreasing in b for b > 0, increasing in
b for b < 0. Therefore, when a > 0, b > 0, then

∫ ∞
−∞ Φ(a + bz)ϕ(z) dz ≥ Φ(a) > 1/2 and

when a ≤ 0, b > 0 then
∫ ∞
−∞ Φ(a + bz)ϕ(z) dz ≤ Φ(a) ≤ 1/2.

Proof of Lemma 2. Note that copt will satisfy

d
dc

Error(c) =
w
σD

ϕ

(
c− µD

σD

)
− 1− w

σND
ϕ

(
c− µND

σND

)
= 0

which implies

ϕ

(
c− µD

σD

)
/ϕ

(
c− µND

σND

)
=

1− w
w

σD
σND

(A1)

So copt is a root of the quadratic
(
1/σ2

D − 1/σ2
ND
)
c2− 2(µD/σ2

D − µND/σ2
ND)c+ (µ2

D/σ2
D −

µ2
ND/σ2

ND + 2 log((1− w)σD/wσND)). A single real root exists when σ2
D = σ2

ND = σ2 and
is given by (5).

If σ2
D 6= σ2

ND, then there are two real roots when the discriminant

4(µD/σ2
D − µND/σ2

ND)
2 − 4(1/σ2

D − 1/σ2
ND)(µ

2
D/σ2

D − µ2
ND/σ2

ND +

2 log((1− w)σD/wσND)) ≥ 0

establishing (6). To be a minimum the root c has to satisfy

0 <
d2Errorw(c)

dc2 = − w
σ2

D

(
c− µD

σD

)
ϕ

(
c− µD

σD

)
+

1− w
σ2

ND

(
c− µND

σND

)
ϕ

(
c− µND

σND

)

https://utstat.utoronto.ca/mikevans/software/ROCcodeforexamples.zip
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and by (A1), this holds iff

0 < − w
σ2

D

(
c− µD

σD

)
1− w

w
σD

σND
+

1− w
σ2

ND

(
c− µND

σND

)
=

1− w
σND

{
c− µND

σ2
ND

− c− µD

σ2
D

}

which is true iff (1/σ2
D − 1/σ2

ND)c < µD/σ2
D − µND/σ2

ND. When σ2
D = σ2

ND this is true
iff µD > µND which completes the proof of (i). When σ2

D 6= σ2
ND this, together with the

formula for the roots of a quadratic establishes (7).

Proof of Corollary 1. Suppose µD ≥ µND and (6) hold. Then putting

a = 2
(

σ2
D − σ2

ND

)
log((1− w)w−1σDσ−1

ND)

we have that, for fixed µD, σ2
D, σ2

ND and w, then (µD − µND)
2 + a is a quadratic in µND.

This quadratic has discriminant −4a and so has no real roots whenever a > 0 and, noting a
does not depend on µD, the only restriction on µND is µND ≤ µD. When a ≤ 0 the roots
of the quadratic are given by µD ±

√
−a and so, since the quadratic is negative between

the roots and µD −
√
−a ≤ µD ≤ µD +

√
−a the two restrictions imply µND ≤ µD −

√
−a.

Combining the two cases gives (8).
Now suppose (8) holds. Then µND ≤ µD − {max(0,−a)}1/2 ≤ µD which gives the

first restriction and also µND − µD ≤ −{max(0,−a)}1/2 ≤ 0 which implies (µND − µD)
2

≥ max(0,−a) and so (µND − µD)
2 + a ≥ max(0,−a) + a and by examining the cases a ≤ 0

and a > 0 we conclude that (6) holds.
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