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Abstract: With the continuous improvement of people’s health awareness and the continuous
progress of scientific research, consumers have higher requirements for the quality of drinking.
Compared with high-sugar-concentrated juice, consumers are more willing to accept healthy and
original Not From Concentrated (NFC) juice and packaged drinking water. At the same time, drink-
ing category detection can be used for vending machine self-checkout. However, the current drinking
category systems rely on special equipment, which require professional operation, and also rely on
signals that are not widely used, such as radar. This paper introduces a novel drinking category
detection method based on wireless signals and artificial neural network (ANN). Unlike past work,
our design relies on WiFi signals that are widely used in life. The intuition is that when the wireless
signals propagate through the detected target, the signals arrive at the receiver through multiple
paths and different drinking categories will result in distinct multipath propagation, which can be
leveraged to detect the drinking category. We capture the WiFi signals of detected drinking using
wireless devices; then, we calculate channel state information (CSI), perform noise removal and
feature extraction, and apply ANN for drinking category detection. Results demonstrate that our
design has high accuracy in detecting drinking category.

Keywords: drinking category detection; wireless signals; artificial neural network

1. Introduction

With the development of people’s living standards and the gradual enhancement of
health awareness, the consumption demand for beverages is also rising. At the same time,
it is beginning to show a diversified trend. People no longer focus on the function of thirst
quenching, and prefer natural, low sugar, and healthy drinks [1,2]. In addition to providing
water and other nutrients necessary for human life, different kinds of drinks play different
roles in the human body. Some drinks have the function of dietotherapy and healthcare,
and some drinks have the function of regulating body function [3].

According to research from the United States, drinking one or two glasses of beer a
day can help bones be healthier [4]. For women, drinking one or two glasses of wine a day
has the same effect [5,6]. However, researchers warn that the important thing is to drink in
moderation; when things go too far, they will lead to osteoporosis. Many applications, how-
ever, would benefit from knowing the exact drinking category. For example, safety checks
in public transport and adulterant identification. Security personnel need to know the
category of liquid accurately to avoid dangerous liquids such as flammables and explosives
being brought into public transportation and affecting people’s safety. At present, there
are many counterfeit products on the market to confuse consumers, such as counterfeiting
luxury perfumes, making milk with water and additives, making liquor with methanol,
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and counterfeit and shoddy medicines. Among them, methanol and counterfeit drugs are
harmful to the human body.

Currently, many industries are solving this problem with some instruments. For ex-
ample, drinking categories can be detected and drinking concentrations analyzed by con-
ventional viscosity testing instruments [7–10]. However, these instruments are expensive
and invasive. In addition, because the instruments need to be inserted into the probe for
detection, it will contaminate the drinking.

In recent years, non-contact drinking category detection methods based on wireless
signals such as radio frequency (RF) signals [11–13], Ultra-wideband (UWB) signals [14],
etc. have been researched. For example, LiquID [14] uses UWB signals to measure the
permittivity of liquids to detect drinking categories. However, these methods commonly
rely on expensive equipment and these signals are not widely popularized in our daily life.

This paper introduces a novel drinking category detection method based on wireless
signals and an artificial neural network that leverages WiFi signals to identify drinking
categories, which are inexpensive and ubiquitous with WiFi devices. The intuition of our
design is that when the WiFi signals propagate in different drinking, the signals will have
different attenuation [15], which is the basis of the detection method based on the WiFi
signals, which can be used as fingerprints to identify different drinking categories.

Our design employs a transmitter and a receiver, which are commercial off-the-shelf
(COTS) devices, for transmitting and receiving wireless signals, respectively. The wireless
signals are transmitted from the transmitter to the target to be tested and then propa-
gated to the receiver through multiple paths. Different drinking categories have different
multipath profiles, also known as CSI measurements, which can be leveraged to detect
drinking categories.

One challenge is the noise in the CSI measurements, resulting in lower detection
accuracy for drinking categories. Since WiFi devices are susceptible to interference, CSI
measurements are noisy even in static environments without human activity. Moreover,
because conventional denoising methods are only suitable for low-density noise, and the
noise density in CSI measurements is higher, conventional denoising methods do not
perform well in removing noises. To overcome this challenge, our design leverages a
principal component analysis (PCA)-based CSI denoising method.

Another challenging problem is the need to extract effective features from the received
wireless signals for drinking category detection. Different materials will change the prop-
agation paths of wireless signals, resulting in different multipath effects. The detection
method based on wireless signals detects the drinking categories by capturing multipath
profiles of different drinks. Therefore, feature extraction is the basis of this method, and
the effective features will improve the overall performance of our design. To remove the
limitations, we extract fifteen time–frequency domain statistical features and then use ANN
to detect and classify drinking categories.

Summary of Results: We built a model of our design using COST devices as a
transceiver and evaluated it with six common drinking categories. Our experimental
results show that our design can achieve high detection accuracy.

Contributions: Our design makes the following contributions:

1. It presents a novel drinking category detection method based on wireless signals and
an artificial neural network. As a result, our design has high detection accuracy and
high classification precision.

2. It demonstrates that ANN performs well in drinking category detection compared
with traditional machine learning methods.

2. Materials and Methods
2.1. Sample Preparation

The beverage is a liquid for human or livestock drinking; it is a product with quantita-
tive packaging for direct drinking or mixing or brewing with water in a certain proportion,
where the ethanol content (mass content) does not exceed 0.5%. According to the general
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classification rules for beverages, beverages can be divided into 11 categories: packaged
drinking water, fruit and vegetable juice, carbonated beverages, protein beverages, special
purpose beverages, flavor beverages, tea beverages, coffee beverages, plant beverages,
solid beverages, and other beverages.

The classification includes the following:

• Carbonated beverages (soft drinks) refer to drinks filled with carbon dioxide gas under
certain conditions, generally including Coke, Sprite, soda, etc.

• Fruit and vegetable juice drinks refer to fruit and vegetable juice obtained directly
from refrigerated or fresh vegetables and fruits without the addition of any foreign
substances, and are made from fruit and vegetable juice with water, sugar, acid, or
spices. Generally includes fruit juice, fresh juice, vegetable juice, mixed fruit and
vegetable juice, etc.

• Energy drinks (functional drinks) refer to a beverage that regulates human function to
a certain degree by changing the composition and nutritional content percentage of the
drink. According to energy drink categorization based on relevant references [16], they
are considered functional drinks in a broad sense including polysaccharide beverages,
vitamin beverages, mineral beverages, sports beverages, probiotic beverages, low-
energy beverages, and other beverages with healthcare functions.

• Tea drinks refer to tea products made by soaking the tea in water, extracting, filtering,
or clarifying, and/or by adding water, sugar, sour, food flavors, and fruit juices into
the tea soup. Generally includes green tea, black tea, oolong tea, wheat tea, herbal tea,
fruit tea, etc.

• Milk beverages refer to the products made from fresh milk or dairy products after
fermentation or without fermentation, generally including milk, yogurt, milk tea, etc.

• Coffee drinks are made from roasted coffee beans. Generally includes coffee.

In this paper, we investigate six kinds of drinks in all.

2.2. Preliminary about Wireless Sensing

Wireless sensing technology refers to the non-contact sensing technology for people
and the environment through universal wireless signals, such as electromagnetic waves [17],
light waves [18], and sound waves [19]. The technology has broad application prospects in
the Internet of Things, artificial intelligence, healthcare, and national defense.

Taking the RF signal as an example, the principle of wireless sensing is that the wireless
signal generated by the transmitter has physical phenomena such as direct reflection and
scattering in the propagation process, thus forming multiple propagation paths, as shown
in Figure 1. The multipath signal received at the receiver carries the information reflecting
the signal propagation space. Wireless sensing technology obtains the characteristics of
signal propagation space by analyzing the changes of wireless signals in the propagation
process so as to realize scene sensing.

LOS Signal

Reflected Signal from target

transmitter receiver

Figure 1. The rationale of wireless-signal-based drinking category detection. When different drink-
ing categories are detected, the multipath effect causes different distortions that may be used as
fingerprints to detect drinking category.

Compared with current sensing technology [20–23], it has the three following advan-
tages: (1) sensorless, it is no longer necessary to deploy special sensors to sense people
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and environment, which is different from wireless sensor networks in which sensors are
responsible for sensing and wireless signals are responsible for communication; (2) wireless,
no need to deploy wired lines for communications and sensors; (3) contactless, compared
with various wearable smart devices, users do not need to wear any devices.

2.3. Channel State Information

CSI describes how the WiFi signals propagate from the transmitter to the receiver [24],
reflecting the impacts of signal propagation, such as scattering, attenuation, etc.

When the deployed device has n transmit antennas and m receive antennas, the system
will receive m × n × s subcarriers at the receiver, where s is the number of subcarriers
in each channel. In addition, the measured channel frequency response H( f , t) can be
expressed by the following formula [25]:

H( f , t) =
Y( f , t)
X( f , t)

(1)

where X( f , t) and Y( f , t) are the transmit signals and the received signals, and f and t are
frequency and time, respectively.

Currently, there are two key methods for drinking category detection based on wireless
signals, including received signal strength (RSS) and CSI.

The WiFi signals propagate through the target to the receiver via reflection, refraction,
attenuation, etc., resulting in wireless signals distortion, which is known as the multipath
effect. RSS is sensitive to the environment and is vulnerable to multipath propagation,
which affects detection accuracy [26]. Furthermore, RSS-based detection methods do not
give fine-grained channel data.

CSI describes how the physical environment affects the wireless signals [24]. Further-
more, CSI may provide fine-grained information about WiFi signal propagation—such as
time delays, amplitude attenuation, and so on—of multipaths on each subcarrier, which
can expose information about signal propagation.

Compared with RSS, CSI can obtain more fine-grained information and higher accu-
racy [27]; so, our design chooses the drinking category detection method based on CSI.

The WiFi-signal-based drinking category detection method relies on similar CIR
measurements. To analyze whether WiFi signals can detect drinking categories, we plot the
CSI magnitude images for different drinks in the same environment and the same drinks
collected multiple times, as shown in Figure 2. From Figure 2, we can see that different
drinks have different CSI magnitudes, which can be used as a fingerprint for drinking
category detection. Meanwhile, the CSI magnitudes of the same drinking are similar, which
proves the stability of our design.

Figure 2. The CSI magnitude images of six detected drinks. The X-axis is the time, the Y-axis is the
subcarrier, and the color represents the size of the magnitude. (a) The CSI magnitudes for different
categories of drinking. (b) The CSI magnitudes collected multiple times for the same category
of drinking.
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3. Drinking Category Detection

Figure 3 shows the framework of the detection method, which includes data collection
and noise removal, feature extraction, and detection in three main phases.

Dada collection Noise removal Feature extraction Detection

APAP
LaptopLaptop

raw signals

signals with noise removed

Transmitter Receiver

... ... ... ...
...

Figure 3. Framework of the drinking category detection method.

3.1. Data Collection and Noise Removal

Data Collection. Our design uses two wireless devices to collect CSI measurements at
the receiver end of the wireless link, one as a transmitter and the other as a receiver. Current
CSI-based detection methods collect CSI measurements using the PicoScenes tool [28,29],
which uses the IWL 5300 NIC (Network Interface Card). Besides, the transmitter is a router
and the receiver is a personal computer (PC) or laptop with NICs. For our design, we
used an IWL 5300 NIC with two antennas as the receiver and a router as the transmitter.
The sequence of CSI time series for each subcarrier for a given pair of transmitting and
receiving antennas is called a CSI stream. Our design uses the PicoScenes tool to collect
data; since our design sends a packet per millisecond, the system receives 1000 packets per
second. In addition, after analysis by PicoScenes MATLAB Toolbox [30], 117 subcarriers
are received.

Noise Removal. For the fluctuation of the collected CSI measurements due to the
interference of factors such as internal CSI reference levels, transmission rates, and transmit
power levels, CSI measurements frequently contain noise in the time domain and frequency
domain. Therefore, the collected CSI measurements need to be denoised for further fea-
ture extraction and drinking category detection. In this paper, our design uses Principal
Component Analysis (PCA) to remove noise [31–34], as detailed below.

Generally, the denoising steps of PCA include preprocessing, correlation estimation,
eigendecomposition, and movement signal reconstruction. First, 1-second data are inter-
cepted for each CSI stream and the average is calculated as a constant offset for each CSI
stream, which is the average CSI amplitude. After that, the static path components in
each CSI stream are removed by subtracting the corresponding offset from each stream.
Next, the remaining CSI streams are formed into a matrix of CH. Then, we calculate the
correlation matrix, denoted CHT × CH. The dimension of the matrix is n× n, where n is
the CSI stream size and n = 117. Next, we decompose the features of the correlation matrix
to calculate its eigenvectors. Finally, we reconstruct the movement signal. We construct the
principal components using the following equation:

pi = CH × ei (2)

where ei and pi are separately the ith eigenvector and the ith principal component.
The first principal component p1 contains noise and CSI reflected back by the target.

The CSI measurements are also included in other principal components [31]; so, we discard
p1 and retain the remaining 30 principal components as denoised CSI measurements for
feature extraction.

We plot the CSI measurements of different drinking categories before and after de-
noising, as shown in Figure 4. From Figure 4, we can find that there are differences in
CSI measurements for different drinking before and after denoising, which can be used
as a fingerprint for drinking category detection. Moreover, the CSI measurements after
denoising are smoother, which proves that the noise has been removed.
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Figure 4. The CSI measurements of different drinking categories. The X-axis is the time and the
Y-axis is the magnitude. (a) Before denoising. (b) After denoising.

3.2. Feature Extraction

Time domain statistics features [35,36] are extracted, such as standard deviation (STD),
peak, Kurtosis, etc. We also extract the Frequency domain statistics features [37,38], in-
cluding mean frequency (MF), root-mean-square frequency (RMSF), standard deviation
frequency (STDF), etc. We merge them as the final detection feature, and the feature
descriptions are shown in the following Table 1.

Table 1. Time–frequency domain statistics feature interpretations.

ID Interpretation

STD [37–39] The standard deviation of CSI measurements. Calculate the square of the difference between
the CSI measurements and their means, and then calculate the square root of its arithmetic mean.

RMS [37,40] The root-mean-square of CSI measurements. Calculate the mean of the square
sum of the CSI measurements and square it.

KP [36–38,41] The Kurtosis of CSI measurements. Calculates the fourth central moment for the CSI
measurements and is divided by the second central moment squared.

SF [37] The form factor of CSI measurements. Calculates the ratio of the root-mean-square
and rectified mean of the CSI measurements.

CF [37,40] The crest factor of CSI measurements. Calculates the ratio of the maximum value
and root-mean-square of the CSI measurements.

MF [37] The mean frequency of CSI measurements. Calculate the frequency of CSI and calculate its mean.
FC [37] The frequency center of CSI measurements. Calculate the frequency of CSI and calculate its median.

RMSF [37] The root-mean-square frequency of CSI measurements. Calculate the frequency of CSI and calculate its RMS.
STDF [37] The standard deviation frequency of CSI measurements. Calculate the frequency of CSI and calculate its STD.

Xr [42] The denominator of clearance factor of CSI measurements. Calculate the square root of
the absolute value of the CSI measurements; then, calculate its mean and square it.

pk [43] The peak of CSI measurements. Calculate the difference
between the maximum and minimum of the CSI measurements.

I [40,43] The impulse factor of CSI measurements. Calculates the
ratio of the peak and rectified mean of the CSI measurements.

L [43] The clearance factor of CSI measurements. Calculates the
ratio of the peak and Xr of the CSI measurements.

E [36,38,39,41] The time domain energy of CSI measurements. Calculate the sum of
absolute values of the CSI measurements.

p [44–46] The frequency of CSI measurements. Calculate frequency using Power Spectral Density.

We plotted the box plots of the feature values, as shown in Figure 5. From Figure 5,
we can see that the distribution of feature values of different drinking under each feature
is different, which proves that our proposed features are effective to distinguish differ-
ent drinking.

To analyze the necessity of the 15 features, we have verified the effectiveness of the
features based on the F-test, and the results of the F-test are represented in a heat map,
as shown in Figure 6. Each subplot is the F-test result for different drinking under one
feature, and the rows and columns represent six types of drinking. The smaller the F-test
result, the better—that is, the lighter color proves that the difference between the two
drinking in the corresponding rows and columns under that feature is greater and they
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can be distinguished more easily by this feature. As we can see from the figure, there are
multiple areas with lighter colors in each subplot, which proves that the F-test results are
significant between multiple drinking under our feature. It shows that all of our features
can clearly distinguish between more than two types of drinking, proving the validity of
our features. Therefore, we do not need to redundantly remove features.
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Figure 5. The box plots of the feature values. The X-axis is the different drinking and the Y-axis is the
range of extracted feature values. Each subplot represents a box plot of the feature values of different
drinking under one feature.
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Figure 6. The heat maps of the featured F-tests. Each subplot is the F-test result for different drinking
under one feature, and the rows and columns represent six drinking. The lighter the color, the smaller
the F-test result; the greater the variability between the two drinking in the corresponding row and
column, the better the feature.

3.3. Detection

Our design uses a fully connected, feed-forward artificial neural network for drinking
category detection, as shown in Figure 7. The input to the detection model is the features
extracted above, and the output is the label of the drinking. Generally speaking, build-
ing and using a detection model are two steps, including training the model and using
the model.

The extracted feature length determines the number of nodes within the input layer,
and the drinking categories affect the number of nodes within the output layer. The
detection model learns how to relate CSI measurements to different drinking categories
based on the training data. Once the model has learned the mapping, it can easily be used
to test the CSI measurements. We use the back propagation of the Stochastic Gradient



Entropy 2022, 24, 1700 8 of 20

Descent (SGD) method and the cross-entropy loss function to train the detection model,
see Appendixes A and B for details. The training cost of the model comes from two parts,
including collecting and preprocessing training data, and building the detection model.

... ...

...

Milk beverages

Energy drinks

Tea drinks

Figure 7. ANN-based drinking category detection model.

4. Experimental Results
4.1. Experimental Setup

Wireless devices setup. We employ a TL-WR886N router as the transmitter and an
IWL 5300 NIC with a mini PC as the receiver to collect CSI. In our design, shown in Figure 8,
we deploy the transmitter on one side and the receiver on the other side, the transmitter is
1 m from the receiver, and the drink to be tested is placed in the midline position between
the two. Besides, the table is 1.2 m from the ground.

0.5m 0.5m

1.2m

(a)

receivertransmittertarget

(b)

Figure 8. Experimental setup. (a) Device setup image. (b) Experimental environment image.

Drinking categories. In our design, we chose six common drinks as test targets,
including Coke, freshly squeezed watermelon juice, RedBull energy drink, black tea, milk,
and instant coffee. All drinks were purchased from the supermarket; so, the density and
materials of the same drinks to be tested were kept fixed. During the data collection, the
volume of all drinks to be tested was fixed at 300 mL, and the collection environment and
container were kept constant.

Model Parameters. Our design utilizes sigmoid as the kernel function, the loss function
is the Mean absolute error performance function (MAE), and the optimization problem is
solved using Stochastic Gradient Descent (SGD).

Model Evaluation. In drinking category detection model, we consider the detection
performance impact of different hidden layer numbers starting from two to ten and different
numbers of neurons in the hidden layer from 100 to 1000. In addition, we compare our
detection model with current common learning methods and we use cross-validation to
evaluate our design.

Evaluation metrics. Four evaluation metrics, including accuracy, precision, recall, and
f1-score, are used to evaluate the effectiveness of the proposed method in the experiment.
When TP, TN, FP, and FN represent the true positive rate, the true negative rate, the false
positive rate, and the false negative rate, respectively, the following equation may be used
to calculate the above four evaluation metrics:

accuracy =
TP + TN

TP + TN + FP + FN
(3)

precision =
TP

TP + FP
(4)
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recall =
TP

TP + FN
(5)

f 1− score = 2× precision× recall
precision + recall

. (6)

4.2. Main Findings of the Evaluation

The main findings of evaluations are as follows:

• Our method achieves about 87.9% accuracy for detecting the drinking categories. The
results show that this method can successfully achieve drinking category detection,
which promotes its actual implementation in further development.

• Our system is novel and intelligent compared with current drinking category detection
methods. The system’s novelty and intelligence are represented in the fact that it does
not need any support of professional devices and it can be achieved using commercial
devices. However, our design only provides a prototype framework; more drinking
categories can be detected and additional intelligent functions can be developed in
the future.

4.3. Overall Performance

In all detection models, we fixed the training datasets and test datasets. Besides, we
used the evaluation metrics above to evaluate the detection performance, which is shown
in Figure 9a. Besides, we plot the confusion matrix for the performance of our design, as
shown in Figure 9b. Note that in the experiment, we use a seven-layer ANN with 500 nodes
to detect the drinking category.

Figure 9 shows the drinking category detection performance in the violin plot. It can
be seen from Figure 9 that our design can detect the drinking category with an accuracy
of 87.9%, and the average precision, recall, and f1-score of drinking detection are 88.3%,
87.9%, and 87.8%, respectively.

Evaluation of drinking category detection model

Coke

RedBull

88.25%  3.75%      2%     2.25%    1.25%     2.5%
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Figure 9. Overall performance. (a) Overall performance of evaluation metrics. (b) Overall perfor-
mance of confusion matrix.

4.4. The Network Parameters

In the parameter adjustment of neural network, the number of hidden layer nodes
and the number of layers are also used closely, which can fully adjust the effect of neural
network. The activation function and model complexity control play a major role. In the
process of neural network training, parameter adjustment is through continuous attempt
and running, and it is a common optimization method to adjust the four parameters in the
neural network model. These parameters need to be combined continuously to achieve the
best model. The most typical parameters are the number of hidden layers, the number of
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nodes in each hidden layer, and the loss function. Thus, in the experiment, we evaluate the
three parameters.

4.4.1. Number of Hidden Layers

The results show that a seven-layer ANN will be the better choice of our design.
More network layers can better help the network capture relationships, but can also

lead to overfitting. Therefore, to evaluate the impact of hidden layers on the method
performance, we increase the number of hidden layers from two layers to ten layers.
The convolution kernel structure is the same in the experiment and the results of evaluation
metrics are shown in Figure 10. The experimental results show that detection performs
well when the ANN used is seven layers.

The number of ANN layers

Figure 10. The comparison results of drinking category detection performance using different
ANN layers.

As can be seen from Table 2, the accuracy of eight layers is the highest, which is 88.79%;
seven layers have the second highest accuracy of 88.62%; and the three-layer accuracy is the
lowest, which is 86.04%. The difference between the seven-layer and eight-layer accuracy is
about 0.1%, which can be ignored, and the difference from the lowest accuracy is about 3%.
The more hidden layers, the higher the training time. Besides, from Figure 10, we can see
that the seven-layer accuracy distribution is more compact; so, our design finally chooses
seven layers as the most suitable number of hidden layers—of course, eight layers can also
be chosen.

Table 2. The results of hidden layer size.

Hidden Layer Size 2 3 4 5 6 7 8 9 10
accuracy 0.8696 0.8742 0.8604 0.8841 0.8746 0.8863 0.8878 0.8604 0.8825
precision 0.8738 0.8776 0.8637 0.8842 0.8793 0.8863 0.8863 0.8639 0.8865

recall 0.8696 0.8742 0.8604 0.8841 0.8746 0.8863 0.8863 0.8604 0.8825
f1-score 0.8696 0.8737 0.8600 0.8842 0.8793 0.8863 0.8878 0.8604 0.8820

4.4.2. Number of Neurons in Hidden Layer

The results demonstrate that 500 is an excellent choice for ANN nodes at each layer.
When the number of nodes in the network is too large, the information processing

ability is enhanced, causing the limited amount of data included in the training dataset to
not be enough to train all the neurons in the hidden layer, and it is difficult to obtain the
expected effect. In order to properly choose the number of nodes for each layer in ANN,
we choose the number of nodes in each layer from 100 to 1000 to compare the performance
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improvements. It should be noted that the network structure employed in the models is
the same. Figure 11 shows how the number of ANN layer nodes impacts the detection
performance. As shown in Figure 11, when the number of nodes is 500, our design achieves
pretty high accuracy in drinking category detection.

The number of ANN layer nodes

Figure 11. The comparison results of drinking category detection performance using different nodes
of ANN layers.

As can be seen from Table 3, when the number of nodes in ANN hidden layers is
500, the accuracy of the drinking category detection model is the best, which is 91.8%.
When the number of nodes is 300, the accuracy of the detection model is the worst, about
84%. Compared with other node numbers, the difference between the highest and lowest
accuracy is about 8%, which is about 4% higher than the average accuracy. Therefore,
500 nodes are the best choice, and the detection performance is the best at this time.

Table 3. The results of the number of neurons in each hidden layer.

Hidden Neuron Size 100 200 300 400 500 600 700 800 900 1000
accuracy 0.8938 0.8758 0.8404 0.8867 0.9183 0.8804 0.8725 0.8879 0.8454 0.8900
precision 0.8981 0.8752 0.8459 0.8888 0.9219 0.8839 0.8777 0.8921 0.8508 0.8942

recall 0.8938 0.8758 0.8404 0.8867 0.9183 0.8804 0.8725 0.8879 0.8454 0.8900
f1-score 0.8939 0.8752 0.8401 0.8861 0.9181 0.8797 0.8726 0.8877 0.8454 0.8900

4.4.3. The Different Loss Function

Experimental results show that using MAE as loss function has higher detection ac-
curacy.

The loss function is a measure of the performance of the prediction model. No loss
function can be applied to all types of data. In order to select the loss function suitable
for the drinking category detection model, we selected the loss function including MAE,
Mean squared error performance function (MSE), Sum absolute error performance function
(SAE), Sum squared error performance function (SSE), and Cross-entropy performance
function (CE) to compare their performance. The network structure used in the model is
the same. Figure 12 shows how different loss functions affect the detection performance. As
shown in Figure 12, when the loss function is MSE, the performance of drinking category
detection is the best.
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The different loss function

Figure 12. The comparison results of drinking category detection performance using different
loss functions.

As can be seen from Table 4, when the loss function is MAE, the performance of the
drinking category detection model is the best (88.8%) and the time complexity is good
(2.8). When the loss function is MSE, the accuracy is the second best, which is 0.75% lower
than the highest accuracy, but the time complexity is 2.5 higher than MAE. When the loss
function is CE, the performance of the model is the worst (54.1%) and the time complexity
is the best (1.3). Therefore, the loss function selected as MAE is the most suitable, with the
best performance and good time complexity.

Table 4. The results of the different loss functions.

Loss Function MAE MSE SAE SSE CE
accuracy 0.8879 0.8804 0.7583 0.7796 0.5408
precision 0.8913 0.8852 0.7654 0.7858 0.5452

recall 0.8879 0.8804 0.7583 0.7796 0.5408
f1-score 0.8877 0.8800 0.7586 0.7788 0.5386

time complexity 2.8125 5.2656 6.0156 2.6406 1.2969

4.5. The Different Detection Models

The results show that the ANN detection model has a significant performance im-
provement compared with other detection models.

To evaluate the drinking category detection performance, we compare ANN with
three commonly used learning methods including SVM (Supported Vector machine), RF
(Random Forest), and KNN (K-Nearest Neighbor). The results are shown in Figure 13.
From Figure 13, we can see that ANN has the best detection performance compared with
other algorithms.
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The different detection models

Figure 13. The comparison results of drinking category detection performance using different
detection models.

From Table 5, we can see that the performance of traditional machine learning algo-
rithms for drinking category detection does not vary much, with an average accuracy of
about 75%. The ANN model has the best detection performance, higher than 88%, and the
SVM is the next best, at about 78%. Therefore, the best performance for drinking category
detection is achieved when ANN is chosen for the detection model.

Table 5. The results of different detection models.

Detection Model SVM KNN RF ANN
accuracy 0.7767 0.7246 0.7492 0.8879
precision 0.7830 0.7289 0.7543 0.8913

recall 0.7767 0.7246 0.7492 0.8879
f1-score 0.7758 0.7230 0.7482 0.8877

5. Discussion

There is still potential for improvement in terms of the performance of our design, and
we will discuss various points below.

Feasibility. Since our design requires a fixed transceiver, changes in device deploy-
ment may require the re-collection of fingerprints in real-world scenarios. We believe this
will not be a problem as we can solve it using transfer learning. For the drinking category
detection model used in this paper, in addition to the above six drinking categories, other
types of drinking can also be added to the training dataset, allowing our design to identify
more drinking categories. However, the increase in the variety of drinks may affect the
detection performance;, we can extract other features that are better suited for drinking
category detection, which is beyond the scope of this paper and will be the subject of
future research.

Depending on particular hardware cards. In order to collect CSI measurements,
specific NICs in the Linux system, which includes IWL 5300 NICs and Atheros NICs, must
be used. However, both wireless transmitters and NICs are commercial devices, and they
are quite inexpensive—for example, the IWL 5300 network card, costs around USD 3. With
the growth of smart houses, wireless transmitters may become widespread. Furthermore,
as CSI-based detection applications proliferate and mature, CSI will be accessible to upper
layers via most NICs in the foreseeable future.

Target. The purpose of this paper is to detect drinking categories, and the drinking to
be tested is a single category. We have not detected mixed drinking categories. Besides,
there is research on adulterants identification based on wireless signals [12,14,47,48], and
we have performed some validation experiments, but this is our future work.
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Impact factors. Our design assumes no human activity in the current environment
when detecting the drinking category, which is the assumption of most current wireless-
signal-based detection methods. When the environment is noisy or there is human activity,
the CSI measurements received at the receiver are mixed signals [24,27] of the target signals
and environmental noise and they are difficult to separate. However, we believe that by
combining the method of Wang [49] and Venkatnarayan [34], the noisy signals can be
separated to improve the detection performance, which is our work in the future. Because
the application scenario of our design is security check and self-checkout, all drinks are
purchased from supermarkets, and the density and material of the same drinks to be tested
are kept fixed. In addition, we designed experiments and found that the CSI measurements
of different drinking in different equipment deployments, volumes, and container shapes
are different and can be used as fingerprints to detect drinking categories. Furthermore,
humidity has little impact on the propagation of WiFi signals [50]. In the actual application,
we can re-collect data in a new environment to perform the detection.

6. Related Work

Material identification techniques play an important role in industry [51,52], tech-
nology, etc. For example, Zhou et al. [51] proposed a tool wear condition monitoring
method in small samples. Dhekne et al. [14] distinguished between Diet Coke and Pepsi by
UWB signals. Our work focuses on designing a novel drinking category detection method
based on wireless signals and an artificial neural network. Current drinking category
detection technologies are generally divided into four types: instrument-based methods,
wireless-signal-based methods, sensor-based methods, and optical-based methods. We
will introduce them as follows. Table 6 shows these methods and their differences from
our design.

Instrument-based methods. This method utilizes the differences in chemical prop-
erties of different drinking, applies instruments to analyze them, and then detects the
target [7–10]. For example, Agilent Technologies [10] uses the instrument to measure
the permittivity of the target to be measured, and since different drinking has different
permittivity, it can be used to detect drinking. However, this method requires that the
chemical properties of the different drinking are significantly different; otherwise, the
detection performance is significantly reduced. Moreover, the method with an instrument
is contacting, which means that it can contaminate the drinking to be measured.

Wireless-signal-based methods. This method utilizes the propagation characteristics
of wireless signals through the target drinking to detect the drinking category. Currently,
there are several popular wireless-signal-based liquid detection methods: based on RF
signals [11–13,53], based on UWB signals [14,54], radar-based signals [48,55]. For example,
TagScan [12] detects liquids by extracting the Received Signal Strength Indicator (RSSI) and
phase changes from the RF signals. However, this method requires a complicated setup
and is time-consuming to label each target. LiquID [14] identifies liquids based on UWB
signals by estimating the permittivity. However, UWB signals are not universal in daily
life. FG-LiquID [48] identifies 30 different liquids based on Radar signals. However, radar
devices are expensive and radar signals interfere with noise.

Optical-based methods. This method analyzes the optical spectra of different liquids
by obtaining information about the optical absorption or reflection from the liquid to
detect the target [56–58]. For example, Al-light [56] utilizes the principles of near-infrared
spectroscopy to detect alcohol concentration. However, the method requires specialized
equipment and professional people to operate it.
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Table 6. Drinking category detection related work.

Models Pros Cons

Instrument-based
methods

Equipment [7–10] high accuracy equipment maintenance
drinking contaminate

Wireless-signal-based
methods

RF [11–13,53] estimate the horizontal
cut images of targe

waste resources

UWB [14,54] identify a wide variety not universal signals

radar [48] adulterants differentiation affected by noise

Optical-based
methods

Device [56–58] fine-grained detection specialized equipment
professional people operate

7. Conclusions

This paper presents a novel drinking category detection method based on wireless
signals and an artificial neural network, which identifies which category (i.e., Coke, tea,
milk) contains the detected target. A convolution kernel is first used to extract features
automatically; then, ANN is used to detect the target. A large number of experiments are
performed to demonstrate the effectiveness of the method, including model parameters
comparison and currently used model comparison. Experimental results demonstrate the
effectiveness of our design, which can achieve about 88% accuracy in multiclass classi-
fication. We believe that combined with multicategory detection and considering more
interference factors and more drinking categories in current drinking category detection
systems, the system can be more intelligent, which is beyond the scope of this paper and
will be our future work.
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Abbreviations
The following abbreviations are used in this manuscript:

NFC Not From Concentrated
CSI Channel State Information
ANN Artificial Neural Network
RF radio frequency
UWB Ultra-wideband
COTS commercial off-the-shelf
PCA principal component analysis
RSS received signal strength
NIC Network Interface Card
STD standard deviation
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MF mean frequency
RMSF root-mean-square frequency
STDF standard deviation frequency
SGD Stochastic Gradient Descent
MAE Mean absolute error performance function
MSE Mean squared error performance function
SAE Sum absolute error performance function
SSE Sum squared error performance function
CE Cross-entropy performance function

Appendix A. ANN

Artificial neural networks (abbreviated ANN), also referred to as connection models
or neural networks, are mathematical models of information processing that use a structure
comparable to the synaptic connections of brain nerves. The neural network is simply
to connect neurons to form a network, and it is characterized by multiple layers and full
connection between neurons—that is, the neurons of the latter layer will be connected to
each neuron of the former layer.

Generally, the input layer is the network’s leftmost layer, and the neurons in it are
called the input neurons. The rightmost and output layers contain output neurons. The mid-
dle layer is known as the hidden layer because the neurons inside are neither input nor
output. Neurons are the fundamental building blocks of neural networks, and there are
multiple kinds of neurons. In this paper, we use sigmoid as the neurons and activation
function of the network, which can be calculated as the following equation:

σ(z) =
1

1 + e(−z)
. (A1)

The neural network function is such that we provide it with a large amount of data
(both input and output) for training in advance. After training, we hope it can also give a
satisfactory output for the input of real environments. Therefore, we use the loss function,
which can be represented by the difference between the real output and predicted output.

For a three-layer artificial neural network, it can be represented by the following equation:

f (x) = G(b(2) + W(2)(s(b(1) + W(1)x))). (A2)

For the input layer, what you input is the input of input layer. For example, there
are n neurons if the input is an n-dimensional vector. For the hidden layer, which is fully
connected with the input layer, the output of the hidden layer is f (w(1)x + b(1)) while
supposing that the input layer is presented by vector x, and w(1) is the weight (also known
as the connection coefficient), b(1) is the offset, and f can be a commonly used tanh function
or sigmoid function. The following equation may be used to calculate the tanh function:

tanh(z) =
ez − e−z

e2 + e−z . (A3)

Indeed, the hidden layer to the output layer may be considered as a multi-category logical
regression—that is, so f tmax regression, the output of the output layer is so f tmax(W(2)x1 +
b(2)), and x1 represents the output f (W(1)x + b(1)) of the hidden layer. For a specific problem,
how can we determine the connection weight and offset between layers? The gradient descent
method (SGD) is used to solve the optimization problem, and it first randomly initializes all
parameters, then trains iteratively, continually calculating gradients and updating parameters
until the given condition is fulfilled, for example, when the error is small enough or the
number of iterations is large enough.

The connection weights between nodes are adjusted according to the back-propagation
error, and the correction direction of each weight is the opposite direction of the gradient of
the error function. Let wij be the weight of the ith hidden layer node to the jth output layer
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node, η be the learning rate, and E represent the error function of the output layer. We can
obtain the following equation:

∆wij = −η
∂E

∂wij
. (A4)

Appendix B. Loss Layer

Generally, the loss layer is used in the training phase of the model. After each batch
of training data is sent to the model, the predicted result is output through forward
propagation, and the loss layer calculates the difference between the predicted result and
the real result. Then, the difference is used to update each parameter of the model through
back propagation to reduce the loss between the real result and the predicted result, so
that the predicted result generated by the model moves closer to the real result, so as to
achieve the purpose of learning. The loss layer can be used to solve both regression and
classification problems, which accomplishes this based on the loss function.

The loss function is an operation function used to measure the difference between
the predicted result and the real result of the model, which is a non-negative, real-valued
function. The smaller the loss function, the more robust the model will be.

Currently, the commonly used loss functions of ANN are MAE, MSE, SSE, and CE,
which will be introduced as follows.

MAE is a common loss function used in regression models and classification models.
It calculates the sum of the absolute values of the difference between the real result and
the predicted result and represents the average margin of error of the predicted result,
regardless of the direction of the error. MAE is applicable to the situation where there are
outliers in the training data, and it can be updated in the direction of reducing the error of
outliers through calculation without degrading the overall performance of the model. The
formula of the MAE is expressed as

MAE =
1
n

n

∑
i=1
| fi − yi| (A5)

where fi is the output result of neural network and yi is the real result for each group of
input, when there are assumed n groups of sample data including input and real results
(also called expected results or expected outputs).

MSE calculates the Euclidean distance between the predicted result and the real result.
In the classification problems, the ANN model converts the labels to calculate the loss
between the predicted result and the real result. In regression problems, MSE is used to
calculate the distance from the sample points to the regression curve, the sample points
can better fit the regression curve by minimizing the squared loss, and its formula can be
expressed as

MSE =
1
n

n

∑
i=1

( fi − yi)
2. (A6)

Absolute error refers to the difference between the predicted result and the true result,
which reflects the magnitude of the deviation of the predicted value from the true value; so,
it is called absolute error. SAE sums the absolute errors according to the following formula:

SAE =
n

∑
i=1
| fi − yi|. (A7)

SSE calculates the sum of the squares of the error corresponding to the real result and
the predicted result. After fitting an appropriate model according to n observations, the
remaining part that cannot be fitted is called error; the sum of squares of all n residuals is
called sum of squares of errors, and the formula is as follows:



Entropy 2022, 24, 1700 18 of 20

SSE =
n

∑
i=1

( fi − yi)
2. (A8)

CE is used to evaluate the difference between the predicted result obtained by training
and the real result. In the classification problem of uneven positive and negative samples,
CE is often used as the loss function because the surface of CE is very steep; so, the learning
speed is relatively fast when the model effect is poor, which is conducive to the iteration of
gradient descent. At present, CE is a commonly used classification loss function in neural
networks, and can also be used to solve regression problems. It can be calculated as the
following equation:

CE = −
n

∑
i=1

fi log yi. (A9)
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