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Abstract: Recent studies of alternative probabilistic transformation (PT) in Dempster–Shafer (DS)
theory have mainly focused on investigating various schemes for assigning the mass of compound
focal elements to each singleton in order to obtain a Bayesian belief function for decision-making
problems. In the process of such a transformation, how to precisely evaluate the closeness between
the original basic belief assignments (BBAs) and transformed BBAs is important. In this paper, a
new aggregation measure is proposed by comprehensively considering the interval distance between
BBAs and also the sequence inside the BBAs. Relying on this new measure, we propose a novel multi-
objective evolutionary-based probabilistic transformation (MOEPT) thanks to global optimizing
capabilities inspired by a genetic algorithm (GA). From the perspective of mathematical theory,
convergence analysis of EPT is employed to prove the rationality of the GA used here. Finally, various
scenarios in evidence reasoning are presented to evaluate the robustness of EPT.

Keywords: probabilistic transformation (PT); similarity measure; convergence analysis; belief
functions (BFs)

1. Introduction
1.1. Background and Research Motivation

Since the pioneering work of Dempster and Shafer [1,2], known as Dempster–Shafer
evidence theory (DST), belief functions are widely used in information fusion for decision
making [3,4]. However, the computational complexity of reasoning with DST is one of
the major points of criticism this formalism has to face. To overcome this difficulty, var-
ious approximating methods have been suggested that aim at reducing the number of
focal elements in the frame of discernment (FoD) in order to maintain the tractability of
computation. One common strategy is to simplify the FoD by removing or aggregating
focal elements for approximating the original belief function [5]. Among these methods,
probabilistic transformations (PTs) seem particularly desirable for reducing such compu-
tational complexity by means of assigning the mass of non-singleton elements to some
singletons of the FoD [6,7]. The research on this probabilistic measure has received a lot of
attention [8], and many efficient PTs have been proposed by scholars in recent years.
Among them, a classical transformation, denoted as BetP [6], was usually adopted because
it offered a compromise between the maximum of credibility (Bel) and the maximum
of plausibility (Pl) for decision making. Unfortunately, BetP does not provide the high-
est probabilistic information content (PIC) [9], and Shenoy argued against BetP in his
publication [10]. Sudano [11] also proposed series of alternatives and principles for them
similar to BetP, which were called PrPl, PrBel and PrHyb. CuzzP [12], which was proposed
by Cuzzolin in the framework of DST in 2009, showed its probabilistic transformation
ability. Another novel transformation was proposed by Dezert and Smarandache in the
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framework of Dezert–Smarandache theory (DSmT) which was called Dezert–Smarandache
probability (DSmP) [9], and comprehensive comparisons were made in [9] to prove the
advantages of DSmP with respect to other PTs.

1.2. Challenges

Although various techniques have been proposed to evaluate PTs, these methods
have limitations. On the one hand, the PIC or Shannon’s entropy criterion was applied to
evaluate PTs, with less uncertainty (clarity) for the BBAs obtained from PTs being perferred
in order to make decisions easily. However, Han et al. [13] and Bucci in [14] illustrated the
irrationality of the overemphasizing of the Shannon entropy or PIC. On the other hand, from
the perspective of fidelity, to characterize the difference between the transformed BBAs and
original BBAs, various distances were applied. The most famous distance was DJ [15], but it
was not good enough to capture the difference between BBAs in some cases, and these can
be seen in [16,17]. Thus, either the PIC or distance alone is not efficient and comprehensive
enough to quantify all sorts of aspects of dissimilarity which inevitably need to be involved
in PTs. To address incomprehensive evaluations, several two-dimensional measures [18]
have been proposed in order to make sure that the results obtained by PTs are consistent in
some manner with the original BBAs. Han in [19] proposed a 2D criteria which jointly uses
distance and PIC measures to create a balance between fidelity and clarity. Liu [16] used a
two-dimensional measure to effectively detect conflicts among the evidence. In [20], Liu
proposed both a distance and a conflict coefficient based on probabilistic transformations
BetP to characterize the dissimilarity, which are complementary in a certain sense. That
aside, Deng [21] developed a new probability transformation method called the decision-
based PT in belief functions theory. Following Deng’s idea [21], Zhao [22] proposed an
importance-based PT to achieve the transformation of original basic belief assignments.
Recently, Ma [23] integrated a fuzzy closeness and correlation coefficient to generate a new
dissimilarity measure to characterize not only the difference between BBAs but also the
divergence degree of the hypothesis that two BBAs support. By analyzing the mentioned
existing methods, the relationship between the techniques of PTs and their corresponding
evaluations are almost independent, except in [19]; that is to say, the methods of evaluation
only assess the existing PTs instead of facilitating the development of novel PTs themselves.

1.3. Contributions

In this paper, we present a novel PT method based on a multi-objective algorithm
(MOEPT) using reasonable and comprehensive two-dimensional criteria in order to capture
the similarity in the process of a PT. This new method has some connections with the recent
algorithm proposed in [19]. However, the main differences lie in the following aspects:

• The 2D criteria, PIC and Jousselme’s distance have pointed out its drawbacks in many
references [17,24]. Thus, an efficient and different aggregation measure is proposed. Its
novelty lies in considering the drawback of the past description of the distance between
the evidence. In other words, up to now, most distances were defined according to
the corresponding focal elements between two sources of evidence, and the sequence
inside the assignments of the focal elements themselves was not considered. The
sequence might also lead to dissimilarity, which is referred to as “self-conflict or
self-contradiction” [25];

• More specific steps of evolutionary-based algorithms are given in detail. Aside from
that, the convergence analysis of the MOEPT is illustrated to prove the rationality of
using GAs. Moreover, some bugs are detected and fixed when using the MOEPT with
traditional constraints;

• The specific application problem, target type tracking (TTT), is efficiently solved and
discussed based on the proposed method with a novel simple constraint.

Compared with traditional PTs, global search replaces designing various assigning
operators in classical PTs, and the evaluation criteria are embedded into an MOEPT to
provide important guidance for the searching procedure. Specifically, masses of singletons
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are randomly generated in an evolutionary-based framework, which needs to satisfy with
the basic constraints for probability distributions in evidence reasoning. Additionally, an
assessment factor is presented to assess the best individual in all populations by a special
objective function (desirable evaluation criteria). The simulation results in 4D FoD test
cases show that in these problems, the proposed MOEPT was able to outperform other
PTs from the perspective of the 2D criteria. Moreover, we propose a simple constraint-
handling strategy within the MOEPT that is well-suited for two-target type tracking (2-TTT)
problems, which to some extent encourages the application of MOEPTs to more complex
and real-world decision-making problems.

The remainder of this paper is structured as follows. In Section 2, we briefly summarize
the basis of DST. The new aggregation measure is proposed in Section 3. In Section 4, multi-
objective evolutionary algorithms (EAs) based on a two-dimensional objective function are
proposed. In Section 5, several examples and comprehensive comparisons are carried out.
A simple pattern recognition problem and also a target type tracking problem are presented
and solved in detail at the end of this section. The conclusions are drawn in Section 6.

2. Basis of Belief Functions

In this section, we introduce the belief function terminology of DST and the notations
used in the sequel to this paper.

2.1. DST Basis

In DST [2], the elements θi (i = 1, . . . , N) of the frame of discernment (FoD) Θ ,
{θ1, . . . , θN} must be mutually exhaustive and exclusive. The power set of the FoD is
denoted as 2Θ, and a basic belief assignment (BBA), also called a mass function, is defined
by the mapping: 2Θ → [0, 1], which satisfies m(∅) = 0 and

∑
A⊆2Θ

m(A) = 1 (1)

where m(A) is defined as the BBA of A. The element A is called a focal element of m(.) if
m(A) > 0. The belief and plausibility functions, which are in one-to-one mapping with the
BBA m(.), are defined for all A ⊆ Θ by

Bel(A) = ∑
B∈2Θ |B⊆A

m(B) (2)

Pl(A) = 1− Bel(Ā) = ∑
A,B∈2Θ |A∩B 6=∅

m(B) (3)

where Ā , Θ \A is the complement to A in Θ. The belief interval [Bel(A), Pl(A)] represents
the uncertainty committed to A, and the bounds of this interval are usually interpreted as
lower and upper bounds of the unknown (possibly subjective) probability of A.

In order to fuse n bodies Of evidence (BOEs), Dempster’s rule of combination is
usually used in the DST framework. The combination of n distinct BOEs is achieved as
follows:

m(A) =


0, i f A = ∅

∑∩Ai=A ∏1≤i≤n mi(Ai)

∑∩Ai 6=∅ ∏1≤i≤n mi(Ai)
, i f A 6= ∅

(4)

2.2. Classical Probabilistic Transformations

The efficiency of a probabilistic transformation (PT) in the field of decision making
was analyzed in depth by Smets [6]. Various PTs have been proposed in the open literature
such as BetP [6,26], CuzzP [12], DSmP [9], PrBP1 and PrBP2 [27], as well as Cobb and
Shenoy’s normalization of plausibility [10]. The simple and classical transformation (BetP)
is briefly recalled in this subsection.
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Pignistic Transformation (BetP)

Smets in [6,26] first proposed pignistic (also called betting) probability to make deci-
sions, which aims to transfer the mass of belief of each non-specific element onto the single-
tons. The classical pignistic probability is defined as BetP(∅) = 0, and ∀A ∈ 2Θ \ {∅}:

BetP(θi) , ∑
A⊆2Θ ,A 6=∅

|θi ∩ A|
|A|

m(A)

1−m(∅)
(5)

Because in Shafer’s framework m(∅) = 0, Equation (5) can simply be rewritten for
any singleton θi ∈ Θ as

BetP(θi) = ∑
B∈2Θ ,θi⊆B

1
|B|m(B) = m(θi) + ∑

B∈2Θ ,θi⊂B

1
|B|m(B) (6)

2.3. Distance Proposed by Han and Dezert dE
BI

The Jousselme’s distance, which was widely denoted as DJ in [15], was applied in
many recent works [19,28], but the particular choice of the DJ distance is not a very good
choice because one knows that the DJ distance has bad behavior. This was clearly explained
recently in [17,24]. Assuming that two independent BBAs m1(·) and m2(·) are defined on
Θ = {θ1, θ2, . . . , θn}, for each focal element θi ∈ Θ (i = 1, 2, . . . , 2n − 1), belief intervals
of θi for m1(·) and m2(·) can be calculated, which are denoted by [Bel1(θi), Pl1(θi)] and
[Bel2(θi), Pl2(θi)], respectively. The strict distance between the interval numbers [a, b] and
[c, d] is defined by [29]

dI([a, b], [c, d]) =

√
[
a + b

2
− c + d

2
]2 +

1
3
[
b− a

2
− d− c

2
]2 (7)

Therefore, we can calculate the distance between BI1(θi) : [Bel1(θi), Pl1(θi)] and
BI2(θi) : [Bel2(θi), Pl2(θi)] according to Equation (7). Thus, we can obtain a total of 2N − 1
belief interval distance values for all θi ∈ Θ. Aside from that, the Euclidean family belief
interval-based distance dE

BI can be rewritten as

dE
BI(m1, m2) =

√√√√Nc ·
2n−1

∑
i=1

[dI(BI1(θi), BI2(θi))]2 (8)

Here, Nc = 1/2n − 1 is the normalization factor. In this paper, we regard dE
BI as

one criterion for evaluating the degree of similarity (similarity representing the degree
of difference between the original BBAs and the transformed ones in [30]) between the
original BBAs and the transformed ones.

3. New Evidence for Similarity Characterization

As mentioned in previous section, those distances (i.e., Jousselme’s distance [28]) and
other metrics such as the PIC [31] or entropy [27] were widely applied to measure the
degree of “similarity or dissimilarity” between BBAs. However, only the corresponding
focal elements (or the relevant focal element set) between two sources of evidence are
described or characterized. This one-sided view does not consider the order of size of the
assignment of each focal element in the evidence, which might lead to “self-conflict or
self-contradiction”. To consider such “information” produced by the evidence itself, here, a
new evidence similarity measure is defined between two evidential sources according to
the order of size of the assignment. Prior to this, to give this new similarity measure, first
we define the order correlation coefficient between two sets of data:

Definition 1. [32] Given two sets of data {x1, x2, . . . , xn} and {y1, y2, . . . , yn}, here, x1, x2, . . . , xn
and y1, y2, . . . , yn are in an ascending order. After sorting, two sets of data xp1 , xp2 , . . . , xpn and
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yq1 , yq2 , . . . , yqn meet xp1 ≤ xp2 ≤ . . . ≤ xpn and yq1 ≤ yq2 ≤ . . . ≤ yqn , respectively, for each pi
and index their positions from q1, q2, . . . , qn, assuming it is qj; that is, qj = pi. Note that j = f (i),
and the correlation coefficient is

µ =
∑n

i=1(i− j)2

∑n
i=1[n− (i− 1)− i]2

(9)

This satisfies 0 ≤ µ ≤ 1. When µ = 0, the convergence of two sets of data is the largest. When
µ = 1, this is reversed.

3.1. The Consistency of Focal Elements between Two BOEs

Definition 2. [32] For any two sources of evidence (i.e., S1 and S2), m1(·) and m2(·) are the basic
belief assignments over the discernment framework Θ of a size n. The number of focal elements and
the focal elements of m1(.) and m2(.) can be different. We denote Xi and Yi as the indexes of the
focal elements whose masses are sorted by increasing order. The similarity function of the evidence
to characterize the order of the size of the assignments over the subsets is as follows:

Simseq(m1, m2) = 1− ∑n
i=1(Xi −Yi)

2

∑n
i=1[n + 1− 2i]2

(10)

As we all know, if there is a similarity function Sim(mi, mj), which is the characteriza-
tion of distance between any two evidence sources, then the following four basic conditions
must be satisfied:

• Symmetry: ∀mi(·), mj(·), Sim(mi, mj) = Sim(mj, mi);
• Consistency: ∀m(·), Sim(m, m) = 1;
• Nonnegative: ∀mi(·), mj(·), 0 ≤ Sim(mi, mj) ≤ 1;
• Triangle inequality: Sim(X, Y) + Sim(Y, Z) ≥ Sim(X, Z).

According to previous work [32], it is easy to find that Simseq satisfies symmetry,
consistency and nonnegativity, but the last important condition is lost. Therefore, we prove
the triangle inequality property of Simseq here:

Proof. Based on Equation (10), the triangle inequality can be rewritten as follows: 1−
∑n

i=1(Xi − Zi)
2

∑n
i=1[n + 1− 2i]2

≤ 1− ∑n
i=1(Xi −Yi)

2

∑n
i=1[n + 1− 2i]2

+ 1− ∑n
i=1(Yi − Zi)

2

∑n
i=1[n + 1− 2i]2

⇒ ∑n
i=1[n + 1− 2i]2 ≥

∑n
i=1(Xi −Yi)

2 + ∑n
i=1(Yi − Zi)

2 −∑n
i=1(Xi − Zi)

2.
Here, X, Y and Z denote vectors⇒ ∑n

i=1[n + 1− 2i]2 ≥ (X−Y)T(X−Y)+ (Y−
Z)T(Y− Z)− (X− Z)T(X− Z).

According to the squared sum formula (SSF) (squared sum formula of a natural
number: 12 + 22 + 32 + . . . + n2 = n(n+1)(2n+1)

6 ; squared sum formula of an odd number:
12 + 32 + 52 + . . . + (2n− 1)2 = 1

3 n(4n2− 1); squared sum formula of an even number:
22 + 42 + . . . + (2n)2 = 2

3 n(n + 1)(2n + 1)), we have

n

∑
i=1

[n + 1− 2i]2 =
n

∑
i=1

[(n + 1)2 + 4i2− 4(n + 1)i] =

= n(n + 1)2 + 4 ∗ 1
6

n(n + 1)(2n + 1)− 4(n + 1)
n(n + 1)

2

=
2
3

n(n + 1)(2n + 1)− n(n + 1)2

= n(n + 1) · [4
3

n +
2
3
− n− 1]

=
1
3
· n · (n2− 1)

Because 1 ≤ Xi ≤ n, 1 ≤ Yi ≤ n, 1 ≤ Zi ≤ n, we obtain the following:
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(X− Y)T(X− Y) + (Y− Z)T(Y− Z)− (X− Z)T(X− Z) ≤ 1 + (k− 1)2 + (k−
3)2 + . . .

• When n− 1 = 2k⇒ k = n−1
2 , 1+(k− 1)2 +(k− 3)2 + . . . = 1

6 · k(k + 1)(k + 2),
and thus

n

∑
i=1

[n + 1− 2i]2− [(X− Y)T(X− Y) + (Y− Z)T(Y− Z)− (X− Z)T(X− Z)]

≥ 1
3
· n · (n2− 1)− 1

6
· k(k + 1)(k + 2)

=
1
3
· n · (n2− 1)− 1

6
· n− 1

2
(

n− 1
2

+ 1)(
n− 1

2
+ 2)

=
1
3
· n · (n2− 1)− 1

6
· n− 1

2
· n + 1

2
· n + 3

2

= (n2− 1) · (1
4

n +
1
6
)

Because n ≥ 2, thus
∑n

i=1[n + 1− 2i]2− [(X−Y)T(X−Y)+ (Y−Z)T(Y−Z)− (X−Z)T(X−Z)] ≥
0⇒ Simseq satisfy triangle inequality;

• When n− 1 = 2k− 1⇒ k = n
2 , 1 + (k− 1)2 + (k− 3)2 + . . . = 1

3 · k · (4k2− 1),
thus

n

∑
i=1

[n + 1− 2i]2− [(X− Y)T(X− Y) + (Y− Z)T(Y− Z)− (X− Z)T(X− Z)]

≥ 1
3
· n · (n2− 1)− 1

3
· k · (4k2− 1)

=
1
3
· n · (n2− 1)− 1

3
· n

2
· (4(

n
2
)2− 1)

=
1
3
· n · (n2− 1)− n

6
· (n2− 1)

=
n
6
· (n2− 1)

Because n ≥ 2, thus ∑n
i=1[n + 1− 2i]2− [(X− Y)T(X− Y) + (Y− Z)T(Y− Z)−

(X− Z)T(X− Z)] ≥ 0⇒ Simseq satisfies the triangle inequality.

Definition 3. [32] For any two sources of evidence (i.e., S1 and S2), m1(·) and m2(·) are the basic
belief assignments over n focal elements in the discernment framework Θ (note that the BBA of each
subproposition might be same). Assume that the s1 subpropositions’ BBAs are the same in m1(·),
and the s2 subpropositions’ BBAs are the same in m2(·) Herein, Xi and Yi are the serial numbers
according to the order of the size of the subpropositions’ BBAs, where the subscript i indicates the
ith subproposition, due to the BBAs of some subpropositions being the same. For the evidence S1,
there might be s1 kinds of sorts. For S2, there might be s2 kinds of sorts. Therefore, there are s1 × s2
kinds of sorts for S1 and S2. The similarity measure functions are redefined in this case as follows:

Sim′seq(m1, m2) = 1− ∑s1s2
t=1 ∑n

i=1(Xt
i −Yt

i )
2

s1s2(∑n
i=1(n + 1− 2i)2)

(11)

Similarly, it is easy to prove that Sim′seq(mX , mY) is a similarity measure function.

Example 1. Bayesian BBAs: Assuming two kinds of evidence m1 = {θ1, θ2, θ3} = {0, 0.1, 0.9}
and m2 = {θ1, θ2, θ3} = {0.9, 0.1, 0}, then m1 and m2 are sorted from small to large so that
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X(m1) = {θ1, θ2, θ3} = [1, 2, 3] and Y(m2) = {θ3, θ2, θ1} = [3, 2, 1], respectively. Thus, we can
calculate the similarity measure based on Equation (10):

Simseq(m1, m2) =

1− (1− 3)2 + (2− 2)2 + (3− 1)2

(3 + 1− 2 ∗ 1)2 + (3 + 1− 2 ∗ 2)2 + (3 + 1− 2 ∗ 3)2 = 0

According to Simseq(m1, m2), we can find that m1 and m2 are completely different and lacking
similarity.

3.2. The Inconsistency of the Focal Elements between Two BOEs

How do we calculate Simseq when the focal elements in BBAs are different? Let us
consider the following example and put forward a different way compared with that in
[32]:

Example 2. General BBAs: Assuming two types of evidence m1 = {θ1, θ2 ∪ θ3, θ2 ∪ θ4, θ1 ∪
θ3 ∪ θ4} = {0.3, 0.2, 0.2, 0.3} and m2 = {θ1, θ1 ∪ θ3, θ3, θ2 ∪ θ3 ∪ θ4, θ1 ∪ θ2 ∪ θ3 ∪ θ4} =
{0.4, 0.1, 0.1, 0.2, 0.2}.

Borrowing ideas from Dezert (dE
BI) in [24], for each focal element θi ∈ Θ(i = 1, 2, . . . , 2n− 1),

the belief intervals of θi for m1(·) and m2(·) can be calculated, which are denoted by [Bel1(θi), Pl1(θi)]
and [Bel2(θi), Pl2(θi)], respectively. According to the theory of evidence, the width of such an inter-
val as [Bel1(θi), Pl1(θi)] represents the degree of uncertainty for the corresponding focal element
θi. Therefore, Xi and Yi in Equation (10) are obtained, which refer to the index of the width of
the interval for each focal element, whose values are sorted in increasing order. The steps of this
mechanism are illustrated as follows:

• Step 1:
[Bel1(θ1), Pl1(θ1)] = [0.3, 0.6], [Bel1(θ2), Pl1(θ2)] = [0, 0.4],
[Bel1(θ3), Pl1(θ3)] = [0, 0.5], [Bel1(θ4), Pl1(θ4)] = [0, 0.5],
[Bel2(θ1), Pl2(θ1)] = [0.4, 0.7], [Bel2(θ2), Pl2(θ2)] = [0, 0.4],
[Bel2(θ3), Pl2(θ3)] = [0.1, 0.6], [Bel2(θ4), Pl2(θ4)] = [0, 0.4];

• Step 2: The parameter ς denotes the width of the belief interval, where ς1(θ1) = Pl1(θ1)−
Bel1(θ1) = 0.3, ς1(θ2) = 0.4, ς1(θ3) = 0.5, ς1(θ4) = 0.5, ς2(θ1) = 0.3, ς2(θ2) = 0.4,
ς2(θ3) = 0.5 and ς2(θ4) = 0.4;

• Step 3: X1 and Y1 are the indexes of focal elements whose ς values are sorted in increasing
order, where X1 = {1, 2, 3, 3} and Y1 = {1, 2, 3, 2};

• Step 4: Simseq is calculated based on Equation (10).

To consider the influence of the distance of the evidence, here, based on dE
BI

in Equation (8), we propose a new similarity measure which is presented as follows:

Cim(mi, mj) = w1 · dE
BI(mi, mj) + w2 ·z(Simseq(mi, mj)) (12)

where w1 = w2 = 0.5. and z(·) is the decreasing function within the interval [0, 1], for
which in this paper z(·) = 1− x2. That aside, it is easy to prove that the improved measure
function Cim(mi, mj) is still a similarity measure function. This is because the final metric
between two similarity measure functions still meets the definition of a similarity measure
function.

Additionally, to consider the normalization of Equation (12), it can be rewritten as
follows:

Cnorm(mi, mj) = w1 ∗ (dE∗
BI (mi, mj)) + w2 ∗ (z(Sim∗seq(mi, mj))) (13)

where dE∗
BI (m̂) =

dE
BI(mi ,mj)−min(vector1)

max(vector1)−min(vector1)
, Sim∗seq(mi, mj) =

Simseq(mi ,mj)−min(vector2)

max(vector2)−min(vector2)
,

vector1 = (D1(mi, m1), D2(mi, m2), . . . , Dj(mi, mj)) and
vector2 = (Sim1(mi, m1), Sim2(mi, m2), . . . , Simj(mi, mj)).
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4. Multi-Objective Evolutionary Algorithm Based on Two-Dimensional Criteria

In this section, we regard a PT as a general multi-objective problem consisting of
two objectives also involved in a number of inequality and equality constraints. Then, a
corresponding optimization model is proposed for selecting the best Bayesian BBA in the
set of candidates.

4.1. Multiple-Objective Evolutionary-Based Probabilistic Transformation

The idea to approximate any BBA into a Bayesian BBA (i.e., a subjective probability
measure) using the minimization of the Shannon entropy under compatibility constraints
was proposed recently by Han et al. in [13,19] using on-the-shelf optimization techniques.
In this paper, we present in detail a new optimization method to achieve this PT based
on a random evolutionary algorithm to acquire minimization of the new aggregation
criteria, and this new comprehensive criteria represents different aspects of information
in BBAs. For example, the conflict coefficient represents the degree of similarity in conflict
between transformed BBAs and original BBAs (in other words, the more conflicts that exist
between two BBAs, the less similarity they have). In addition, dE

BI represents the interval
distance between the original BBAs and the transformed ones.

Let us assume that the FoD of the original BBA m(.) approximated by a Bayesian BBA
is Θ , {θ1, θ2, . . . , θN}. The MOEPT method consists of the following steps, which are
derived from GAs:

• Step 0 (setting parameters): Assume tmax is the maximum number of iterations, nmax is
the population size in each iteration, Ps is the selection probability, Pc is the crossover
probability, and Pm is the mutation probability.

• Step 1 (population generation and encoding mechanism): A set Pt of j = 1, 2, . . . , nmax

random probability values Pj
t = {Pj(θ1), . . . , Pj(θN)} is generated such that the con-

straints in Equations (14)–(16) for j = 1, 2, . . . , nmax are satisfied in order to make each
random set of probabilities Pj

t compatible with the original or target BBA m(.) to ap-
proximate. (The lower (Bel) and upper (Pl) limits of each focal element are calculated
using Equations (2) and (3) based on the value of m(·).) In other words, we have

Pj(θi) ∈ [0, 1], i = 1, 2, . . . , N (14)
N

∑
i=1

Pj(θi) = 1 (15)

Bel(θi) ≤ Pj(θi) ≤ Pl(θi), i = 1, 2, . . . , N (16)

• Step 2 (fitness assignment): For each probability set Pj
t , (j = 1, 2, . . . , nmax), we com-

pute its fitness value F based on Equation (13). More precisely, one takes F(Pj
t ) =

Cnorm(m(·), Pj
t ).

• Step 3 (best approximation of m(.)): The best probability set Pjbest
t with a minimum

fitness value is sought, and its associated index jbest is stored in Best Individual and
Index of BestIndividual.

• Step 4 (selection, crossover and mutation): The tournament selection, crossover and
mutation operators drawn from the evolutionary theory framework [33] are imple-
mented to create the associated offspring population P′t based on the parent popula-
tion Pt. If F(Pjbest

t ) ≤ F(P′jbest
t ), then the Best Individual remains unchanged; otherwise,

Best Individual = P′jbest
t .

– Crossover operator: The crossover operator is one of the most important op-
erators in the genetic algorithm. The crossover operation is conducted for the
selected pairs of individuals. The feasibility condition of each individual is de-
scribed as follows. The value of each subsegment must be between 0 and 1,
and the sum of the individuals should be 1. Although the initial population is
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formed in a way that all individuals are feasible and correct, using the standard
crossover operators leads to defective sub-segments, and a normalization pro-
cedure is needed for such a situation. Consider the following two individuals
to be parents: X = (0.1, 0.2, 0.3, |0.4) and Y = (0.2, 0.2, 0.1, |0.5). (Here, the verti-
cal bar represents the intersection point with the crossover operator.) With the
single-point classic crossover operator, the following offspring will be produced:
X′ = (0.1, 0.2, 0.3, 0.5) and Y′ = (0.2, 0.2, 0.1, 0.4), where ∑4

j=1 X′j is equal to 1.1,

which is greater than 1, and ∑4
j=1 Y′j is equal to 0.9, which is less than 1. Therefore,

X′ and Y′ have defective values for which a normalization factor is needed, which
leads to the following:
X′′ = X′

∑4
j=1 X′j

= (0.1/1.1, 0.2/1.1, 0.3/1.1, 0.5/1.1),

Y′′ = Y′

∑4
j=1 Y′j

= (0.2/0.9, 0.2/0.9, 0.1/0.9, 0.4/0.9).

– Mutation operator: The mutation operator randomly alters the value of a sub-
segment. After applying the mutation operator, normalization of the changed
individuals is required. The normalization will be performed in a similar way to
the crossover operator.

• Step 5 (stopping MOEPT): Steps 1–4 illustrate the tth iteration of the MOEPT method.
If t ≥ tmax, then the MOEPT method is complete; otherwise, another iteration must be
performed by taking t + 1 = t and going back to step 1.

The scheme of the MOEPT method is shown in Figure 1, and its pseudo-code is given
in Algorithm 1.

Figure 1. Scheme of MOEPT algorithm.



Entropy 2022, 24, 1680 10 of 24

Algorithm 1: Multi-Objective Evolutionary-Based PT (MOEPT).
1: Define Stopping Criteria, (t ≤ tmax); population Size nmax for each iteration;

crossover probability Pc, mutation probability Pm and selection probability Ps.

2: Generate an initial random population Pt of consistent probabilities Pj
t with m(.).

3: For each individual Pj
t in Pt do

4: Calculate Fitness F(Pj
t ) = Cnorm(m(·), Pj

t ) of Pj
t

5: Store the best individual Pjbest
t

6: End

7: Repeat:

8: Crossover: exchange parts of individuals with probability Pc

9: Mutation: mutate the child individuals with probability Pm

10: Selection: Select individuals based on fitness according to Ps

11: After these three sub-steps, the updated population P′t is obtained

12: Calculate the fitness of individuals of P′t, and store the best individual P′jbest
t

13: If F(Pjbest
t ) ≤ F(P′jbest

t )

14: Best-Individual remains unchanged

15: else

16: Best-Individual = P′jbest
t

17: If t ≥ tmax then stops, otherwise t + 1→ t and go back to line 7

4.2. Convergence Analysis

In order to mathematically prove the feasibility of an MOEPT, convergence analysis of
our algorithm is given. First, we give a simplified description of the algorithm and also its
symbolic representation for simplicity:

• Encoding mechanism: The size of the population is nmax, the length of individual
(chromosome) is N, and the initial population is P1;

• Retain the best individual directly for the next generation;
• Randomly select the other non-optimal individuals in Pt to cross over so as to form

the intermediate population Yt;
• The population Yt is mutated to form a population Vt;
• The better individuals in the population Vt are selected as the new generation popula-

tion Pt.

Specifically, three operators (crossover operator, mutation operator and selection
operator) can be described by the transition probability as follows:

• Crossover operator: For a single-point crossover, a new individual k is produced based
on their parents: individuals i and j:

Pt
C(i× j, k) =

{
|k|pc/N, k 6= i, j

(1− pc) + |k|pc/N, k = i
(17)

where |k| is the number of individuals k, 0 ≤ pc ≤ 1 is the crossover probability and a
is the minimum probability for individuals |k|:

a = 1− pc + pc/N. (18)
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• Mutation operator:

Pt
M(i, j) = pd(i,j)

m (1− pm)
N−d(i,j) (19)

where 0 ≤ pm ≤ 1 is the mutation probability, d(i, j) is the Hamming distance between
i and j and b is the minimum probability:

b = (1− pm)
N . (20)

• Selection operator: An MOEPT uses the strategy of retaining the elite options, and the
best individual is retained for the next generation which does not participate in the
competition. Assume that m individuals are selected based on the following equations:

Pt
S(Pt, Pj

t ) =
σn(F(Pj

t ))

∑nmax
k=1 (F(Pj

t ))
, j ∈ Pt, n = 1, 2, . . . . (21)

where σn represents an increasing scale function. That aside, the probability of selecting
the first individual in the next generation’s population is

Pt∗
S (Pt, Pj

t ) =
|Pt|
|B(Pt)|

, Pt ∈ Pt. (22)

where |Pt| is the number of individuals Pt in Pt and B(Pt) is the cardinality of the
optimal set of Pt.

In order to facilitate the convergence analysis, the changing process of the fitness value
F(Pj

t ) is regarded as a Markov chain. If the MOEPT obtains the best individual Pjbest
t in

generation t, we can denote this as {F̂(Pt)} = Pjbest
t . Then, all the other populations in t + 1

generations will also reach the best fitness value due to the elite strategy [34]. Therefore, the
Markov chain {F̂(Pt)} constitutes the lower martingale. According to the properties of the
lower martingale and the convergence theorem of the lower martingale [35], convergence
analysis of the MOEPT is converted into the convergence of {F̂(Pt)}. The following three
theorems are given, in which Theorem 4 is for proving that {F̂(Pt)} satisfies the conditions
of the martingale theorem, Theorem 5 proves the global convergence of the MOEPT and
Theorem 6 constructs three conditions for the convergence of the lower martingale so that
the optimal solution can almost be obtained everywhere.

Theorem 1. The process of describing the values of the fitness functions in the MOEPT is a
non-bounded martingale:

E{F̂(Pt+1)/Pt} ≥ F̂(Pt) (23)

Proof. Because the algorithm retains the maximum fitness value of the previous generation
for the next generation and does not participate in the genetic operation, the best individual
mode is not destroyed, so the maximum fitness value of the next generation’s population
will not be less than the maximum fitness value of the previous generation:

E{F̂(Pt+1)/Pt} ≥ F̂(Pt) > 0 (24)

Theorem 2. The MOEPT converges to the global optimal solution based on the probability, which
is mathematically expressed by the condition.
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Proof. When the population Pt is updated to generation t, the minimum or best fitness

is recorded as P
′ jbest
t , and the global optimal solution is noted as F∗, we assume that the

MOEPT can converge to a global optimal solution at generation t such that

{F̂(Pt)} = F∗ (25)

Based on Theorem 4, we have

E{F̂(Pt+1)/Pt} = F∗ (26)

This is defined by the following conditional expectation:

E{F̂(Pt+1)/Pt} =

∑
i,j∈Pt

Pt
C(i× j, y)∑

v
Pt

M(y, v)∑
k

Pt
S(v, k)F̂(k) ≥

∑
i,j∈Pt

Pt
C(i× j, i)∑

v
Pt

M(y, v)∑
k

Pt
S(v, k)F̂(k) ≥

a ∑
v

Pt
M(y, v)∑

k
Pt

S(v, k)F̂(k) ≥

a ∑
v

Pt
M(y, y)∑

k
Pt

S(v, k)F̂(k) ≥

abm{ ∑
k∈B(Pt)

[Pt
S(v, k)− Pt∗

S (v, k)]F̂(k) + ∑
k∈B(Pt)

Pt∗
S (v, k)F̂(k)}

When k /∈ B(Pt), Pt∗
S (v, k) = 0, and when k ∈ B(Pt), F̂(k) = F∗, E{F̂(Pt+1)/Pt} can be

rewritten as

E{F̂(Pt+1)/Pt} ≥
abm ∑

k∈B(Pt)

[Pt
S(v, k)F̂(k) + F∗] ≥ abmF∗.

Therefore, we obtain
abmF∗ ≤ F∗. (27)

Because F∗ > 0, one obtains
abm ≤ 1. (28)

Based on the above formula derivation, the MOEPT converges to the global optimal
solution.

Theorem 3. When ∀n ≥ 1, the following conditions are satisfied:

• E[F̂(P1)] < ∞, F∗ < ∞;
• E[F̂(Pt)/Pt−1] = F̂(Pt−1) + ct−1F∗;

• ct ∈ [0, 1], limt→∞ ∑t−1
k=0 ck = 1− F̂(P1)

F∗ .

Then, we have the random sequence F̂(Pt)
a,s−→ F∗

Proof: By taking the mathematical expectation on both sides of condition (2), one has

E[F̂(Pt)] = E[F̂(Pt−1)] + ct−1F∗ =

E[F̂(Pt−2)] + ct−1F∗ + ct−2 f ∗ = . . . =

E[F̂(P1)] + F∗
t−1

∑
k=0

ck.
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According to conditions (1) and (3), we have

E[F̂(Pt)] < E[F̂(P1)] + F∗ < ∞

SuptE[F̂(Pt)] < suptE[F̂(P1)] + suptF∗ < ∞

Because F̂(Pt) is a non-bounded martingale, we have

F̂(Pt)
a,s−→ F̂(P∞) = lim

t→∞
F̂(Pt) (29)

lim
t→∞

E[F̂(Pt)] =

lim
t→∞

E[F̂(P1)] + F∗ lim
t→∞

t−1

∑
k=0

ck =

E[F̂(P1)] + F∗(1− F̂(P1)

F∗
) = F∗,

F̂(Pt)
a,s−→ F∗. (30)

5. Simulation Results

According to the first step of the MOEPT, we initially set the related parameters as
follows: tmax = 50, nmax = 1000, Ps = 0.3, Pc = 0.5 and Pm = 0.1.

5.1. Simple Examples

Example 3. Let us consider the frame Θ = {θ1, θ2, θ3, θ4} and the corresponding BBA illustrated
as follows:

m(θ1) = 0.16, m(θ2) = 0.14, m(θ3) = 0.01, m(θ4) = 0.02

m(θ1 ∪ θ2) = 0.20, m(θ1 ∪ θ3) = 0.09, m(θ1 ∪ θ4) = 0.04

m(θ2 ∪ θ3) = 0.04, m(θ2 ∪ θ4) = 0.02, m(θ3 ∪ θ4) = 0.01

m(θ1 ∪ θ2 ∪ θ3) = 0.10, m(θ1 ∪ θ2 ∪ θ4) = 0.03

m(θ1 ∪ θ3 ∪ θ4) = 0.03, m(θ2 ∪ θ3 ∪ θ4) = 0.03

m(Θ) = 0.08

Based on the respective classical PTs, the original BBAs are transformed into their correspond-
ing probabilities as illustrated in Table 1. Their corresponding Cnorm values can be calculated using
Equation (13), which is already listed in Table 1. Clearly, several interesting characteristics presented
in Table 1 are worth mentioning: (1) MOEPTdE

BI+Simseq
had the minimum value from the perspec-

tive of the Cnorm criteria, which consider both aspects of dE
BI and Simseq rather than concentrating

on a single aspect, and (2) compared with other PTs, especially MOEPTDJ+Simseq , (here, to show
the property of dE

BI , we replaced dE
BI with DJ in the MOEPT to make comparisons) our method

performed better than the mentioned methods. However, in practice, the suitability of various PTs
depends on a number of factors, including the designer’s choices; that is, from the perspective of
sequence similarity, Simseq plays an important role in Cnorm, but from the view of the whole distance,
it involves transferring the principle role to dE

BI or DJ . How does one quantity this role? Here, we
depend on the parameters w1 and w2 in Cnorm to distinguish our ideas from Han in [19], which
initially set w1 and w2 as 0.5. Here, we discuss three different situations: (1). w2 is set to 0.8 so as
to pay more attention to the similarity of the sequence, (2) w1 is set to 0.8 so as to focus more on the
distance, and (3) considering both sequence similarity and distance, w1 = w2 is set to 0.5, which is
the same value used in [19], so that the similarity of both the sequence and distance are considered.
This phenomenon, to some degree, reminds us of the importance of proper selections of weight in
various applications when the MOEPT is applied. That aside, it is worth noting that Cnorm turned
out to be Simseq when w1 = 0, and Cnorm turned out to be dE

BI when w2 = 0.
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Table 1. Results of different PTs in Example 3 (w1 = w2 = 0.5).

θ1 θ2 θ3 θ4 Cnorm

CuzzP 0.3860 0.3382 0.1607 0.1151 0.2800
BetP 0.3983 0.3433 0.1533 0.1050 0.2799

DSmP0 0.5176 0.4051 0.0303 0.0470 0.1897
DSmP0.001 0.5162 0.4043 0.0319 0.0477 0.1896

PrBP1 0.5419 0.3998 0.0243 0.0340 0.1918
PrBP2 0.5578 0.3842 0.0226 0.0353 0.1933

MOEPTDJ+Simseq 0.3980 0.3322 0.1156 0.1541 0.1849
MOEPTdE

BI+Simseq
0.3985 0.3983 0.0623 0.1409 0.0733

Example 4. Let us consider another situation in the frame Θ = {θ1, θ2, θ3, θ4} and the correspond-
ing BBAs illustrated as follows:

m(θ1) = 0.16, m(θ2) = 0.16, m(θ3) = 0.16, m(θ4) = 0.16

m(θ1 ∪ θ2) = 0.04, m(θ1 ∪ θ3) = 0.04, m(θ1 ∪ θ4) = 0.04

m(θ2 ∪ θ3) = 0.04, m(θ2 ∪ θ4) = 0.04, m(θ3 ∪ θ4) = 0.04

m(θ1 ∪ θ2 ∪ θ3) = 0.03, m(θ1 ∪ θ2 ∪ θ4) = 0.03

m(θ1 ∪ θ3 ∪ θ4) = 0.03, m(θ2 ∪ θ3 ∪ θ4) = 0.03

In actuality, Example 4 is the extension of the case studied by Han in [13], which
assumes a special scenario where no difference exists between m(θ1), m(θ2), m(θ3) and
m(θ4) and where the traditional PTs become invalid and give unreasonable results, which
can be seen in Table 2. The property of the original BBA where no difference exists between
m(θ1), m(θ2), m(θ3) and m(θ4) was almost lost when classical PTs were applied. When a
“sequence” is not considered in an MOEPT, which is denoted as MOEPTDistance, the feature
of equal mass in the original BBAs was also missing, as with other classical PTs. Fortunately,
when information of the “sequence” was added into the objective function, the MOEPT
performed better in keeping the original information, as expected.

Table 2. Results of different PTs in Example 4.

θ1 θ2 θ3 θ4 Cnorm

BetP 0.3983 0.3433 0.1533 0.1050 0.3974
DSmP0 0.2500 0.2500 0.2500 0.2500 0.5458
PrBP1 0.5419 0.3998 0.0243 0.0340 0.6368
PrBP2 0.5578 0.3842 0.0226 0.0353 0.6412

MOEPTDistance 0.2500 0.1597 0.3578 0.2325 0.3415
MOEPTDJ+Simseq 0.2483 0.2485 0.2496 0.2536 0.1708
MOEPTdE

BI+Simseq
0.2484 0.2488 0.2489 0.2539 0.0450

Example 5. Θ = {θ1, θ2, θ3, θ4}

To investigate the robustness of the MOEPT from a statistical point of view, in this ex-
ample, we randomly generate BBAs and compare the MOEPT with classical PTs (BetP [6,26],
CuzzP [12], DSmP [9], PrBP1 and PrBP2 [27]). The original BBAs for approximation are
generated according to Algorithm 2 of [36].
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Algorithm 2: Random generation of BBAs.

1: Input: Frame of Discernment Θ = {θ1, θ2, θ3, θ4}
2: Nmax :Maximum number of focal element

3: Output : BBA-m

4: Generate K(Θ), which is the power set of Θ

5: Generate a random permutation of K(Θ)→ R(Θ)

6: Generate an integer between 1 and Nmax → l

7: For each First k elements of R(Θ) do

8: Generate a value within [0, 1]→ mi, i = 1, . . . , l

9: End

10: Normalize the vector m = [m1, m2, . . . , ml ]→ m′

11: m(θi) = m′i

In our test, we set the cardinality of the FoD to 4 and fixed the number of focal elements
to l = Nmax = 15. We randomly generated L = 100 BBAs. Six PT methods were tested, and
Cnorm was used to evaluate the quality of their corresponding results, shown in Figure 2.
As we can see, and as was naturally expected, the MOEPT significantly outperformed the
other methods based on the minimum Cnorm criterion, which is absolutely normal because
the method was developed for this aim.
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Figure 2. Comparisons between MOEPT and state-of-the-art PTs.

5.2. Example of Pattern Classification Using the MOEPT

In this example, we used the evaluation of decision making under the evidence theory
framework to indirectly evaluate the MOEPT. We considered seven classes of aircraft, which
are illustrated in Figure 3, and the classifier used in this example was the probabilistic
neural network (PNN). For each test example, the output of the classifier was represented
by a BBA. The corresponding BBA for each test sample was generated according to Li’s
previous work [37].



Entropy 2022, 24, 1680 16 of 24

Figure 3. The binary images of seven kinds of airplanes.

1. First, the image was preprocessed with binarization, and then multiple features
were extracted, such as Hu moments, the normalized moment of inertia, affine invariant
moments, discrete outline parameters and singular values. Secondly, five BBAs could be
assigned to the evidence sources for each PNN. (Specifically, the transfer functions in five
PNNs were set to a Gaussian function, the weighting function was set to the Euclidean
distance; the input function was netprod, and the output function was compet.) Third, all
five of these BBAs were fused by PCR6 [7] to form a single BBA m(·).

2. For the two classes t1 and t2 (t1, t2 ∈ 1, 2, 3, . . . , 7, t1 6= t2), with the top two values
of m(i), i = 1, 2, 3, . . . , 7, the corresponding updated mass assignments were generated
according to [38]:

m′(i) = m(i), ∀i = t1, t2 (31)

The remaining mass was assigned to the total set Θ:

m′(Θ) = 1−m′(t1)−m′(t2). (32)

For example, for a test sample target− 1, we obtained the corresponding BBA from
the PNNs, where m(1) = 0.7, m(2) = 0.05, m(3) = 0.2, m(4) = 0.01, m(5) = 0, m(6) = 0.02
and m(7) = 0.02. The dominant class was class 1, and class 3 was in second place. The
updated corresponding BBA was m′(1) = 0.7, m′(3) = 0.2 and m′(2, 4, 5, 6, 7) = 0.1.

There were 100 samples for each class, with a total of 700 samples. For each class, 50
samples were randomly selected for training PNNs, and the remaining samples were used
for testing. For the MOEPT, the decision result would be class t f inal if

t f inal = argmax(MOEPT) (33)

As we can see from Figure 4, the MOEPT performed well in this task of pattern
classification.
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Figure 4. Recognition rate of MOEPT.

5.3. Example of Target Type Tracking Using the MOEPT

To further discuss the practicality of the proposed MOEPT, a target type tracking
(TTT) problem in the area of decision making was used, which is briefly
described below [39].

5.3.1. Target Type Tracking Problem (TTT)

1. Consider ζ = 1, 2, . . . , ζmax as the time index, and let there be N possible target
types Tarζ ∈ Θ = {θ1, θ2, . . . , θN} in the surveillance area. For instance, in normal air target
surveillance systems, the FoD could be Θ = {Fighter, Cargo}; that is, Tar1 = θ1 , Fighter,
and Tar2 = θ2 , Cargo. Similarly, the FoD in a ground target surveillance system could
be Θground = {Tank, Truck, Car, Bus}. In this paper, we just considered the air target
surveillance systems to prove the practicability of EPT.

2. At every time ζ, the true type of the target Tar(ζ) ∈ Θ was immediately observed
by an attribute-sensor (here, we assumed a possible target probability).

3. A defined classifier was applied to process the attribute measurement of the sensor,
which provided the probability Tard(ζ) for the type of observed target at each instance ζ.

4. The sensor was, in general, not totally reliable and was characterized by an N × N
confusion matrix:

M =
[
Mij = P

(
Tard = Tarj|TrueType = Tari

)]
(34)

where 0 ≤ i ≤ N; 0 ≤ j ≤ N.

Here, we briefly summarize the main steps of the TTT using MOEPT:

1. Initialization: Determine the target type frame Θ = {θ1, θ2, . . . , θN} and set the
initial BBA minitial(θ1 ∪ θ2 ∪ . . . ∪ θN) = 1, since there is no information about the first
target type that will be observed;

2. Updating the BBA: An observed BBA mobs(.) on the types of unknown observed
targets is defined from the current target type declaration and confusion matrix M;

3. Combination: We combine the current BBA mobs(·) with the initial BBA minitial(·)
according to the PCR6 combination rule [7]: mPCR6(·) = mobs(·)⊕minitial(·);

4. Approximation: Use MOEPT(·) to approximate mPCR6(·) into a Bayesian BBA;
5. Decision making: Make a final decision about the type of the target at the current

observation time based on the obtained Bayesian BBA;
6. Updating the BBA: Set minitial(·) = mPCR6(·), and increase the time index ζ = ζ + 1

before going back to step 2.

5.3.2. Raw Dataset of TTT

We tested our MOEPT-based TTT on a very simple scenario for a 2D TTT problem,
namely Θ = {Fighter, Cargo}, for two types of classifiers. The matrix M1 corresponds to
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the confusion matrix of the good classifier, and M2 corresponds to the confusion matrix of
the poor classifier:

M1 =

[
0.95 0.05
0.05 0.95

]
; M2 =

[
0.75 0.25
0.25 0.75

]
(35)

In our scenario, a true target type sequence over 120 scans was generated according
to Figure 5. We can observe clearly from Figure 5 that Cargo (which is denoted as Type 2)
appeared first in the sequence, and then the observation of the target type switched three
times onto the Fighter type (Type 1) during different time durations (namely 20 s, 10 s and
5 s).
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Figure 5. Raw sequence of true target type.

A pathological case for TTT: Our analysis showed that MOEPT can nevertheless be
troublesome for tracking two target types, as proven in this particularly simple example
(when 0 ≤ m(θ1 ∪ θ2) ≤ 0.1). Let us consider the following BBA:

mtarget(.) = [θ1, θ2, θ1 ∪ θ2] = [0, 1, 0]

According to the compatibility constraints in Equations (14)–(16), the population P′t
was obtained from Pt through a selection procedure. Next, an individual P′jt in P′t, which
is denoted as P′jt = [m′(θ1), m′(θ2)], was subjected to the initial constraint in Equations (1)
and (36):

m′(θ1) ≥ (Bel(θ1) = m(θ1) = 0)

m′(θ1) ≤ (Pl(θ1) = m(θ1) + m(θ1 ∪ θ2) = 0 + 0 = 0);

m′(θ2) ≥ (Bel(θ2) = m(θ2) = 1)

m′(θ2) ≤ (Pl(θ2) = m(θ2) + m(θ2 ∪ θ1) = 1 + 0 = 1);

(36)

From the above inequalities, one can see that only one probability measure,
PS

t = [m(θ1), m(θ2)] = [0, 1] (where the superscript index S means single), satisfied this
constraint (the constraint was m(θ1) ∈ [Bel(θ1), Pl(θ1)] = [0, 0],m(θ2) ∈ [Bel(θ2), Pl(θ2)] =

[1, 1]). However because of the mechanism of MOEPT Equations (14)–(16), the Pj
t in popula-

tion Pt, which was randomly generated in the interval [Bel(θi), Pl(θi)], i = 1, 2, ·, N, would
be unable to generate enough candidates for evolutionary computation. (A sufficient num-
ber of candidate sets is a prerequisite for ensuring the global optimization performance
of evolutionary algorithms.) That is why MOEPT becomes inefficient in this case, which
occurs with a probability of 1/nmax, where nmax denotes the size of the population Pt. (In
our simulation, we had nmax = 1000.) Unfortunately, in TTT decision-making problems,
such a case cannot be avoided because it can really happen.
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To circumvent this problem and make the MOEPT approach work in most circum-
stances, we needed modify the MOEPT method a bit to generate enough individuals for
making the selection steps efficient when the bounds of the belief interval [Bel, Pl] took
their minimum and maximum values ([0.9, 0.05, 0.05] and [0.05, 0.9, 0.05], respectively). To
achieve this, we proposed enlarging this particular interval through a parameter λ and
maintaining the property of the original interval to some degree at the same time. More
precisely, the modified belief interval, denoted as [Bel′, Pl′], was heuristically computed by
a simple thresholding technique as follows.

First, we assume that the original BBA we consider here for the FoD (Θ = {θ1, θ2}) is
[θ1, θ2, θ1 ∪ θ2] = [a, b, c], with (a+b+c) = 1 and 0 ≤ c ≤ 0.1:

Step 1: Let m′(θ1 ∪ θ2) = c + λ;
Step 2: If a > b, then

m′(θ1) = a− λ; m′(θ2) = b; m′(θ1 ∪ θ2) = c + λ; (37)

Step 3: If a ≤ b, then

m′(θ1) = a; m′(θ2) = b− λ; m′(θ1 ∪ θ2) = c + λ; (38)

Therefore, the values of [Bel′(θ1), Pl′(θ1)] and [Bel′(θ2), Pl′(θ2)] can be calculated
based on Equations (37) and (38), which are presented as follows. When a > b, we have{

Pl′(θ1) = m(θ1) + m′(θ1 ∪ θ2) = a− λ + c + λ = a + c;

Bel′(θ1) = 1− Pl′(θ̄1) = 1− (b + c + λ) = a− λ.
(39)


Pl′(θ2) = m(θ2) + m′(θ1 ∪ θ2) = b + c + λ = b + c + λ;

Bel′(θ2) = 1− Pl′(θ̄2)

= 1− (a− λ + c + λ) = 1− (a + c) = b.

(40)

When a ≤ b, we have
Pl′(θ1) = m(θ1) + m′(θ1 ∪ θ2) = a + c + λ;

Bel′(θ1) = 1− Pl′(θ̄1)

= 1− (b− λ + c + λ) = 1− (b + c) = a.

(41)

{
Pl′(θ2) = m(θ2) + m′(θ1 ∪ θ2) = b− λ + c + λ = b + c;

Bel′(θ2) = 1− Pl′(θ̄2) = 1− (a + c + λ) = b− λ.
(42)

Explanation: Through step 1, one computes the total singleton mass one has in
the entire BBA, and the threshold value of 0.9 allows one to evaluate if the percentage
of the singleton mass is big enough or not. Here, we not only consider the unique ex-
treme case mtarget(·) = [θ1, θ2, θ1 ∪ θ2] = [0, 1, 0] but also other possible cases, such as
mtarget(·) = [θ1, θ2, θ1 ∪ θ2] = [0.0001, 0.9998, 0.0001]. Why do we consider the concept of
this percentage? Actually, the higher the percentage of singleton mass, the smaller the
interval for Pj

t ; in other words, the higher value of m(θ1 ∪ θ2), the bigger interval for Pj
t ,

which can be seen in Equation (36). Then, step 2 and step 3 give the method for calculating
the updated upper bound of the belief interval [Bel′, Pl′], and Equations (39)–(42) prove
that the parameter λ determines the range of the interval. Next, we give two examples to
show how the above method works.

Pathological case one for TTT (revisited with a modified MOEPT):

mtarget(.) = [θ1, θ2, θ1 ∪ θ2] = [0.0001, 0.9998, 0.0001].
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Here, the parameter λ is arbitrarily set to 0.4. (The value of the parameter λ can
be chosen to be any value in [0, 1] by the designer for his or her own reasons to ensure
the alternative interval effectively in the modified MOEPT.) Then, one computes in step
2 the modified plausibility bounds Bel′(θ1) = 0.0001, Pl′(θ1) = 0.0001 + 0.0001 + λ =
0.4002 and Bel′(θ2) = 0.9998 − 0.4 = 0.5998, Pl′(θ2) = 0.9999. Therefore, we obtain
[Bel′(θ1), Pl′(θ1)] = [0.0001, 0.4002] and [Bel′(θ2), Pl′(θ2)] = [0.5998, 0.9999]. The relation-
ship between the original interval [Bel, Pl] and the updated interval [Bel′, Pl′] is illustrated
in Figure 6.
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Figure 6. The principle of modified-constraint MOEPT (λ = 0.4).

Consequently, any Bayesian BBA Pj
t = [m′(θ1), m′(θ2)] must be generated according

the (modified) compatibility constraints:

m′(θ1) ∈
[
Bel′(θ1), Pl′(θ1)

]
= [0.0001, 0.4002]

m′(θ2) ∈
[
Bel′(θ2), Pl′(θ2)

]
= [0.5998, 0.9999]

Pathological case two for TTT (revisited with a modified MOEPT):

mtarget(.) = [θ1, θ2, θ1 ∪ θ2] = [0.45, 0.48, 0.07].

Here, the parameter λ is set to 0.2. Then, any Bayesian BBA Pj
t = [m′(θ1), m′(θ2)] must

be generated according the (modified) compatibility constraints:

m′(θ1) ∈
[
Bel′(θ1), Pl′(θ1)

]
= [0.45, 0.72]

m′(θ2) ∈
[
Bel′(θ2), Pl′(θ2)

]
= [0.28, 0.55]

In order to evaluate the influence of parameter λ, we reexamined all the pathological
cases based on the following procedure:

1. The value of parameter λ was set to five possible values: 0, 0.1, 0.2, 0.3, 0.4 and 0.5;
2. We randomly generated an initial population Pt based on λ, which was also subject

to the constraints in Equations (14)–(16).

With this simulation, we can observe in Figures 7 and 8 the impact of the λ value on
the number of Pj

t in Pt. When we set λ = 0 (in which the original MOEPT was applied),
there existed no suitable Pj

t for case one, which demonstrates the necessity to circumvent
the pathological case problem. Obviously, the number of Pj

t increased with the increase
in the λ value, which efficiently proves the advantage of using the modified MOEPT
approach to make the selection step of the evolutionary algorithm more efficient. One point
we need to clarify is that the intervals (i.e., [Bel′(θ1), Pl′(θ1)], [Bel′(θ2), Pl′(θ2)]) induced
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from the parameter λ above aim at guaranteeing enough of a number of Pj
t in Pt in the

implementation of the MOEPT. Another point we also need to mention is that the number
of Pj

t in Pt was not influenced by the weight. (Here, the weight equals w2 in Equation (13).
And thus, w1 = 1−Weight, which to some degree guarantees the implementation of the
MOEPT.)
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Figure 7. Impact of λ (x-axis) on individuals in Pt (y-axis) for case one.
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Figure 8. Impact of λ (x-axis) on individuals in Pt (y-axis) for case two.

5.3.3. Simulation Results of TTT Based on the Modified MOEPT

Our simulation consisted of 100 Monte Carlo runs, and we show in the sequel the
averaged performances of the MOEPT. Figures 9 and 10 illustrate the Bayesian BBAs
obtained by our new MOEPT method for solving the TTT problem using the PCR6 fusion
rule. One can see that regardless of the good classifier M1 (recognition rate: 90.83 %) or
poor classifier M2 (recognition rate: 80.83%) being used, the MOEPT was able to track
properly the quick changes in target type.
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Figure 9. Results of MOEPT for Cargo and Fighter types using M1.
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Figure 10. Results of MOEPT for Cargo and Fighter types using M2.

6. Conclusions

A multi-objective evolutionary-based algorithm for probabilistic transformation
(MOEPT) was proposed in this paper. It uses a genetic algorithm to obtain a Bayesian
belief function and offer a comprehensive consideration concerning the closeness of dis-
tance between the orignal BBA and the Bayesian approximate one. In addition, a new
aggregation measure was proposed in this paper to be combined into a more accurate
“distance closeness” measure for MOEPT. More importantly, the convergence analysis of
the MOEPT was given to prove the rationality of our proposed method. The effective-
ness of the MOEPT was compared with respect to several probabilistic transformations
proposed in the literature. Furthermore, the shortcomings of the original MOEPT ver-
sion were clearly identified in two target type tracking problems, and they were solved
thanks to modification of the belief interval constraints. As for future works, we would
like to establish an adaptive scheme for the selection of weights in an MOEPT and make
more comparisons between the performance of this MOEPT approach and other recently
proposed evolutionary algorithms. We would also conduct more investigations to ex-
tend the MOEPT to DSmT using the DSm cardinal of elements. That aside, the current
work in this paper is mainly for verifying the effectiveness of the algorithm through
simulation examples from a theoretical perspective, and the feasibility of the proposed
evolutionary-based PT will be verified through the practical and real problems in our
future discussions.
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