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Abstract: Point cloud data are extensively used in various applications, such as autonomous driving
and augmented reality since it can provide both detailed and realistic depictions of 3D scenes or
objects. Meanwhile, 3D point clouds generally occupy a large amount of storage space that is a
big burden for efficient communication. However, it is difficult to efficiently compress such sparse,
disordered, non-uniform and high dimensional data. Therefore, this work proposes a novel deep-
learning framework for point cloud geometric compression based on an autoencoder architecture.
Specifically, a multi-layer residual module is designed on a sparse convolution-based autoencoders
that progressively down-samples the input point clouds and reconstructs the point clouds in a
hierarchically way. It effectively constrains the accuracy of the sampling process at the encoder side,
which significantly preserves the feature information with a decrease in the data volume. Compared
with the state-of-the-art geometry-based point cloud compression (G-PCC) schemes, our approach
obtains more than 70–90% BD-Rate gain on an object point cloud dataset and achieves a better point
cloud reconstruction quality. Additionally, compared to the state-of-the-art PCGCv2, we achieve an
average gain of about 10% in BD-Rate.

Keywords: point cloud geometry compression; multi-layer residual module; progressive sampling

1. Introduction

Owing to a rapid innovation of visual capture technology, point clouds have been
regarded as vital data to describe both 3D objects and scenes [1]. Therefore, point clouds
have a broad range of applications in areas, such as autonomous driving and augmented
reality. Point clouds collections are points in space, including the coordinates of geometry
information. In addition, every point can have attribute information attached, including
colors, normals and reflectances. Since point cloud data are usually very large in quantity
and is disordered and irregular [2] in structure, when compared with image and video
compression [3–7], how to efficiently compress point cloud data becomes a challenging task.

Point cloud compression can be divided into geometric compression and attribute
compression according to the compression object. The geometric information is coded
independently, and the attribute information needs to be coded based on the known geo-
metric structure information. The irregular spatial distribution of point clouds makes it
difficult to compress. Therefore, it is necessary to convert point clouds into normalized
and organized data structures, such as volume model, tree structure, grid model and a
multi-view image. Hence using the traditional methods, the encoding techniques based
on tree structure [8–13], surface approximation [13,14] and mapping [15–19], are several
representative encoding schemes of point cloud geometry. The existing standard compres-
sion methods for point clouds are released by MPEG [1] consisting of geometry-based
PCC (G-PCC) applied to static point clouds and video-based PCC (V-PCC) applied to
dynamic point clouds, which are both typical methods. Moreover, with the development of
artificial intelligence technology, recent works [20–23] have applied deep learning to Point
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Cloud Compression (PCC), e.g., PointNet [24], which greatly improves the compression
performance of point clouds, including point-based point cloud compression methods and
voxel-based compression methods.

In this work, we propose a multi-layer residual architecture for Point Cloud Geometry
Compression (PCGC) based on voxel using sparse convolution [25]. The main contributions
of this work are as follows:

• A multi-layer residual module is introduced to take advantage of the distortion in
entropy coding by geometric subtraction, to constrain the accuracy of the sampling
process at the encoder side;

• We employ sparse convolution to design a multi-layer residual module and progressive
up-sampling reconstruction for efficient processing of sparse tensors at low complexity;

• We adopt a novel joint loss distortion by designing a multi-layer residual loss ob-
tained by multi-layer residual operation to improve the quality of the reconstructed
point cloud.

Extensive experimental results demonstrate that our method can lessen the feature
information loss caused during the quantization process and improve the accuracy of point
cloud information extraction. Our method also performs well in subjective visual quality.
In addition, our method outperforms G-PCC [1] and V-PCC [1] substantially at BD-Rate
gain and achieves a 10% BD-Rate gain over the state-of-the-art method PCGCv2 [20].

The remainder of this paper is as follows: Section 2 provides a summary overview
of the related work; Section 3 describes our proposed multi-layer residual architecture;
Section 4 gives the experimental details and presents the experimental results; The Section 5
briefly concludes the paper.

2. Related Work
2.1. Conventional PCGC

Conventional non-deep learning based PCC methods include MPEG G-PCC [1],
V-PCC [1], etc. According to the data structure into which the point cloud is converted, it
can be divided into tree structure based, surface approximation based and mapping based
encoding methods.

2.1.1. Tree Structure Based PCGC

The encoding method based on tree structure is suitable for sparse point cloud,
which is simple, direct and effective, and was the earliest to be developed. Many works
store point cloud data in such octrees and use specific entropy models, such as adaptive
histogram, parent-child node context [8], estimation based on plane approximation [9]
or nearest neighbor [10]. To remove temporal redundancy in point cloud sequences,
Kammerl et al. [11] encoded the differences between consecutive octrees, while
Mekuria et al. [12] use encoded rigid-body transformed blocks, with both methods using
empirical histograms for range coding when coding. The main disadvantage of octree-
based compression methods is that the number of bits required increases dramatically with
tree depth. This scheme is the basic scheme of point-cloud coding based on geometric
information adopted by the MPEG G-PCC [1] standard group.

2.1.2. Surface Approximation Based PCGC

Coding methods based on surface approximation are suitable for densely sampled
and smooth surface point clouds. Compared with tree structure based coding methods,
they can bring significant performance improvements at low bit rates. The point cloud itself
is a sampling of the surface of the object, so the surface mesh model can be used to fit the
distribution of the origin point cloud in space, and then the point cloud can be recovered by
sampling on the surface. Surface approximation-based methods are often combined with
octree-based space division. First, the point cloud is divided to obtain local point-cloud
blocks, and then the plane is used to fit the local point cloud to achieve dimensionality
reduction. In this way, only the edge corners of the plane need to be encoded, so it has
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higher encoding efficiency. This scheme is also one of the geometric coding schemes of
MPEG G-PCC [1]. The disadvantage is that the plane-based coding method cannot achieve
lossless coding due to the constant error of the plane approximation.

2.1.3. Mapping-Based PCGC

Mapping-based encoding methods are mainly applied to dense dynamic point clouds.
This type of method [15–19] maps the point cloud into a two-dimensional image, and then
directly use a mature image and a video encoder for compression, which can achieve high
encoding efficiency. The research mainly focuses on the mapping method, that is, how
to realize the 3D to 2D mapping and its reconstruction as much as possible without loss;
additionally, to help the mapped images develop a better spatial and temporal correlation
in order to make better use of the efficient video coding methods and forecasting techniques.
A more advanced mapping technique currently projects a patch of points with similar
normal vectors onto the surface of a cube surrounding the point cloud, and then converts
it into a depth map for compression. This patch-based projection avoids massive loss of
occluded contiguous points. This scheme was adopted by the MPEG V-PCC [1] standard
as a video-based point cloud coding standard.

2.2. Deep Learning Based PCGC

In recent years, with the rise of artificial intelligence technology, the methods using
deep learning outperform them. In terms of point-cloud geometry compression, deep-
learning-based approaches can be simply classified as voxel-based and point-based.

2.2.1. Voxel-Based PCGC

This method extends the 2D Convolutional Neural Network (CNN) based image
compression framework to 3D CNN-based volume model compression. Many such
works [22,24] use 3D CNN to design codec networks. For the convolutional features,
a learning-based entropy model is used for rate estimation. On the decoding side, the
distortion is optimized by using a classification loss function with the reconstructed voxels
being classified by a binary classification. There are also some studies, [26] representing
volume models, based on Truncated Signed Distance Fields (TSDF), which can achieve a
better geometry compression performance. Recently Wang et al. [23] proposed a multiscale
geometric compression method, which achieves a good rate-distortion (R-D) tradeoff when
compared to other approaches, while the distortion caused by quantization is ignored in the
entropy coding stage. This will cause some feature information of the encoded point cloud
to be lost, which leads to the reconstructed point cloud to ignore more details. Therefore,
we further process the distortion through the proposed multi-layer residual module.

On the basis of voxelized point clouds, there are some works that use octree repre-
sentation for PCC. For example, Huang et al. [27] and Que et al. [28] first divide the point
cloud data into the octree structure, and the entropy model is constructed by exploiting
the relationship between the nodes of the octree compression including ancestor nodes
or neighbor nodes or their combination. Their works use 3D convolution to design a
multilayer perceptron (MLP), which finally obtains the symbol prediction through the
softmax layer.

2.2.2. Point-Based PCGC

Voxel-based compression algorithms are limited by fixed precision constraints, which
are difficult to be effectively applied to unevenly distributed and sparse point clouds,
while neural networks that directly process point sets, such as PointNet have the abil-
ity to deal with them. Wen et al. [29] proposed a deep learning-based framework for
lossy compression of geometric structures via hybrid representations of point clouds.
The method firstly decomposes the input original point cloud into non-overlapping local
sub-blocks adaptively through the decomposition and clustering of the adaptive octree.
Then, a point cloud autoencoder network framework with quantization layers is pro-
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posed to learn compact latent feature representations from each sub-block. Subsequently,
Zhu et al. [30] exploited regional similarity to achieve efficient lossy point cloud geometry
compression. To this end, the input point cloud is divided into multiple local regions, and
they are grouped into distinct clusters according to the region surface vectors, ensuring
that the inter-cluster similarity is minimized and the intra-cluster similarity is maximized.
Alignment transformation is performed on each cluster to predict non-reference regions of
similar features from selected reference regions to achieve a considerable data reduction. In
addition, Gao et al. [31] developed a more efficient point-based method for sparse point
cloud compression, employing an end-to-end variational autoencoder structure to extract
latent key points from point clouds using multi-scale neural graph sampling (NGS), taking
neighboring structures as latent features. The decoder directly uses hierarchical convolution
to gradually refine point reconstructions with aggregated features.

This kind of network [29–31] goes straight to taking the point cloud coordinates as an
input and solves the disordered arrangement of point clouds through symmetric functions
to learn latent features. The decoder directly generates the coordinates of the point cloud
through a network such as a fully connected layer.

3. Method

The proposed multi-layer residual architecture is designed on the basis of the popular
convolutional autoencoders via sparse convolution [25]. In order to reduce the loss of fea-
ture information caused by the quantization process, we introduced a multi-layer residual
module at the encoder side to solve the distortion problem caused by the entropy encoding
stage. We down-sample the input point clouds with the multi-layer residual module and
reconstruct the points cloud in a hierarchical way. The holistic network structure is shown
in Figure 1.
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Figure 1. The architecture of the proposed method. Our multi-layer module is on the encoding side.
The minus stands for geometric subtraction. C and F are the coordinate tensor and feature tensor,
respectively. Q is quantization. BC and BF are the encoded bit-streams. Other symbols are described
and explained in method.

3.1. Sparse Convolution

We adopt a convolutional neural network based on sparse convolution [25] to exploit
the sparsity of point clouds. Point cloud data are expressed as a set of sparse tensors, in-
cluding their coordinates C = {(xi, yi, zi)}i and their associated features F = {fi}i in sparse
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convolution. Moreover, the convolution only extracts features of occupied coordinates. Its
process is defined in [25] as follows:

xout
t = ∑i∈K3(t,Cin)Wix in

t+i , for t ∈ Cout (1)

where Cin and Cout are coordinates of input and output point clouds. xin
t and xout

t are feature
vectors at coordinate u of input and output point clouds. K3

(
t, Cin

)
=
{

i
∣∣∣t + i ∈ Cin, i ∈ K3

}
is the definition of a 3D convolutional kernel centered on t with an offset of i. Wi is the
value of the convolution kernel at offset i.

Using sparse convolutions can help to reduce the complexity and efficiently extract
features from point clouds. In this work, sparse convolution is utilized to efficiently
down-sample to aggregate features and reconstruct the point clouds while up-sampling.
Specifically, we utilize sparse convolutions on the encoder side for triple down-sampling
and use in the up-sampling process of the multi-layer residual module as shown in Figure 2.
In addition, in sparse convolution, we need to use geometric coding and octree coding for
the down-sampled geometric coordinates C and feature information F, respectively.
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Figure 2. Sparse convolution based up-sampling and down-sampling modules. The upper picture
is a down-sampling module based on sparse convolution, and the lower picture is an up-sampling
module based on sparse convolution. “o × k3” represent a sparse convolutional layer with output
channel o and convolution kernel 3 × 3 × 3. “2↑” and “2↓” represent up-sampling and down-
sampling with a stride of 2, respectively.

3.2. Multi-Layer Residual Architecture

Encoder: At the encoder side of our whole point cloud compression architecture, the
input point cloud X is down-sampled progressively, and the feature information F and
coordinate information C of the Xd point cloud obtained are coded, respectively. Due to
an additional quantization process in the entropy coding stage for F, this process makes
our feature F compression lossy. Considering the distortion caused by quantization or the
introduction of noise, we design a multi-layer residual architecture, as shown in Figure 1. A
sparse conv module includes a sparse convolutional layer with stride 2 for down-sampling
by a factor of 2, followed by an Inception ResNet block (IRN) [31] for a more efficient
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feature extraction. Each of the IRN blocks contains three consecutive IRN units. The above
module reduces the amount of compressed data while extracting point cloud features.

For the multi-layer residual module, we perform specially up-sampling after each
down-sampling. Specifically, the input point cloud X is first down-sampled to obtain
X1 by aggregating features, and then X1 is up-sampled to obtain X′ with voxel pruning,
which imposes coarse-level constraints on the accuracy of the point cloud down-sampling
process. Then geometrically subtract the geometric coordinates of X and X′ to obtain the
geometric residual. The process from X1 to X2 and from X2 to Xd which imposes finer level
constraints on the accuracy of the point cloud down-sampling process is similar. For a
given point cloud M(xi, yi, zi) ∈ X, the corresponding point M′(x′i, y′i, z′i) is obtained after
up-sampling, then their difference

(
xres

i , yres
i , zres

i
)

is calculated by the geometric subtraction.
We minimize the distortion of the difference to constrain the down-sampling accuracy. This
way we obtain two bitstreams BC and BF through the encoder.

Decoder: At the decoder side, a sparse deconv module includes a sparse convolutional
layer with stride 2 for up-sampling by a factor of 2, followed by an IRN [31] to better
recover point cloud. Each of the IRN blocks contains three consecutive IRN units, as shown
in Figure 2b. Then voxel pruning is performed according to the probability that it may
be occupied. During the voxel pruning stage with layered reconstruction, we sort the
resulting probabilities and consider the top k voxels as the most likely occupied voxels
after a binary classification by a sparse convolution with output channel 1. We set k to be
the number of ground truth labels to obtain the lowest distortion. We can obtain X′′2 , X′′1
and X

′′
successively according to the decoded X′′d in this way. In particular, the pruning of

voxels, in the multi-layer residual module, does not depend on the probability different
with the reconstruction when up-sampling.

3.3. Quantization and Entropy Coding Model

In this work, we use octree coding and entropy coding for the geometric information C
and feature information F obtained by down-sampling, respectively. Before entropy coding,
we need to quantize the feature information F. In order to ensure the differentiability of
backpropagation, we add uniform noise:

F(η) = F + η, F(η)∼ η(F +
1
2

, F− 1
2
) (2)

where η is random noise, F(η) and F are the original and quantized feature representations,
respectively. F(η) follows a uniform distribution η centered on. For the entropy model
stage, we use the probability density model to encode the quantized feature information,
i.e., the full factorization model. Then under the hyperpriors [32,33] condition c, we use
the Laplacian distribution L to approximate the probability density P(F(η)

∣∣∣c) , which is
defined as follows:

PF(η) |c(F
(η)|c) = ∏i ci(L(µi,σi)× η) (3)

3.4. Joint Optimization Distortion

In our deep learning framework, we adopt joint optimization distortion for better
compression performance and reconstruction quality. In detail, the loss of the multi-layer
residual module is introduced while following the conventional rate-distortion. It is defined
as follows:

Jloss = R + λD + αLres (4)

where λ is used to control the bitrate. D measures the reconstruction loss using cross-
entropy in Equation (5), and R is the bitrate of probability obtained by the prior model. Lres
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denotes the residual loss obtained by geometric subtraction at different precision levels and
parameter α is the weight of Lres as in Equation (6):

D =
1
M ∑M

j
1
N ∑

i
−(xi log(pi) + (1− xi) log(1− pi)) (5)

where M is the number of sampling layers, j is the sampling layer index. x indicates whether
the voxel is occupied, occupied is 1 and empty is 0. p represents the probability that it may
be occupied, p ∈ (0, 1) is activated by the sigmoid method:

Lres = sigmoid
1
n

n

∑
i

∣∣∣∣xi − x′i
∣∣∣∣

2 +
∣∣∣∣yi − y′i

∣∣∣∣
2 +

∣∣∣∣zi − z′i
∣∣∣∣

2 (6)

where n is the number of point clouds in a batch. (xi, yi, zi) is the point cloud before down-
sampling, and (x′i, y′i, z′i) is the point cloud after up-sampling. We can obtain

(
xres

i , yres
i , zres

i
)

by geometric subtraction and calculate the L2 norm sum. Therefore, Lres can be obtained
by activating its mean through the sigmoid method.

4. Experiments
4.1. Experimental Setup

In training, we select 20,000 3D mesh models from ShapeNet [34] randomly. We
generate points from the surfaces of the mesh. In addition, we adopt joint optimization
distortion in Equation (4) and set the weight α for the residual loss to 10 for a better trade-off
between the compression cost and the performance. To obtain models at different bit rates,
we set λ from 0.15 to 5. We adjust the batch size to eight when training the model and
optimize our proposed network with the help of the Adam [35] optimizer.

In the tests, we use point cloud test data from 8i Voxelized Full Bodies (8iVFB) [36],
Owlii dynamic human mesh and Microsoft Voxelized Upper Bodies (MVUB) [37]. These
point cloud test data cover different types and scales, MPEG Common Test Condition(CTC) [38]
and JPEG CTC [39] and use them in the compression work. The preview and details of the
test point cloud are shown in Figure 3 and Table 1. Specifically, Class A (full bodies) exhibit
a smooth surface and a complete shape, while Class B (upper bodies) present a noisy and
incomplete surface (even having visible holes and missing parts).
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Table 1. Details of Testing Datasets.

Point Cloud Points Precision Frame

Class A

Longdress 857,966 10 1300
Soldier 1,089,091 10 690

Loot 805,285 10 1200
RedandBlack 757,691 10 1550

Class B

Andrew 279,664 9 1
Phil 370,798 9 1

David 330,791 9 1
Sarah 302,437 9 1

4.2. Experiment Results

Objective Quality Comparison: To validate the performance of our proposed method,
we compared our multi-layer residual architecture with the state-of-the-art MPEG G-
PCC [1] and V-PCC [1] schemes and followed the CTC [38] suggestions using
TM13-v6.0 [40] to encode. In addition, we also compared our multi-layer residual ar-
chitecture with the state-of-the-art PCGCv2 [20] work. Following the common objective
quality measures, we use the bit rate as measurement which measures the bitsper input
point (bpp). In our framework, the compression of geometric information occupies a small
rate, while the feature information consumes most of the rate. Additionally, we adopt point-
to-point distance (D1) [41,42] and point-to-plane distance (D2) as the distortion evaluation
metrics. The rate-distortion curves including D1 and D2 are displayed in Figure 4. The
BD-Rate and BD-PSNR gains are also displayed in Tables 2 and 3, respectively.
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Figure 4. R-D performance including D1, D2 for G-PCC (octree), G-PCC (trisoup), PCGCv2 and our
method.

As shown in Tables 2 and 3, compared with point cloud compression schemes G-PCC
(octree) [1] and G-PCC (trisoup) [1], our method successfully achieves on average more
than 84% of BD-Rate gains and more than 72% of BD-Rate gains, respectively. Meanwhile,
we obtain more than 38% of BD-Rate gains against V-PCC [1]. Moreover, compared to the
state-of-the-art PCGCv2 [20], we achieve an average gain of about 10% in BD-Rate and
show an improvement in terms of the performance on BD-PSNR.
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Table 2. BD-Rate gains of some test data against G-PCC (octree), G-PCC (trisoup), V-PCC and
PCGCv2 using D1 and D2 distortion measurement.

Point
Cloud

D1 (p2point) D2 (p2plane)

G-PCC (Octree) G-PCC (Trisoup) V-PCC PCGCv2 G-PCC (Octree) G-PCC (Trisoup) V-PCC PCGCv2

Longdress −91.35% −77.30% −39.93% −8.65% −84.76% −73.37% −42.06% −6.96%
Soldier −90.37% −76.88% −39.50% −13.25% −84.74% −72.92% −41.97% −10.04%

Loot −91.22% −81.65% −39.67% −13.34% −85.19% −73.44% −42.13% −10.23%
RedandBlack −90.36% −81.21% −39.61% −12.75% −85.03% −73.28% −42.04% −9.37%

Andrew −92.14% −87.38% −60.94% −14.80% −83.17% −87.79% −53.61% −11.30%
Phil −92.35% −87.97% −61.06% −14.32% −83.79% −80.06% −53.88% −10.25%

David −92.41% −86.73% −61.55% −13.79% −82.93% −82.45% −54.17% −10.17%
Sarah −93.16% −86.66% −60.39% −14.64% −83.61% −86.36% −53.65% −11.40%

Average −91.67% −83.22% −50.33% −13.19% −84.40% −76.71% −45.94% −9.97%

Table 3. BD-PSNR gains using D1 distortion of some test data against G-PCC (octree), G-PCC
(trisoup), V-PCC and PCGCv2.

Point Cloud
BD-PSNR

G-PCC (Octree) G-PCC (Trisoup) V-PCC PCGCv2

Longdress 8.89 7.91 3.11 0.24
Soldier 9.29 7.43 3.59 0.41

Loot 9.66 7.31 3.52 0.40
RedandBlack 8.41 6.94 3.22 0.35

Andrew 9.74 11.15 3.95 0.33
Phil 10.43 12.10 4.36 0.51

David 9.54 10.57 3.14 0.40
Sarah 8.94 9.78 3.36 0.37

Average 9.36 9.13 3.53 0.38

Subjective Quality Comparison: We compare the subjective quality of reconstructed
point clouds of the proposed method with G-PCC (octree) and the state-of-the-art method
PCGCv2. We visualize the reconstructed point clouds of different methods when ours are
at a lower bit rate or a similar bit rate, as shown in Figures 5 and 6. It can be seen that
we still have a higher reconstruction quality despite the low bit rate. Our reconstruction
point cloud retains more detail and is smoother and more distributed in these details. For
example, the hair part of Longdress, reconstructed by our method, is denser and finer
in detail. Our method has reconstructed the contour of the backpack in the Soldier with
clearer and more accurate edges. In addition, the jaw of Andrew, reconstructed by our
method, is much finer and smoother.

4.3. Ablation Study

Weight of multi-layer residual distortion: In the training process, in order to make the
model have a better compression performance, we set different weights for the multi-layer
residual loss. To estimate the effect of multi-layer residual loss on model performance, we
set the parameter α as α = 5, α = 10, α = 15 and α = 20. Experiments show that when the
parameter α = 10, the quality of the reconstructed point cloud of the model is the best, as
shown in Tables 4 and 5. Therefore, while training, we set the parameter α to 10 to obtain
the best R-D tradeoff.
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Table 4. BD-Rate gains with different weights of multi-layer residual module.

Point Cloud
BD-Rate

α = 5 α = 10 α = 15 α

Longdress −4.32% −6.96% −6.76% −4.55%
Soldier −7.41% −10.04% −8.69% −7.28%

Loot −9.56% −10.23% −9.15% −10.13%
RedandBlack −5.51% −9.37% −7.28% −7.73%

Average −6.70% −9.15% −7.94% −7.42%

Table 5. BD-PSNR gains with different weights of multi-layer residual module.

Point Cloud
BD-PSNR

α α = 10 α = 15 α = 20

Longdress 0.15 0.24 0.21 0.19
Soldier 0.23 0.41 0.37 0.36

Loot 0.28 0.40 0.32 0.33
RedandBlack 0.21 0.36 0.30 0.31

Average 0.22 0.35 0.30 0.28

4.4. Complexity Discussion

In terms of complexity, our experiments are conducted on a workstation equipped
with Intel Core i7-9700K CPU and an Nvidia GeForce GTX 1080 GPU. Our prototype, on
average, takes 1.59 s for encoding and 5.44 s for decoding on an 8iVFB dataset at the highest
bitrate, while the encoding and decoding time for G-PCC (octree) is about 1.6 s and 0.6 s,
respectively, as shown in Table 6. The reason for this is that the point cloud reconstruction
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structure based on a binary classification needs to deal with more voxels. Additionally, we
need to point out that our method is implemented in a prototype, which can be further
optimized and improved in our future work. The number of parameters of our model is
about 894 kb, while the parameter size of PCGCv2 is 778 kb, which shows our method has
a relatively lightweight network when compared to other popular algorithms.

Table 6. Average running time (s) of different methods.

G-PCC (Octree) G-PCC (Trisoup) V-PCC PCGCv2 Ours

Encoding 1.60 8.16 103.41 1.56 1.59
Decoding 0.60 6.58 0.67 5.42 5.44

5. Conclusions

In this paper, we proposed a multi-layer residual module for point-cloud geometry
compression, which imposes different level constraints on the accuracy of the point cloud
sampling process to deal with the distortion caused by quantization or the introduction
of noise. We take advantage of the sparsity of point clouds, with sparse convolutions for
the complexity reduction in the space and time. For point cloud applications, such as
autonomous driving, a mainstream 64-line LiDAR can produce 1 TB raw point cloud data,
which brings a great burden to its transmission and processing. Additionally, our method
can greatly reduce it to about 1/130 of its original size. Experimental results validate that
our method improves the reconstruction quality of point clouds and preserves more detail.
Meanwhile, our method outperforms MPEG G-PCC and V-PCC substantially at a BD-Rate
gain. Additionally, compared to the state-of-the-art PCGCv2, our method can achieve an
average gain of about 13% and 10% in BD-Rate with D1 and D2 distortion criteria. In
our future work, we can further improve the entropy coding module by constructing a
more accurate context probabilistic model utilizing 3D neighboring points. One future
research direction is to generalize our multi-layer residual architecture to other point
cloud processing tasks, for example, point cloud denoising, point cloud segmentation
and classification.
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