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Abstract: Weakly coupled semiconductor superlattices under DC voltage bias are nonlinear systems
with many degrees of freedom whose nonlinearity is due to sequential tunneling of electrons. They
may exhibit spontaneous chaos at room temperature and act as fast physical random number
generator devices. Here we present a general sequential transport model with different voltage drops
at quantum wells and barriers that includes noise and fluctuations due to the superlattice epitaxial
growth. Excitability and oscillations of the current in superlattices with identical periods are due to
nucleation and motion of charge dipole waves that form at the emitter contact when the current drops
below a critical value. Insertion of wider wells increases superlattice excitability by allowing wave
nucleation at the modified wells and more complex dynamics. Then hyperchaos and different types
of intermittent chaos are possible on extended DC voltage ranges. Intrinsic shot and thermal noises
and external noises produce minor effects on chaotic attractors. However, random disorder due to
growth fluctuations may suppress any regular or chaotic current oscillations. Numerical simulations
show that more than 70% of samples remain chaotic when the standard deviation of their fluctuations
due to epitaxial growth is below 0.024 nm (10% of a single monolayer) whereas for 0.015 nm disorder
suppresses chaos.

Keywords: semiconductor superlattices; nonlinear electron transport; chaos; hyperchaos; intermit-
tency; chaos design; fluctuations; fast true random number generators; secure communications;
chaotic devices

1. Introduction

Semiconductor superlattices (SSLs) are artificial crystals made out of a regular peri-
odic array of layers of two different semiconductors stacked on top of each other [1–5].
These semiconductors have different band gaps and similar lattice constants, so that the
conduction band edge of an infinitely long ideal SSL is a succession of quantum wells
(QWs) and quantum barriers (QBs). When the latter are wide enough, QWs are weakly
coupled and the resulting SSL behaves as an excitable or oscillatory system depending on
its configuration [5]. Excitability and self-sustained oscillations involve the generation of
charge dipole waves inside the SSL and their motion [5]. Devices made out of SSLs include
oscillators [6–9], detectors [10–13], quantum cascade lasers [5,14–19], and all-electronic fast
generators of true random numbers [20,21]. The latter are crucial to secure fast and safe
data storage and transmission [22–24], stochastic modeling [25], and Monte Carlo simula-
tions [26]. The origin of randomness for true random number generators based on SSLs is
quantum partition noise due to electron tunneling [27–29]. However, the unpredictability
of the final number sequence is due to chaotic evolution (described by deterministic model
equations), which amplifies a random quantum seed into a fast process that achieves
generation rates up to hundreds of Gb/s. SSL devices are smaller and more scalable than
similarly fast optoelectronic devices based on random semiconductor lasers [30–34]. In
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these devices, chaotic processes in the laser amplify quantum noise, which is the origin
of randomness. Most of the unpredictability of the final random number sequence rests
on chaotic evolution, which is deterministic. In a sense, random SSLs and semiconductor
lasers work as physical pseudorandom number generators that take a random quantum
seed and expand these small fluctuations at the quantum level into a fast changing physical
process that achieves generation rates up to hundreds of Gb/s.

While early experiments observed chaos in GaAs/AlAs SSLs at ultralow tempera-
tures [35,36], spontaneous current oscillations, quasiperiodic attractors and chaos have been
observed at room temperature in GaAs/Al0.45Ga0.55As SSLs [37]. External noise may in-
duce or enhance chaotic oscillations over a wider voltage bias range provided its amplitude
is sufficiently large and its bandwidth is much smaller than the oscillation frequency [38].
Appropriate external noise of sufficient strength can induce self-sustained oscillations in
an otherwise stationary state (coherence resonance [39–43]) and help detecting a super-
imposed weak periodic signal by stochastic resonance [13,44]; see also Refs. [45–50] for
stochastic resonance.

To achieve a better understanding and control of SSL based random number generators,
we need to improve our theoretical explanations of spontaneous chaos at room temperature.
SSLs are nonlinear systems with many degrees of freedom, whose effective nonlinearity
originates from the well-to-well sequential resonant tunneling process [5,51–54]. Most
sequential tunneling models of electron transport consider ideal SSLs with identical peri-
ods [5,54–56]. Numerical simulations of ideal SSLs have shown that spontaneous chaos
exists on narrow intervals of voltage bias and it is enhanced by noise [38,57,58]. More-
over, short SSLs at room temperature display clear period-doubling cascades to chaos,
which occur on shorter voltage intervals for longer SSLs [59]. Period-doubling routes
to spontaneous chaos at ultralow temperatures were predicted earlier [60,61]. Random
imperfections strongly affect spontaneous chaos in SSLs [59]. Overall, spontaneous chaos
predicted by numerical simulations of ideal SSLs exists on shorter voltage interval than
reported in experiments.

More recently, we have put forward the idea that a systematic modification of SSL
design produces more robust spontaneous chaos at room temperature [21]. The idea is to
design appropriate imperfections in SSLs by inserting two identical and wider QWs in the SSL.
In ideal SSLs, self-sustained current oscillations are due to repeated generation of dipole
waves at the emitter contact and motion through the SSL to the collector contact. We show
that inserting one wider QW may trigger dipole waves in it. In turn, complex dynamics
arises out of the competition of two identical wider QWs as nucleation sites of dipole
waves. We find hyperchaos, chaos with more than one positive Lyapunov exponent, and
intermittent chaos due to random triggering of dipole waves. The connection of Lyapunov
exponents to the Kolmogorov–Sinai metric entropy can be found in Refs. [62,63]; see also
Ref. [64] for its generalization and use in statistical analysis of time series. We also study the
effect of imperfections and noise on this design of chaotic SSLs and show that it is robust.

The rest of the paper is organized as follows. We describe the deterministic version
of our microscopic sequential model of ideal SSL electron transport in Section 2 and
Appendix A. Since we want our model to be realistic, we use a detailed model with different
effective masses and voltage drops at wells and barriers [65–67]. Section 3 discusses
the I − V current–voltage characteristic curve of an ideal SSL based on this model. For
appropriate values of the emitter contact conductivity and other parameters, self-sustained
oscillations of the current appear for a certain interval of bias voltages. In Section 4, we
study the changes on the model equations due to having imperfect barriers and wells
with varying widths and to internal and external noise. In Section 5, we include a single
wider well or two wider wells in a SSL and study the resulting changes on the SSL current–
voltage characteristics by numerical simulations of the deterministic equations. Details
of hyperchaos and intermittent chaos are given in Section 6. For designing chaotic SSLs,
it is important to study the influence of noise and randomness in the obtained enhanced
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spontaneous chaos. This is done in Section 7. The last section contains the summary and
conclusions of this work.

2. Microscopic Sequential Tunneling Model

Commonly used models of electron transport in SSLs based on sequential tunneling
are reviewed in Refs. [5,54–56,58]. Experimental confirmation in weakly coupled SSLs is
abundantly documented in Ref. [5]. In sequential resonant tunneling models, each SSL
period is described by average values of the electric field and electron density. The effective
masses and permittivities of the different materials comprising the SSL are replaced by
average values. The resulting models are discrete in space. The importance of using
spatially discrete equations was recognized in early models, which were motivated by the
formation of stationary electric field domains in SSLs [68–72]. In this paper, we treat the
barriers and wells as separate entities [67,73], seeking a less symmetric representation of
the SSL that may give a more complete and realistic description of electron transport and
spontaneous chaos. The resulting model is more complete than those considered in these
previous works [67,73].

2.1. Rate Equations for Subband Populations

The main charge transport mechanism in a weakly coupled SL is sequential resonant
tunneling. We assume that the intrasubband scattering time is much shorter than the
intersubband scattering time which, in turn, is much shorter than the interwell tunneling
time across barriers. Typically, the time scale for carrier thermalization within a subband
is 0.1 ps, the carriers reach thermal equilibrium with the lattice in times smaller than
100 ps, the tunneling time is about 500 ps and the time scale associated with self-sustained
oscillations of the current is longer than 10 ns [72]. In processes varying on the latter scale,
there is a local equilibrium Fermi–Dirac distribution at each subband ν = 1, . . . , n at the
lattice temperature (for the numerical parameters used in numerical simulations, n = 3)
with 2D electron densities n(ν)

i related to their chemical potentials µ
(ν)
i by [54]

n(ν)
i =

mWkBT
πh̄2

∫ ∞

0
ACν(ε) ln

(
1 + e(µ

(ν)
i −ε)/kBT

)
dε. (1)

Here i = 1, . . . , N, where N is the number of SL periods. For the time being, we assume
that all SL periods dB + dW (dB and dW are the widths of barrier and wells, respectively)
are identical (otherwise we have to label the widths of barriers and wells with indices) and
that the electron temperature at each subband ν of energy ECν (measured from the bottom
of the ith well) equals the lattice temperature T. mW and kB are the electron effective mass
at the wells and the Boltzmann constant, respectively. Scattering is included in our model
by means of Lorentzian functions:

ACν(ε) =
γν

π

1
(ε− ECν)2 + γ2

ν
(2)

(for the ith well). The Lorentzian half-width is γν = h̄/τsc, where τsc is the lifetime
associated to any scattering process dominant in the sample (interface roughness, impurity
scattering, phonon scattering. . . ) [73,74]. Of course this phenomenological treatment of
scattering could be improved by calculating microscopically the self-energy associated
to one of the scattering processes mentioned above [75,76], or even exchange-correlation
effects (which affect the electron charge distribution in a self-consistent way). However
restricting ourselves to a single scattering mechanism would result in a loss of generality
and simplicity of the model. The electronic states of a SSL with infinite lateral extension
have wave functions eiqx+ik⊥ ·x⊥uq(x) (a plane wave on the lateral directions x⊥ = (y, z)
times a Bloch state on the direction of the superlattice vertical growth; uq(x) is a periodic
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function of x with the SSL period). The energy minibands ε(q) corresponding to the
previous Bloch states solve a 1D Kronig–Penney model [77,78]

cos ql = cos kdW cosh αdB −
1
2

(
1
ξ
− ξ

)
sin kdW sinh αdB, (3a)

k =

√
2mWε

h̄
, α =

√
2mB(eVB − ε)

h̄
, ξ =

mWα

mBk
=

√
mW
mB

(
eVB

ε
− 1
)

. (3b)

In the limit as αdB → ∞, Equation (3a) produces the subbands ε = ECν appearing in
Equation (2):

cos kdW −
1
2

(
1
ξ
− ξ

)
sin kdW = 0, (4)

where k is given by Equation (3b). Using the symmetry of the quantum well [77], Equation (4)
factorizes into two equations corresponding to even and odd wave functions, respectively:

cos
kdW

2
− 1

ξ
sin

kdW
2

= 0, cos
kdW

2
+ ξ sin

kdW
2

= 0.

We shall write the rate equations for the electron densities and n = 3 to simplify the
number of tunneling channels:

ṅ(1)
i =

1
e
[J1,i−1→1,i − J1,i→1,i+1 − J1,i→2,i+1 − . . .− J1,i→n,i+1] +

n(2)
i

τ21
+ . . . +

n(n)
i

τn1
, (5a)

ṅ(2)
i =

1
e
[J1,i−1→2,i − J2,i→3,i+1]−

n(2)
i

τ21
, (5b)

ṅ(3)
i =

1
e
[J1,i−1→n,i + J2,i−1→3,i+1]−

n(3)
i

τ31
, (5c)

where τ21, τ31 are the intersubband scattering times within a quantum well, −e < 0 is
the charge of the electron, and Jν,i→ν′ ,i+1 is the current density from subband ν of QW
i to subband ν′ of QW i + 1. The current densities may be approximately calculated by
means of the Transfer Hamiltonian method [79–85]. It is important to note that the current
densities are functions of the local electric field that exhibit several peaks when all the
electron densities equal the doping density [5,54]. See details in Appendix A; here we only
quote the results [54,67].

2.2. Tunneling Current

Let J1,i→ν,i+1 be the tunneling current through the ith barrier from the first subband of
QW i to the νth subband of QW i + 1. As explained in Appendix A, we have [54,58]

J1,i→ν,i+1 =
eh̄kBT
2mB

∫ ∞

0
AC1(ε) ACν

(
ε + eVi +

e
2
(Vwi + Vwi+1)

)
Bi−1,i(ε)

×Bi,i+1(ε) Ti(ε) ln

 1 + e
µ
(1)
i −ε

kBT

1 + e
µ
(ν)
i+1−eVi−e(Vwi +Vwi+1 )/2−ε

kBT

dε, (6)

in which the energies ε are measured from the bottom of the ith well, and:
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• Bi−1,i are given by

Bi−1,i = ki

[
dW +

(
1

αi−1
+

1
αi

)(
mB
mW

sin2 kidW
2

+ cos2 kidW
2

)]−1
, (7a)

h̄ki =
√

2mWε, h̄ki+1 =

√
2mWe

(
ε

e
+ Vi +

Vwi + Vwi+1

2

)
, (7b)

h̄αi =

√
2mBe

(
VB −

Vwi

2
− ε

e

)
, h̄αi−1 =

√
2mBe

(
VB +

Vwi

2
+ Vi−1 −

ε

e

)
, (7c)

h̄αi+1 =

√
2mBe

(
VB −

Vwi

2
−Vi −Vwi+1 −

ε

e

)
, (7d)

where ki and αi are the wave numbers in the wells and the barriers, respectively, mW
and mB are the effective masses of the electrons at the wells and barriers, respectively,
and dW and dB are the widths of wells and barriers, respectively. h̄Bi,i+1/mB are the
attempt frequencies related to sequential tunneling through the ith barrier. Vi and
Vwi , i = 1, . . . , N, are the potential drops at the ith barrier and well, respectively. We
assume that the potential drops at barrier and wells are non-negative and that the
electrons are singularly concentrated on a plane located at the end of each well. Then
ki (dictated by the Transfer Hamiltonian method, cf Appendix A) depends on the
electric potential at the center of the ith well, whereas αi depends on the potential at
the beginning of the ith barrier, Vwi /2. The potential drops V0 and VN correspond to
the barriers separating the SL from the emitter and collector contacts, respectively. eVB
is the barrier height in the absence of potential drops.

• Ti is the dimensionless transmission probability through the ith barrier separating
wells i and i + 1:

Ti(ε) =
1

(ki+ki+1)2

4kiki+1
+ 1

4

(
mBki
mW αi

+ mW αi
mBki

)(
mBki+1
mW αi

+ mW αi
mBki+1

)
sinh2(αidB)

. (8)

2.3. Poisson Equations

The voltage drops through the structure are calculated as follows. The Poisson equa-
tion yields the potential drops in the barriers, Vi, and the wells, Vwi:

εW
Vwi

dW
= εB

Vi−1

dB
+

e
2
(ni − ND), ni =

n

∑
ν=1

n(ν)
i , (9a)

εB
Vi
dB

= εB
Vi−1

dB
+ e(ni − ND), i = 1, . . . , N, (9b)

where εW and εB and ND are the well and barrier static permittivities and the 2D intentional
doping density at the wells, respectively [65–67,73].

2.4. Boundary Conditions

In Ref. [73], the boundary conditions consist of using the current densities of
Equations (6)–(8) in an Ampère’s law derived from Equations (5), together with a model
of the emitter and collector layers and a simplified version of the metal semiconductor
contact. In this work, we shall use simpler phenomenological Ohm laws for the current
density at emitter and collector, namely

J0→1 = σe
V0

dB0

, (10a)

JN→N+1 = σc
nN

NDN

VN
dBN

. (10b)
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Here σj, j = e, c are the contact conductivities, dBj are effective lengths for the contact
regions and NDN is an effective 2D doping density of the collector, cf. Ref. [54].

The condition of overall voltage bias between contacts closes the set of equations:

Vdc =
N

∑
i=0

Vi +
N

∑
i=1

Vwi . (11)

2.5. Elimination of the Potential Drops at the Wells

The previous model gives rise to many equations but some of them are not indepen-
dent. We can eliminate the potential drops at the wells from the system, as done in Ref. [73].
Equation (9) imply

εWVwi

εBdW
=

Vi−1 + Vi
2dB

, i = 1, . . . , N. (12)

Then the bias condition (11) becomes

Vdc =

(
1 +

εBdW
εWdB

) N

∑
i=0

Vi −
εB(V0 + VN) dW

2εWdB
. (13)

Instead of the rate Equation (5), we can derive a form of Ampère’s law which explicitly
contains the total current density J(t). We differentiate Equation (9b) with respect to time
and eliminate ni = ∑3

ν=1 n(ν)
i by using Equation (5). The result is

εB
dB

dVi
dt

+ Ji→i+1 = J(t), (14)

Ji→i+1 =
3

∑
ν=1

J1,i→ν,i+1 + J2,i→3,i+1, (15)

where i = 0, 1, . . . , N and the total current density J(t) is the sum of displacement and
tunneling currents. If there are more than three subbands, Equation (15) will include more
contributions from other tunneling channels.

2.6. Elimination of the Higher Subband Populations

Typically τ21 and τ31 in Equation (5) are much smaller than the dielectric relaxation
time. Then Equations (5b) and (5c) have the quasi-stationary solutions

n(2)
i ≈ τ21

e
J1,i−1→2,i, . . . , n(n)

i ≈ τn1

e
J1,i−1→n,i, (16)

and n(2)
i , . . . , n(n)

i � n(1)
i . Then we can set n(2)

i = . . . = n(n)
i = 0, n(1)

i = ni, µ
(1)
i = µi, given

by Equation (1),

ni =
mWkBT

πh̄2

∫ ∞

0
AC1(ε) ln

(
1 + e(µi−ε)/kBT

)
dε, (17)

µ
(ν)
i → −∞ for ν 6= 1, and Equation (15) becomes

Ji→i+1 = J+i→i+1(Vi−1, Vi, Vi+1, µi, T)− J−i→i+1(Vi−1, Vi, Vi+1, µi+1, T), (18)
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where

J+i→i+1 =
eh̄kBT
2mB

n

∑
ν=1

∫ ∞

0
AC1(ε) ACν

(
ε + eVi +

edWεB
4dBεW

(Vi−1 + Vi+1 + 2Vi)

)
× Bi−1,i(ε) Bi,i+1(ε) Ti(ε) ln

(
1 + e

µi−ε
kBT

)
dε, (19a)

J−i→i+1 =
eh̄kBT
2mB

∫ ∞

0
AC1(ε) AC1

(
ε + eVi +

edWεB
4dBεW

(Vi−1 + Vi+1 + 2Vi)

)
Bi−1,i(ε)

×Bi,i+1(ε)Ti(ε) ln
[

1 + exp
(

1
kBT

(
µi+1 − ε− eVi − edWεB

Vi−1 + Vi+1 + 2Vi
4dBεW

))]
dε. (19b)

Since all tunneling currents from subbands with ν > 1 are negligible, Equation (19) hold
for any number of subbands, not only for n = 3. These equations differ from the usual
sequential tunneling model that includes a sum over higher subbands in Equation (19b).

The time-dependent model consists of the 3N + 2 Equations (9b), (13), (14), (17) [the
currents are given by Equations (18) and (19)], which contain the 3N + 2 unknowns nj,
µj (j = 1, . . . , N), Vj (j = 0, 1, . . . , N), and J. Thus we have a system of equations which,
together with appropriate initial conditions, determine completely and self-consistently
the voltage drops, current density, and electron densities. For convenience, let us list
again the minimal set of equations we need to solve in order to determine completely all
the unknowns:

εB
dB

dVi
dt

+ Ji→i+1 = J(t), i = 0, 1, . . . , N, (20a)

εB
Vi
dB

= εB
Vi−1

dB
+ e (ni − ND), i = 1, . . . , N, (20b)

ni =
mWkBT

πh̄2

∫ ∞

0
AC1(ε) ln

(
1 + e(µi−ε)/kBT

)
dε, i = 1, . . . , N, (20c)

Vdc =

(
1 +

εBdW
εWdB

) N

∑
i=0

Vi −
εBdW

2εWdB
(V0 + VN), (20d)

together with the constitutive relations given by Equations (10), (18) and (19).

3. Current–Voltage Characteristics and Attractors for Ideal SSL

In this section, we review the different stable configurations that may appear in ideal
SSLs with identical periods described by Equations (20) and (18), (19).

Our basic SSL configuration is that of References [20,37]: An ideal SSL with N = 50
periods whose three relevant subband energies, 41.6, 165.8, and 354.3 meV, are calculated
by means of Equation (8). The level broadenings due to scattering are 2.5, 8 and 24 meV,
respectively, for the three subbands involved in the I −V characteristics we study [21]. The
equivalent 2D doping density due to the doping of the central part of the quantum well
is ND = 6× 1010 cm−2. Furthermore, mW = 0.063 me, mB = (0.063 + 0.083x)me = 0.1me
(for x = 0.45), A = s2 with s = 30µm, dB = 4 nm, dW = 7 nm, l = dB + dW , εB = 10.9ε0,
εW = (12.9− 2.84x)ε0, ε0, and Vdc are the effective electron mass at wells and barriers,
the SL cross section, the side length of a square mesa, the (Al,Ga)As barrier thickness,
the GaAs well thickness, the SL period, the barrier permittivity, the well permittivity,
the dielectric constant of the vacuum, and the DC voltage bias, respectively. We select
contact conductivities σc = σe = 0.49 A/Vm and the same doping density ND for injector
and collector.

The current–voltage I − V curve of the SSL gives an overall picture of the different
stable configurations thereof as a function of the applied DC voltage V, which acts as a
control parameter. The I −V curve has regions of increasing current separated by almost
plateaus between them. The regions of increasing current roughly correspond to subband
energies of Equation (8) counted from the first one, (ECν − EC1)/e, and the plateaus to the
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intervals between them. Figure 1 shows the first plateau. For this ideal SSL, the current
increases linearly from zero voltage (not shown) until it reaches the first plateau. The stable
solution of Equation (20) with boundary conditions (10) is time independent except for a
voltage region of time-periodic solutions whose maxima and minima and average current
are marked in Figure 1a,b. The stationary solutions at the plateau are frozen wavefronts
that increase with QW index from a low to a high value of the voltage drops Vi (which
equal the local electric field). In the limit of an infinitely long SSL, Ji→i+1 = J for ni = ND
and Vi = F has three solutions F(1) < F(2) < F(3), and F(1) and F(3) are the low and high
field values, respectively. Depending on the value of the stationary current density J, a
wavefront on the infinitely long SSL does not move (it is pinned by the lattice) or it moves
with constant velocity [54,56]. For a SSL with finitely many periods, J is fixed by the bias
condition Equation (20d) [5,54].

(a)

〈I	〉
max(I	),	min(I	)

I	(
m
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0.0
0.2
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0.6
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0.0 0.5 1.0 1.5 2.0
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W
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l	i
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W
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Figure 1. (a) First plateau of the current–voltage characteristics for the SSL with 50 identical periods.
(b) Zoom of the region of self-oscillations that appear as a supercritical Hopf bifurcation and end
at a SNIPER. Vd is the voltage at which the frequency of the oscillations drop to lower values. For
Vdc > Vd, the high electric field domains move throughout the SSL and reach the collector contact.
Current traces and the corresponding density plots of the electric field for (c) Vdc = 0.26 V (just after
the Hopf bifurcation) and (d) Vdc = 0.29 V (just before the SNIPER bifurcation). Light and dark tones
correspond to low and high field values, respectively.

The branch of time-periodic solutions exists provided the number of SSL periods is 14
or higher for the parameters of our SSL, cf Refs. [72,86,87] for theory on a simpler model.
The branch of time-periodic solutions starts as a supercritical Hopf bifurcation and ends at a
saddle-node infinite period (SNIPER) bifurcation, i.e., it ends at finite amplitude and infinite
period by collision of the periodic attractor with a homoclinic orbit. The time-periodic
self-sustained oscillations are caused by the repeated formation of dipole waves (traveling
high-field domains) at the emitter, motion toward and annihilation at the collector, as seen
in Figure 1c,d for voltages near the beginning (Hopf) and end (SNIPER) of their voltage
region. Figure 1c,d show current traces and the corresponding density plot of the electric
field inside the SSL. Near the Hopf bifurcation, the high-field domains are repeatedly born
at the emitter contact and die before reaching the collector contact as seen in Figure 1c,
which produces high-frequency oscillations. For Vdc > Vd, the domains reach the collector
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as seen in Figure 1d, and the oscillation frequency drops. The frequency vanishes at the
SNIPER bifurcation.

Figure 2 contains the phase diagram of the emitter contact σe of Equation (10a) as a
function of Vdc. We observe that self-sustained oscillations are possible in a region of the
parameter plane (Vdc, σe). Below a certain σe, self-sustained oscillations begin and end
with Hopf bifurcations, whereas for larger contact conductivity, they end at a SNIPER
bifurcation, cf Figure 1. We have adopted a value in the latter region because it produces
results compatible with experiments.

Figure 2. Phase diagram of injector contact conductivity versus DC voltage exhibiting a bounded
region of current self-oscillations. At the dashed boundary line, the self-oscillations appear as Hopf
bifurcations from the stationary field profile which is linearly stable outside the bounded region. The
continuous boundary line corresponds to oscillations disappearing at a saddle-node infinite period
bifurcation, as selected in the main text. In the red regions, self-oscillations have low frequency and
correspond to fully formed charge dipole waves that move across the entire SSL. In the blue regions,
high frequency self-oscillations correspond to charge dipole waves that disappear before reaching
the receiving contact. Reprinted from [21].

4. Noise, Imperfections and Superlattice Configurations
4.1. Stochastic Equations

Internal and external noises can be included in our model as indicated in Ref. [58]. We
add noise terms to Equations (20a) and (20d),

εB
dB

dVi
dt

+ Ji→i+1 + ξi(t) = J(t), i = 0, . . . , N, (21)

Vdc =

(
1 +

εBdW
εWdB

) N

∑
i=0

Vi −
εBdW

2εWdB
(V0 + VN) + η(t), (22)

keeping the other equations unchanged and including a voltage fluctuation η(t) [44]. The
fluctuations of the current density are independent identically distributed (i.i.d.) zero-mean
white noises with correlations:

〈ξi(t)ξ j(t′)〉 =
e
A

[
J+i→i+1(Vi−1, Vi, Vi+1, µi, T) + J−i→i+1(Vi−1, Vi, Vi+1, µi+1, T)

+ 2kBT
∂

∂µi
J−i→i+1(Vi−1, Vi, Vi+1, µi, T)

]
δijδ(t− t′). (23)

We have assumed that the internal noise is due to shot and thermal noise [27]. The first
two terms in the right hand side of Equation (23) are due to shot noise [27] and the last
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one to thermal fluctuations. We model current fluctuations associated to dissipation due to
electron diffusion by Landau–Lifshitz fluctuating hydrodynamics [88,89] adapted to SSLs.
Equation (18) can be written as a discrete drift-diffusion current density,

Ji→i+1 = J+i→i+1(Vi−1, Vi, Vi+1, µi, T)− J−i→i+1(Vi−1, Vi, Vi+1, µi, T)

− [J−i→i+1(Vi−1, Vi, Vi+1, µi+1, T)− J−i→i+1(Vi−1, Vi, Vi+1, µi, T)], (24)

where the last two terms correspond to electron diffusion [58]. Considered as a a function
of the chemical potential and fixing the voltage drops, this discrete diffusion yields

δ[J−i→i+1(µi+1)− J−i→i+1(µi)] ≈
∂J−i→i+1(µi)

∂µi
δ(µi+1 − µi).

Then the fluctuations of the current density are i.i.d. zero-mean white noises with correlation
given by the last term in Equation (23), cf. Ref. [89]. This is similar to fluctuations in Gunn
diodes where the diffusion current is proportional to the diffusion coefficient times the
electron density [89], instead of the nonlinear expression in Equation (23).

4.2. Non-Ideal Superlattices

Typically, there are doping density fluctuations at the wells, one-monolayer fluctua-
tions of barrier and well widths and fluctuations in Al concentration at barriers. In addition,
we may want to change the width of some wells and explore how the SSL dynamics
changes. While it is clear that doping density fluctuations affect Poisson equations, the
other fluctuations modify importantly the tunneling currents. Local changes in dB, dW , mB,
εB and VB change the location of energy levels at each well, the barrier wave numbers αi,
and the coefficient functions Bi, Ti and ACj. Fluctuations in doping density, barrier and
well width affect electrostatics and Ampère’s law.

4.2.1. Electrostatics and Ampère’s Law

Equations (9a) and (9b) become

εW
Vwi

dWi

= εBi−1

Vi−1

dBi−1

+
e
2
(ni − NDi), (25a)

εBi

Vi
dBi

= εBi−1

Vi−1

dBi−1

+ e(ni − NDi), (25b)

from which we obtain,

Vwi =
dWi

2εW

(
εBi−1

Vi−1

dBi−1

+ εBi

Vi
dBi

)
. (26)

The electron density of Equation (20d) becomes

ni =
mWkBT

πh̄2

∫ ∞

0
AC1i

(ε) ln
(

1 + e(µi−ε)/kBT
)

dε, (27a)

ACνi
(ε) =

γν

π

1
(ε− ECνi

)2 + γ2
ν

. (27b)

Ampère’s law can be obtained in the same way as Equation (14). Now it is:

εBi

dBi

dVi
dt

+ Ji→i+1 + ξi(t) = J(t). (28)

The i.i.d. zero-mean white noises ξi(t) have correlations given by Equation (23). The
voltage bias condition of Equation (22) is now
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Vdc =
N

∑
i=0

(
1 +

dWi + dWi+1

2εWdBi

εBi

)
Vi−

εB0 dW0 V0

2εWdB0

−
εBN dWN+1 VN

2εWdBN

+η(t). (29)

The total current J(t) can be calculated from Equation (28) and the bias condition in
Equation (29), thereby providing effective nonlocal equations of motion when substituted
back in Equation (28).

4.2.2. Tunneling Currents

The disorder modifies the energy levels measured from the bottom of each well so
that they depend on the well number and we denote them as ECji . Barrier effective masses,
permittivities, widths and wave numbers are also modified. The tunneling current densities
given by Equation (19) become

J+i→i+1=
eh̄kBT
2mBi

3

∑
ν=1

∫ ∞

0
AC1i

(ε)Bi−1,i(ε) Bi,i+1(ε) Ti(ε) ln
(

1 + e
µi−ε
kBT

)

× ACνi+1

(
ε +

(
1 +

εBi

dBi

dWi + dWi+1

4εW

)
eVi+

dWi εBi−1 eVi−1

4dBi−1 εW
+

dWi+1 εBi+1 eVi+1

4dBi+1 εW

)
dε, (30a)

J−i→i+1 =
eh̄kBT
2mBi

∫ ∞

0
AC1i

(ε) Bi−1,i(ε) Bi,i+1(ε) Ti(ε)

× AC1i+1

(
ε +

(
1 +

εBi

dBi

dWi + dWi+1

4εW

)
eVi+

dWi εBi−1 eVi−1

4dBi−1 εW
+

dWi+1 εBi+1 eVi+1

4dBi+1 εW

)

× ln

[
1 + exp

(
µi+1 − ε

kBT
−
(

1 +
εBi

dBi

dWi + dWi+1

4εW

)
eVi
kBT
−

dWi εBi−1 eVi−1

4kBTdBi−1 εW

−
dWi+1 εBi+1 eVi+1

4kBTdBi+1 εW

)]
dε, (30b)

for i = 1, . . . , N − 1.

5. I − V Characteristic Curves of Modified Superlattices

In this section, we ignore noise and fluctuations in doping density and in barrier and
well widths. We discuss how introducing one or two wider wells changes the current–
voltage characteristics I −V of an otherwise ideal SSL. Figure 1a,b show the I −V curve
of the ideal SSL with appropriate emitter contact conductivity. It exhibits self-sustained
oscillations of the current in a narrow voltage region provided the number of SSL periods
is 14 or larger. These oscillations are periodic in time and are caused by the formation of
traveling regions of high field (which are charge dipole waves) at the emitter, motion toward
and annihilation at the collector; see Figure 1c,d. For the chosen value of σe, the branch of
oscillations starts as a supercritical Hopf bifurcation and ends at a SNIPER bifurcation.

5.1. Effect of One Wider Well on the I −V Characteristics

What can we expect by modifying the width of a well in an otherwise ideal SSL?
Let us consider the tunneling current of an ideal SSL for fixed electron densities ni = ND
and a constant barrier voltage drop V in Equation (18), Ji→i+1(V). Figure 3 shows the
curve for the SSL reference configuration (dB = 4 nm, dW = 7 nm), the curves when we
add or subtract a number of monolayers (0.3 nm wide each) to dW , and Ohm’s law at
the contact, J0→1(V). Ji→i+1(V) exhibits a single maximum at the shown voltage range.
Widening the well decreases the maximum and shifts it toward lower voltages. The opposite
occurs when we have narrower wells. The intersection of Ji→i+1(V) and J0→1(V) (marked
with a rhombus for the reference configuration) changes accordingly. This intersection
roughly marks the voltage and current at which the contact issues a dipole wave, which
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is the mechanism behind self-sustained oscillations of the current, excitability and other
phenomena [5,44,54–56].

Broader	wells

Narrower	wells
(Vcr,Jcr)
(Vref,Jref)
Ji→i+1	(ref.)
J0→1	(ref.)
Ji→i+1	(-6	m.l.)
Ji→i+1	(-3	m.l.)
Ji→i+1	(+3	m.l.)
Ji→i+1	(+6	m.l.)
Ji→i+1	(+9	m.l.)

J i→
i+
1	(
A/
cm

2 )

0

50

100

150

V	(mV)
0 5 10 15

Figure 3. Tunneling current–voltage characteristics for the ideal SSL with ni = ND, Vi = V comparing
the reference configuration (ref.) dB = 4 nm, dW = 7 nm to the contact Ohm’s law (dot-dashed
straight line) and to other configurations with more or less monolayers (m.l.) at the wells. The
rhombus marks the critical current Jcr and voltageVcr at which the contact Ohm’s law intersects the
reference configuration. Reprinted from [21].

If we have a long ideal SSL at the reference configuration, the stationary voltage profile
for a fixed current lower than Jref, will be a solution V(1)(J) of Ji→i+1(V) = J on the first
branch of Ji→i+1(V), except for a short region near the emitter where V0 decreases from
V0 = J/J0→1 to V(1). Dynamics of one charge dipole wave occurs as follows. When the
wave is far from the contacts, the field profile is roughly constant outside the wave except
near the emitter. As the wave arrives at the collector, the current increases with time so as to
keep the voltage at its constant value. If J(t) surpasses Jref, the stationary state is no longer
stable and a dipole wave is injected at the emitter contact. Repetition of this phenomenon
produces the self-oscillations of the current [5,44,54–56]. Now, suppose we insert a different
well far from the contacts in the reference configuration. The intersection of Ji→i+1(V) and
J0→1(V) occurs at lower (resp. higher) current for a wider (resp. narrower) well than the
reference one. Then we may expect that inserting a wider well may facilitate triggering a
dipole wave in it when the current surpasses the corresponding intersecting value. The
opposite is true if the inserted well is narrower. Thus, we expect richer SSL dynamics
inserting wider wells.

We test our expectations by numerically simulating the deterministic model equations.
With respect to the I −V curve of the ideal SSL in Figure 1, each added monolayer shifts
significantly the region of self-oscillations until there are six extra monolayers in total.
From that point on, adding more monolayers to the modified well does not change the
self-oscillation region of the I −V curve. As in the case of unmodified SSLs, current self-
oscillations are due to the dynamics of charge dipole waves. These waves are changed
slightly when traveling through the wider well, which affects the evolution of the total
current density by producing sudden and short-lived spikes.

We consider a SSL with a single modified well having 10 extra monolayers (i.e.,
dW = 10 nm). Its energy levels given by solving Equation (4) are EC1 = 24.0 meV,
EC2 = 96.1 meV, EC3 = 214.7 meV. The features of the I − V curve depend on the lo-
cation of the modified well and the general low voltage behavior is the following. For
voltages just above the onset of oscillations, dipole waves are repeatedly nucleated at the
injector and disappear after a short trip. If a dipole wave born at the emitter can reach the
wider well, no other wave will come out the emitter. Instead, self-sustained nucleations
of dipole waves occur at the wider well for a large enough voltage bias Vdc. This fact plus
the minimum number of SSL periods required for oscillations mean that the I −V curve
takes on different shapes depending on whether the wider well iw is near the injector, as in
Figure 4a, near the collector, as in Figure 4d or away from both contacts, as in Figure 4b,c.
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Figure 4. First plateau of the current–voltage characteristics for the SSL with 50 identical periods
when the modified 10 nm-wide well is at: (a) iw = 5, (b) iw = 20, (c) iw = 30, and (d) iw = 39.
Current traces and density plots of the electric field for: (e) iw = 20, Vdc = 0.23 V; (f) iw = 20,
Vdc = 0.5 V; (g) iw = 30, Vdc = 0.5 V; (h) iw = 39, Vdc = 1.02 V. In the density plots, light and dark
tones correspond to low and high field values, respectively.

To exhibit self-oscillations, SSLs need to surpass a critical length [86] and their doping
density should be smaller than a critical value [86,87]. In the parameter range explored
in our numerical simulations, the minimum length for a traveling dipole wave to induce
self-oscillations is 14 periods. For iw < 14, self-oscillations occur for a large voltage interval
and are due to recycling at iw, cf. Figure 1a. For iw > 14 and as the DC voltage increases,
the shape of the I −V curve is as follows:

(i) There is a narrow voltage interval where charge waves nucleate at the emitter and die
before reaching the modified well, cf. Figure 4b,e.

(ii) For larger Vdc, a dipole wave nucleated at the injector reaches iw and dies there. A
stationary state forms for which excess charge is mostly located at iw. This station-
ary state is accompanied by a large drop in the total current density, as shown in
Figure 4a,d. The current drop occurs because most charge accumulates at the emitter
contact (high current state) for lower DC voltage but it accumulates at the modified
QW (low current state) for larger DC voltage.

(iii) If iw is between i = 14 and N − 14, current self-oscillations occur again at another
voltage interval, as illustrated by Figure 4b,c. This interval starts and ends in a
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supercritical Hopf bifurcation, and it becomes smaller as iw → N − 14 and dipole
waves nucleate at iw. For larger voltages, the current is stationary and it rises smoothly
to previous levels. As iw approaches N − 14, self-oscillations occur for a third voltage
range, depicted in Figure 4c. In this narrow higher voltage interval, oscillations start
as a supercritical Hopf bifurcation but end at a SNIPER bifurcation. In this high
voltage range, dipole waves nucleate at the injector and travel towards iw whereas
the electric field profile is large and quasi-stationary between iw and the collector; see
Figure 4f,g. After the SNIPER, the current becomes stationary and rises smoothly to
second plateau levels.

(iv) For iw between N − 14 and N, the intermediate voltage range of self-oscillations
disappears and only narrow voltage ranges corresponding to recycling of small waves
traveling near the injector or the collector survive, cf. Figure 4d,h.

5.2. Two Wider Wells

Let us place two identical and wider wells at i1 and i2 (i1 < i2). If the wider wells are
different, the resulting dynamics will be similar to that explained previously for one well
because one of the modified wells will dominate. Let the widths of the wider wells be dWj ,
j = 1, 2, and let regions I, II and III be the intervals i < i1, i1 < i < i2, and i > i2, respectively.
As before, these wells have to include at least six extra monolayers for, otherwise, SSLs
with less monolayers have drastically different I −V curves. We shall fix i1 = 5, so that
dipole nucleation occurs at i1 and not at the injector, as mentioned in relation to Figure 4a.
We then vary i2. If dW1 > dW2 , charge dipoles nucleate at i1 and travel through i2 with a
small disturbance. The situation is qualitatively similar to Figure 4a with iw = i1 = 5. If
dW1 < dW2 , the situation is similar to that of a single wider well at iw = i2 with an injector
at i1. On the other hand, if dW1 ≈ dW2 , SSL dynamics is more complex and interesting.

From now on, we consider dW1 = dW2 = 10 nm. Figure 5 illustrates typical I − V
characteristic curves. If regions II and III have more than 14 wells, dipole waves can be
nucleated at i1 and at i2, they travel through regions II and III respectively, and their motion
is strongly correlated. In general, each region II and III can support only one dipole wave.
Some specific cases in which two waves may move on the same region will be discussed
later. Correlation between dipole waves is as follows.

(i) If a dipole wave does not reach the end of the region where it travels before it
disappears, its annihilation will trigger nucleation at i1 and at i2.

(ii) Waves reaching i2 (the end of region II) trigger nucleation at regions II and III.
(iii) Waves reaching the end of region III will not necessarily trigger nucleation. These

waves can stop near the collector and stay there for either short or long times (and
then recycle). This situation can be seen as a metastable state.
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0.0 0.5 1.0 1.5 2.0

Figure 5. First plateau of the current–voltage characteristics for the SSL with 50 identical periods
with modified 10 nm-wide wells at i1 = 5 and: (a) i2 = 25, (b) i2 = 30. The presence of two modified
wells gives rise to two peaks in the low voltage, stationary, part of the I −V characteristic curve. In
case (a), self-oscillations are time periodic. In case (b), self-oscillations are time periodic for Vdc < 1 V
and for Vdc > 1.5 V, and they are complex (mostly chaotic) for 1 < Vdc < 1.5 V.

Self-oscillations are time periodic in case (ii) but they may become chaotic in cases (i)
and (iii), which explains the irregular disposition of the maxima in Figure 5. For i1 = 5,
observation of chaotic attractors requires the second well to satisfy 28 < i2 ≤ 35. Note that
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modified SSLs exhibit self-oscillations with faster frequencies than in ideal SSLs because
the dipole waves causing them travel on shorter regions of the device.

6. Hyperchaos and Intermittency

In this section, we explore complex self-oscillations occurring in the SSL with modified
wells of 10 nm width at i1 = 5 and i2 = 30, which has the I −V curve depicted in Figure 5b.

Figure 6 shows a variety of dynamical behaviors for the voltage range where self-
oscillations occur in Figure 5b. Each panel in Figure 6 provides complementary information.
The Poincaré maps in Figure 6a,b are constructed from the time traces of two well-separated
periods, V12(t) and V42(t). Figure 6a,b depict the values of V42(t) and of V̇42(t), respectively,
at times t∗ where V12(t) takes on its mean value in time and V̇12(t∗) > 0 (so as to avoid
redundant symmetric points). Figure 6c shows the three largest Lyapunov exponents.
Figure 6d depicts the density plot of the normalized Fourier spectrum for each voltage
value, which exhibits the dominant frequencies at each DC voltage.

Figure 6. (a) Poincaré map from V42(t), (b) Poincaré map from V̇42(t), (c) Lyapunov exponents, and
(d) Fourier spectrum as functions of DC voltage for the modified SSL with i1 = 5 and i2 = 30. Each
panel shows features hidden in the other ones. The Poincaré map reveals jumps between periodic
attractors at Vdc = 1.3V and Vdc = 1.43V. The Fourier spectrum reveals the underlying behavior
to be quasi-periodic with different incommensurate frequencies, whereas the Lyapunov exponents
show that the system is hyperchaotic for Vdc < 1.08V (λ1, λ2 > 0 and of comparable scales). For
Vdc > 1.08V, the system has intermittent chaos at different time-scales (λ1 � λ2 ≈ 0). Reprinted
from [21].

As Vdc increases, the different attractors can be visualized by trajectories in the phase
plane (V15, V35) for the voltage drops in two widely separated barriers, cf Figure 7. Firstly,
the stationary state loses its stability and a time periodic attractor appears at Vdc = 0.8 V.
The voltage profiles consist of charge dipole waves being repeatedly nucleated at both
modified wells and advancing towards the collector without reaching it, cf Figure 8.
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Figure 7. Phase plane portraits (V15, V35) for Vdc = (a) 1.01 V, (b) 1.03 V, (c) 1.10 V, (d) 1.20 V,
(e) 1.275 V, (f) 1.30 V, (g) 1.40 V, (h) 1.45 V, (i) 1.50 V.
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Figure 8. Current traces and density plots of the electric field profile for Vdc = 0.9 V. For this low
voltage periodic attractor, the waves at regions II and III do not reach i2 or the collector, respectively.
In the density plots, light and dark tones correspond to low and high field values, respectively.
Reprinted from [21].

At Vdc = 0.96 V a second cycle (periodic attractor) appears and interacts with the
first one. The result is a hyperchaotic attractor with two positive Lyapunov exponents.
Trajectories fill the space between the two cycles. In the voltage interval 0.961 < Vdc < 1.1
for hyperchaos (only one Lyapunov exponent is positive for 0.96 < Vdc < 0.961), dipole
waves nucleated at the second modified well either cannot reach the collector or, if they do,
dipoles cannot stay in the wells near the collector. See Figure 9a. For larger voltages, the
second Lyapunov exponent becomes smaller albeit positive, and intermittent chaos appears
instead, cf. Figure 6c. This corresponds to the appearance of another cycle that interacts with
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the others and eventually disappears at a saddle point, as shown in Figure 7 for Vdc = 1.03 V
and 1.10 V. Intermittency chaos appears for the interval 1.10 < Vdc < 1.37: irregular bursts
corresponding to a cycle are separated by intervals for which the trajectories are close to the
saddle point, cf Figure 7. This behavior is associated to dipole waves that reach the collector,
stop there and remain in the last SSL periods (quiescent stage), whereas periodic bursts are
associated to dipole wave recycling in Regions II and III. At Vdc = 1.2 V, the saddle point
expands to a saddle cycle and the intermittent behavior continues. The difference is that
the quiescent stage is associated to low frequency oscillations. See Figure 9b.
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Figure 9. Current traces and density plots of the electric field for (a) Vdc = 1.01 V (hyperchaos,
two positive Lyapunov exponents) and (b) Vdc = 1.20 V (intermittency, one positive and one zero
Lyapunov exponent). In the density plots, light and dark tones correspond to low and high field
values, respectively. Reprinted from [21].

At Vdc = 1.37 V, the intermittency becomes a period 3 cycle (three loop trajectories in
the phase plane). At larger DC voltages the periodic behavior continues and it becomes
simpler (two loops at 1.43 V, a single loop for larger voltages). The transition from pe-
riodic attractors with three loops to two loop ones at 1.43 V is rather abrupt, as shown
in Figure 6a,b. We have checked that there is a hysteresis cycle about this voltage value
that becomes manifest by sweeping up or down the DC voltage. The last branch of time
periodic oscillations disappears at a supercritical Hopf bifurcation.

7. Effect of Width Randomness and Noise
7.1. Width Randomness

When growing SSLs, it is difficult to control perfectly the width of the layers of the two
semiconductors. In this section, we report the effects of fluctuations in well width on SSL
current self-oscillations. We consider that the largest effects come from errors in the number
of monolayers during epitaxial growth of the SSL. Thus, we ignore smaller effects such as
fluctuations in barrier width and composition, internal and external noise and fluctuations
in doping density. We set dWi + δi to be well widths, where dW5 = dW30 = 10 nm, and
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dWi = 7 nm for the other wells, i 6= 5, 30. We extract δi out of a zero mean normal
distribution with standard deviation σ. Then deviations larger than ±2σ are rare. For
example, if σ = 0.5 nm, widths that deviate more than 1 nm from dWi are rare.

Given a random configuration of δi with standard deviation σ, we have numerically
solved the SSL model. Depending on the obtained configuration, we have observed
that intervals of hyperchaos or intermittent chaos are destroyed or still remain for that
disordered configuration. When there are long voltage intervals (having widths comparable
to those in the SSL without disorder, e.g., almost 1 V wide, as seen in Figure 5b) where
the chaotic behavior of the SSL without disorder is kept undisturbed, we consider these
examples as successes. If disorder causes new periodicity or stationary windows to appear
within long voltage intervals of formerly chaotic behavior of the SSL without disorder, we
consider these examples as failures. For a given value of σ, the success rate of disordered
SSLs that still exhibit chaotic behavior is shown in Figure 10. For σ < 0.015 nm, chaotic
attractors observed for the SSL without disorder remain. However, σ = 0.024 nm is
sufficient to have a lower success rate of 70%.
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Figure 10. Success rate measuring fraction of simulations where chaotic attractor remains for a given
value of the standard deviation σ. Reprinted from [21].

A different observation is the following. Let (x1, . . . , xN) be a sequence of numbers
obtained from a normal distribution with zero mean and unit variance. Then δi = σxi
correspond to a configuration extracted from a normal distribution with zero mean and σ2

variance. By increasing σ, we find a threshold σcr(x1, . . . , xN), above which the attractors
of the SSL without disorder undergo significant changes (e.g., inhibition or disappearance
of current oscillations). This is related to the change of current–voltage characteristics
with well width displayed in Figure 4. If the difference between widths of adjacent wells,
δi − δi+1 > 0, is large, dipole waves experience difficulty crossing these wells. In turn, this
explains why disorder inhibits oscillations and chaos.

When building SSL devices, disorder effects are very important and have to be con-
trolled as much as possible. During epitaxial growth [4], Al atoms within each interface
alloy monolayer may be segregated into local clusters or not be positioned randomly in
the Ga or the As sublattice [90]. This yields a nonzero σ even if there are no errors in the
number of monolayers per barrier and well (recall that the monolayer width is 0.3 nm).
Careful design achieves σ < 0.018 nm in simpler devices [90,91], which would yield reliably
chaotic SSLs according to the success rate of Figure 10.

7.2. Noise

Here we consider the effects of internal noise (shot and thermal noise), as in
Equations (21) and (23), and the effect of external voltage noise (2 mV rms for a 50 Ohm
resistor), as in Equation (22), on the Lyapunov exponents of chaotic attractors. Figure 11
shows our results. For hyperchaos, noise produces a dispersion near the deterministic
values of the Lyapunov exponents, with larger standard deviation for the second largest
exponent, cf Figure 11a. For intermittent chaos, the two largest Lyapunov exponents are
noticeably smaller than their values in the absence of noise cf Figure 11b. Thus, by repeated
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simulations, we have concluded that the effect of noise is to decrease the largest Lyapunov
exponent of the chaotic attractors and to increase slightly the third Lyapunov exponent.
The latter does not become positive. Noise forces the system to visit more often contraction
regions of the phase space such as the quiescent regions between bursts in intermittent
chaos. This lowers the largest Lyapunov exponent [92]. Thus, contrary to the effect reported
and observed in ideal SSL with identical periods [38,57], noise does not enhance chaos in
these modified SSL, but its effect is quite small.
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Figure 11. Effect of shot and thermal noise on the three largest Lyapunov exponents (noiseless values
marked by tilted triangles) for (a) Vdc = 0.98 V (hyperchaos) and (b) Vdc = 1.15 V (intermittent chaos).
The boxes describe the distribution of exponents and the vertical bars indicate the standard deviation
of fluctuations.

8. Conclusions

In this paper, we have presented a general theory of nonlinear vertical transport in
weakly coupled SSLs based on the large separation of time scales [72]: the relaxation times
within subbands are much shorter than intersubband scattering times which, in turn, are
much shorter than dielectric relaxation times. From this hierarchy of times, we derive
spatially discrete equations for voltage drops at barriers and wells and subband popu-
lations. When intersubband scattering times are much shorter than dielectric relaxation
of electrons, we obtain the sequential resonant tunneling model of Ref. [67] which can
be further simplified to equations for the average electric fields and electron densities at
QWs [54,73]. Other theories yield different expressions for the tunneling current [55] but
they still assume the same hierarchy of time scales.

The I−V current–voltage characteristics of the SSL provides an equivalent bifurcation
diagram of stable solutions of its governing equations. It is extremely sensitive to the
chosen configuration and to the fluctuations in well widths due to epitaxial growth of
the SSL [4]. Our sequential resonant tunneling equations have been modified to take into
account these fluctuations as well as internal and external noises. We start considering
an ideal SSL of identical periods without noise effects. Typically, it has stationary states
(whose field profile consists of a low and a high field domain joined by some intermediate
fields which constitute a frozen wavefront) and time periodic states due to the motion of
high field domains that are traveling charge dipoles. These dipole waves are repeatedly
triggered at the emitter contact and move toward the collector contact of the SSL [5,54,56].
To produce a richer dynamics, we have inserted one wider QW in the SSL because this
allows for triggering additional dipole waves at the modified well depending on its location
and applied DC voltage bias. Indeed, we have found richer I −V characteristics and larger
voltage intervals of time-periodic solutions, but we have not found chaotic solutions.
Inserting two wider wells of different widths will result in dynamics similar to the one
wider well case because the wider of the two wells dominates dynamics. Inserting two
identical wider wells produces a more robust and resilient chaos on wider bias ranges:
hyperchaos with two positive Lyapunov exponents and intermittent chaos with a single
positive exponent [21].
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Chaotic states of deterministic dynamics for two identically modified wells persist if
we add realistic internal and external noises and are robust to sufficiently small disorder
fluctuations. If the difference between widths of adjacent wells due to disorder is large,
dipole waves experience difficulty crossing these wells. This impediment for dipole waves
to move across the SSL explains why disorder inhibits oscillations and chaos. Thus, there is
a competition between chaotic dynamics of the deterministic equations requiring dipole
waves in two identically modified wells and disorder due to epitaxial growth that can
localize charge dipoles at wells and forestall current oscillations. State-of-the-art epitaxial
growth techniques are known to produce devices with no errors in the number of mono-
layers per barrier and well and standard deviations smaller than 0.018 nm. According
to Figure 10, such successful growth would produce reliably chaotic SSLs with a success
rate over 70%. It is plausible that inserting more identical wider wells on longer SSLs
may increase the complexity of the resulting dynamics but there will be compromise be-
tween the total number of admissible SSL periods that is possible to grow with sufficiently
small standard deviation and the errors introduced during epitaxial growth. The com-
plex dynamics described in this paper could be observed in experiments with epitaxially
grown SSLs. Another application is using synchronization of chaotic devices for secure
communications [93]. Since synchronization of chaotic SSLs has been demonstrated in
experiments [94,95], it is possible to use our work to build devices that distribute encryption
keys safely by exploiting chaos synchronization [96].
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Appendix A. Derivation of Deterministic Tunneling Currents

Following Ref. [97], the tunneling Hamiltonian is

Htotal = H + HT =
N+1

∑
i=0

Hi +
N

∑
j=0

HTj , (A1)

Hi = ∑
ki

Eiki c
†
iki

ciki , HTj = ∑
kjkj+1

(
Tkjkj+1 c†

j+1kj+1
cjkj + H.c.

)
. (A2)
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Here the Hamiltonian H is a sum of individual Hamiltonians for each QW or contact and
assumes that they are uncoupled from one another. H.c. stands for the Hermitian conju-
gate of the preceding term. The unperturbed single-electron states have absolute energies
denoted by Eiki measured from the conduction band edge in the emitter contact. We have
Ejkj = ε + E⊥, E⊥ = h̄2k2

⊥/(2mW), in which ε is the energy at the well, and k⊥ comprises
the components of the wave vector that are orthogonal to the SL growth direction. The oper-
ators c†

iki
and ciki denote creation and annihilation operators for electrons in the ith well or

contact with three-dimensional wave vector ki and satisfy standard fermionic commutation
rules: {ciki , cjkj} = ciki cjkj + cjkj , ciki = 0, {c†

iki
, c†

jkj
} = 0, {ciki , c†

jkj
} = δijδkikj . Each QW

contains a set of n subbands whose Fermi energy measured from the conduction band edge
in the emitter contact are ε

w(ν)
i

, ν = 1, . . . , n. HT is a small perturbation of H representing

the tunneling coupling between adjacent wells. Typically, an electron tunnels from the
first subband of a QW into subband ν of the next QW and the electron population in the
subbands is in local equilibrium because the relaxation times within subbands are much
shorter than intersubband scattering times which, in turn, are much shorter than dielectric
relaxation times. This hierarchy of times [72] is the basis for all theories of spatially discrete
models of SSLs [5,54–56].

The change of the electron operator number at the ith well, Ni = ∑ki
c†

iki
ciki , is related

to the tunneling current operator Ĵi→i+1 by

eṄi =
i
h̄
[Htotal, eNi] =

i
h̄
[HTi−1 , eNi]−

i
h̄
[HTi , eNi] = Ĵi−1→i − Ĵi→i+1. (A3)

In the interaction representation, we have HT(t) = eiHt/h̄ HTe−iHt/h̄ and Ĵi→i+1(t) =
eiHt/h̄ Ĵi→i+1e−iHt/h̄ and the average tunneling current density from subband 1 of QW
i to subband ν of QW i + 1 satisfies the Kubo formula [98–100]

J1,i→ν,i+1(t) =
1
h̄

∫ t

−∞
〈[ Ĵ1,i→ν,i+1(t), HT(t′)]〉 dt′. (A4)

Here the average is over the thermodynamic local equilibria at the subbands of QWs i and
i + 1. A straightforward lengthy evaluation yields

J1,i→ν,i+1(t) =
4πe

h̄ ∑
kjkj+1

|Tkjkj+1 |
2δ(Ej+1kj+1 − Ejkj)

× [nF(Ej+1kj+1 − εwj+1)− nF(Ejkj − εwj)], (A5)

where nF(x) = 1/(1 + ex/kBT) is the Fermi distribution function. The matrix element:

Tkjkj+1 =
h̄2

2mB

∫
A
(ψj∇ψ∗j+1 − ψ∗j+1∇ψj) · dA, (A6)

is calculated by using Bardeen’s Transfer Hamiltonian method [79,80]. The wave functions
of two adjacent square QWs, ψj and ψj+1, are approximated by those of free particles
in two isolated wells separated by an infinitely thick barrier. Then continuity of wave
functions and their derivatives are used to find out the coefficients of the wave function
expressions in different space intervals and the resulting wave functions produce the matrix
element (A6) [80]. The result is [97]

|Tkiki+1 |
2 =

πh̄4

2m2
B

Bi−1,iBi,i+1Tiδk⊥k′⊥
, (A7)

where the coefficients Bi−1,i and the transmission coefficient are given by Equations (7)
and (8), respectively. We now transform the sums in (A5) to integrals over the energies
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Ejkj = ε + E⊥ using a broadened spectral density to account for scattering. If the latter
depends only on ε, we obtain

J1,i→ν,i+1 =
eh̄

2mB

∫
dε Ai

C1
(ε)Ai+1

Cν
(ε)Bi−1,i(ε)Bi,i+1(ε)Ti(ε)

×
∫

dE⊥

[
1

1 + e(ε+E⊥−εwi )/kBT
+

1

1 + e(ε+E⊥−εwi+1 )/kBT

]
. (A8)

After changing variables so that the energy is measured from the bottom of the QW i [54],
we perform the integral over E⊥, and get Equation (6) as a result.
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