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Abstract: The forecasting and prediction of crude oil are necessary in enabling governments to
compile their economic plans. Artificial neural networks (ANN) have been widely used in different
forecasting and prediction applications, including in the oil industry. The dendritic neural regression
(DNR) model is an ANNs that has showed promising performance in time-series prediction. The DNR
has the capability to deal with the nonlinear characteristics of historical data for time-series forecasting
applications. However, it faces certain limitations in training and configuring its parameters. To
this end, we utilized the power of metaheuristic optimization algorithms to boost the training
process and optimize its parameters. A comprehensive evaluation is presented in this study with
six MH optimization algorithms used for this purpose: whale optimization algorithm (WOA),
particle swarm optimization algorithm (PSO), genetic algorithm (GA), sine–cosine algorithm (SCA),
differential evolution (DE), and harmony search algorithm (HS). We used oil-production datasets
for historical records of crude oil production from seven real-world oilfields (from Tahe oilfields,
in China), provided by a local partner. Extensive evaluation experiments were carried out using
several performance measures to study the validity of the DNR with MH optimization methods in
time-series applications. The findings of this study have confirmed the applicability of MH with
DNR. The applications of MH methods improved the performance of the original DNR. We also
concluded that the PSO and WOA achieved the best performance compared with other methods.

Keywords: dendritic neural regression (DNR); particle swarm optimization; metaheuristic; time-series;
forecasting; oil production

1. Introduction

Forecasting oil production is an urgent means for petroleum engineers and oil compa-
nies to form effective links between oil reservoir developments and their profitability [1–3].
To achieve this ultimate goal, two elements need to be accomplished. Firstly, a robust and
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reliable geostatistical reservoir model is required to attain precision [4]. The geostatistical
reservoir model consists of various elements, including the structural model, the lithofacies
model, and the petrophysical model; hence, generating an accurate geostatistical model is
an important stage [5–7].

However, developing an accurate geostatistical model is challenging and cumbersome.
Secondly, a dynamic reservoir modeling approach must be developed; this comprises
various parameters, including PVT [8], testing wells [9], and production of wells [10]. The
dynamic reservoir mainly depends on the quality of the history-matching performance [11].
However, the accuracy of history matching relies on the fit of the oil-production historical
data, the quality and quantity of pressure data, and the accuracy of the geostatistical
reservoir model. The history-matching mechanism is challenging and time-consuming.
Hence, integrating geological models and dynamic models is the main step to ensure that
we can perform oil-production forecasting [3,4,7].

In the petroleum industry, there are different traditional approaches that are engaged
in predicting oil reservoir production, including decline curve analysis (DCA) [12] and
numerical reservoir simulation (NRS) [13]. The aforementioned techniques have some
advantages and disadvantages in terms of forecasting production. Decline curve analysis
(DCA) is a set series for estimating long-term reserves and determining the estimated
ultimate recovery (EUR), which has been performed effectively in oil and gas reservoirs for
decades. The DCA entails fitting the historical-production data to an empirical equation
and then extrapolating the production patterns. On the other hand, it is challenging to fit
the historical production of oil wells. Even with good historical matching, there potential
remains for calculating unreliable predictions because of tedious and unsteady production
settings. NRS is touted as the optimal conventional method for predicting oil production by
emulating and observing historical oil well production [14]. The success of achieving good
performance using NRS is associated with the accuracy of the geological model and the
quality of historical oil production. The NRS is a good means of predicting oil production;
however, the NRS involves investing significant time in a trial-and-error development
method. Furthermore, it is challenging to attain precision. Although the DCA and NRS
have been widely implemented in many oil and gas fields, these conventional approaches
still have certain limitations in terms of accuracy, difficulty, and time consumption. As a
result, it is critical for developed new techniques that have the ability to develop forecasting
models with high accuracy in a short time.

To address these issues in the petroleum industry, deep learning and machine learning
have emerged as powerful techniques to tackle the aforementioned issue. Deep learning
and machine learning have been involved in numerous studies of oil production. Recently,
many researchers have investigated the capability of deep learning and machine learning
to forecast oil production. Liu et al. [2] applied ensemble empirical mode decomposition
(EEMD) based on long short-term memory (LSTM) to forecast oil production. Empirical
findings revealed that the presented framework is efficient in providing adequate produc-
tion forecasts. In [15], the authors applied a deep-gated recurrent unit (GRU) approach to
forecast oil production. They demonstrated their model’s ability to capture the long-term
dependencies of time-series data instead of using huge amounts of memory. The authors
in [3] employed various machine learning techniques to develop models that forecast the
oil well production in the Volve field. They revealed that the developed models have a
high-prediction-output performance. In [7], the authors developed and optimized a new
hybrid intelligence time-series model, namely the Aquila optimizer–adaptive neuro-fuzzy
inference system (AO-ANFIS), to predict oil production. The output indicated that the
developed model is a powerful time-series tool for forecasting oil production. Furthermore,
in [4], the authors developed and optimized an artificial time-series to forecast oil produc-
tion from two oilfields in different countries. The developed model consists of an adaptive
neuro-fuzzy inference system, a slime mold algorithm (SMA), and opposition-based learn-
ing (OBL); thus, the developed model was named ANFIS-SMAOBL. The developed model
demonstrated a strong ability to forecast oil production effectively. The authors of [1]
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developed advanced time-series forecasting (TSF) to predict oil production using deep
LSTM (DLSTM). These authors emphasized the ability of deep learning to precisely forecast
oil production.

Deep neural networks have been widely employed in time-series forecasting and
prediction problems. The dendritic neural regression (DNR) is one of the promising neural
network models that was adopted in time-series forecasting [16,17]. However, DNR faces
specific challenges in the parameter configuration, which affects its performance. Inspired
by the recent advances in metaheuristic (MH) optimization algorithms that are adopted in
different engineering applications, in this paper, we study the applications of different MH
optimization algorithms in optimizing DNR. The main idea is to test the performance of
the DNR using the power of MH algorithms that are employed to optimize the parameters
and to boost the forecasting performance. We selected several well-known optimization
methods: a particle swarm optimization algorithm (PSO), a whale optimization algorithm
(WOA), a genetic algorithm (GA), a sine–cosine algorithm (SCA), differential evolution
(DE), and a harmony search algorithm (HS). We evaluate the optimized DNR model using
real-world datasets of oil production collected from a real oilfield in China and provided
by a local partner. We found that the applications of MH with DNR have certain impacts
on the models’ forecasting performances.

2. Preliminaries

In this section, we present the preliminaries of the applied methods: DNR, whale
optimization algorithm (WOA), particle swarm optimization algorithm (PSO), genetic
algorithm (GA), sine–cosine algorithm (SCA), differential evolution (DE), and harmony
search algorithm (HS).

2.1. Basics of the DNR Model

The basic DNR model generally consists of four layers. It is known that the first layer
is called the synaptic layer. The main function of this layer is to receive the input data. After
that, The received input data can then be passed by the defined activation function to the
next layer. The next or the second layer is called the dendrite layer. This layer has branches
that can be employed to send the input data into the next layer (the third layer), which is
called the membrane layer. The main function of this layer is to integrate all received data
that has passed through the previous layers; then, it delivers them into the next layer, the
soma layer. The soma layer uses the defined sigmoid function to process the received data
and to generate the outputs. The mathematical models of the above-mentioned steps are
presented here.

(1) Synaptic layer:
The synaptic layer simulates the nervous system’s synaptic components [18,19].

Equation (1) is employed to process the input data received by this layer:

Dij =
ωi

1 + e−a(
ωi,j xi−θij

αi
),

(1)

where xi refers to the ith input data, and Dij indicates the values of ith synapse deliv-
ered to the jth dendritic branches. Moreover, A represents a positive constant parameter.
Additionally, wim and 8im refer to alterable parameters used for different tasks.

(2) Dendrite layer: The dendrite layer is used to aggregate the input data from the
first layer. The input data have nonlinear relationships. They can play a vital role in neural
information processing. This nonlinear relationship is represented by Equation (2)

Mj =
I

∏
i=1

yij (2)

where Mj indicates the output values of each mth dendritic branch.
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(3) Membrane layer: The membrane layer can be used to aggregate the input data
from the branches of the previous layer (dendrite layer). Then, a summation is applied to
perform the integrated task, as represented by Equation (3):

S =
J

∑
j=1

(uj∗Mj) (3)

where uj indicates the strength of dendritic branches and S refers to the input of the next
layer, the soma layer. Generally, uj is set to 1 in DNM, and for DNR, the µm represents
a variable parameter used in different processes by adjusting its values to be able to deal
with regression problems [19].

(4) Soma layer: The Soma layer is the last layer, which uses the sigmoid function as
an activated function. Additionally, the cell body could be fired if the membrane exceeds
the threshold. Equation (4) presents the mathematical definition of this problem:

R =
1

1 + e−A(S−v)
(4)

where R is the output of the soma layer, whereas A and v are positive constants.

2.2. Whale Optimization Algorithm (WOA)

The WOA was developed by Mirjalili [20] and was inspired by the unique wildlife
strategic plan of humpback whales, which is known as the bubble-net feeding technique.
As a result of this, Mirjalili suggested a new nature-enlightened algorithmic optimization
technique, which is known as the WOA. This method simulates the behavior and attitude
of humpback whales [20]. It is one of the most efficient optimization methods and has
received widespread attention in recent years.

2.3. Particle Swarm Optimization Algorithm (PSO)

The PSO method is one of the earliest and most famous swarm intelligence optimiza-
tion algorithms. It is based on the interaction and dispersal techniques of flocks of birds
and is a stochastic optimization technique [21]. To begin the PSO investigation, a swarm of
individuals, each representing a particle, is first created. These characters correspond to
propose options towards the optimization task, as shown by the corresponding positions
of these letters. For each particle, the speed at which it moves during the global search is
also taken into consideration [22].

2.4. Genetic Algorithm (GA)

Many optimization issues can be overcome using an evolutionary algorithm such as
a genetic algorithm (GA). During the optimization procedure, various types of genetic
operators were used as the basis for a GA. In the beginning, the GA relied on a completely
random group with likely solutions. Chromosomes serve as a visual representation of
the latter. It can then be used to discover the ideal solution by applying genetic operators
such as crossover, replication, and mutations. Simply replacing unfit members with fresh
ones based on a fitness value which provides the optimal solution to also be maximized
was performed during the focus on the improvement of GA. Individuals are selected to
be parents by GA’s selection operator. Those individuals are also selected to serve as
ancestors for future generations. Two individuals randomly share information during a
crossover. During a mutation, the bits of a gene’s code can be changed at random. When
the requirement for pausing is met, this cycle keeps going until a level of performance is
reached that is good enough for the optimized task [23].

2.5. Sine–Cosine Algorithm (SCA)

The SCA is a population-based MH optimization method. It was inspired by sine and
cosine functions in mathematics to address complex optimization tasks and problems.
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The main idea is to initialize multiple initial random candidate agents. Those agents
are required to fluctuate towards and away from the best agent (solution). This process
depends on applying a mathematical model, relying on sine and cosine functions [24]. It
showed competitive performance in recent years, as it was adopted in different applications
and optimization problems [25].

2.6. Differential Evolution (DE)

Differential evolution (DE) is a type of method that was established by Storn and Price
and is used for both evolutionary and global optimization purposes [26]. DE is indeed a
branch of GA, and both of these algorithms utilize the same operators—crossover, mutation,
and selection—albeit in somewhat different ways. Furthermore, mutations are the main
search operators in DE, whereas selecting has been used to help guide the search to the
most promising regions.

2.7. Harmony Search Algorithm (HS)

The HS can be defined as a music-based MH optimization method. The main inspi-
ration of the HS method came from music harmony, in which some effort can be made to
find harmony in music, which can be considered as a solution for optimization problems
during the search process in [27,28].

2.8. Methodology

The DNR presented in this study was trained using several types of optimization tech-
niques, namely the whale optimization algorithm (WOA), the particle swarm optimization
algorithm (PSO), the genetic algorithm (GA), the sine–cosine algorithm (SCA), differential
evolution (DE), and the harmony search algorithm (HS). Different optimization techniques
were used to determine which was the most suitable for effectively training the DNR’s
weights and threshold parameters. In this stage, the proposed model starts by determining
all experiments’ parameters and preparing the used dataset. Then, the optimization tech-
nique searches for the best DNR parameters using the optimization technique. After that,
the selected parameters can be applied to train the DNR. The obtained results are evaluated
by Equation (5) to check the qualities of the new parameters.

MSE = 1/n
n

∑
i=1

(boi − (bci)
2 (5)

where bo denotes the real data. bc denotes the output data. N denotes the data size. In
this regard, the best parameters are selected considering the value of the MSE between the
target and output data; namely, the smallest MSE is the best. These sequences work till
reaching the stopping condition and the maximum number of fitness function evaluations.
After finishing the training phase, the best parameters are used for the DNR to start the
testing phase. The following pseudo-code (Algorithm 1) shows the sequence used in each
algorithm to optimize the DNR model.
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Algorithm 1 The MH-DNR pseudo-code

1: Determine all used parameters.
2: Randomly initialize the population.
3: Compute the initial objective values for the population.
4: Select the best solution.
5: Initialize the iteration i = 0
6: while (i < max iteration) do
7: Update the parameters of the optimization process, such as random and control

parameters.
8: Update each solution using the conditions of the MH algorithm.
9: Pass the solution on to train the DNR model.

10: Calculate the objective value using the objective function.
11: Save the best value.
12: Increase i = i + 1
13: end while
14: Return the best DNR parameter.

3. Experimental Evaluation
3.1. Dataset

We used real-world oil-production datasets of seven oilfields within the Tahe oilfield,
China, provided by a local partner. Tarim basin is located in the Xinjiang region, and it
consists of several oilfields, including the Tahe oilfield [7,29]. Tahe oilfield is situated in
Luntai county, in Northwest China, and is considered the most productive oilfield in the
Tarim basin [30]. Tahe oilfield consists of several oilfields, including the S3 oilfield, the
block-6, and the block-9 oilfield. The S3 oilfield is located in the upper part of the Tahe
oilfield, and it has roughly 28 wells, with a total area of 8.47 km2 [31]. Moreover, the S3 is
characterized by good reservoir properties. Figure 1 shows the S3 oilfield location.

Figure 1. The study area: S3 oilfield, Tahe oilfield, Block 9, China.
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3.2. Results

In this section, the results of the proposed method, compared with other comparative
methods, are presented in terms of various evaluation measures (i.e., root mean square
deviation (RMSE), R-squared (R2), mean squared error (MSE), and mean absolute error
(MAE)). These measures are standard in this domain for evaluating the achieved results
and for validating the algorithm performance compared with other existing methods.
The proposed method is compared with other comparative methods, such as the whale
optimization algorithm (WOA), the particle swarm optimizer (PSO), the genetic algorithm
(GA), differential evolution (DE), the sine–cosine algorithm (SCA), and the harmony search
(HS) optimizer. All experiments were applied over MATLAB 2014b using “MS Windows
10” with “Intel Corei7 CPU” and 8 GB of RAM.

Table 1 shows the results of the comparative methods in terms of RMSE measure. The
RMSE represents the degree of dispersion of these residuals. In other words, it provides
information on how tightly the data are clustered around the line of best fit. The DNR—
modified using the PSO method—clearly obtained the best results in most tested cases,
such as well numbers 1, 2, 3, 4, and 6, in terms of RMSE.

Table 1. Results of RMSE.

Well No. DNR WOA PSO GA DE SCA HS

1 4.0578 3.5838 2.6878 7.8091 8.8514 5.2098 11.2956
2 2.8275 2.1646 1.5452 2.2508 6.9484 6.1620 12.2477
3 4.5170 2.1186 1.5642 3.5894 8.5141 4.7828 15.5020
4 5.0168 7.2174 2.8998 8.3326 13.9678 10.1031 21.9182
5 3.2376 3.0552 3.8626 2.4013 12.6098 7.6578 8.9531
6 4.9018 3.0601 2.4892 4.6272 7.7860 7.7321 19.3336
7 5.9347 2.3293 3.0241 4.3542 11.7616 4.4159 12.8841

Table 2 shows the results of the comparative methods in terms of the R-squared (R2)
measure. R-squared is a quantitative metric that indicates how much of the variance for
a dependent variable in linear regression is explained by one or more predictor factors.
This measure (R2) shows that the DNR modified using the WOA method (for tuning
the forecasting model) obtained the best results in most tested cases. It is clear from
Table 2 that the best results were achieved by the DNR modified using the WOA and PSO
optimization methods.

Table 2. Results of R2.

Well No DNR WOA PSO GA DE SCA HS

1 0.6875 0.8457 0.7891 0.7450 0.7462 0.7845 0.7275
2 0.6611 0.7753 0.7042 0.6592 0.5444 0.6251 0.5787
3 0.6668 0.8943 0.8489 0.7624 0.7678 0.8037 0.7911
4 0.7103 0.8649 0.7856 0.8802 0.7257 0.7343 0.6554
5 0.7093 0.9069 0.8760 0.8482 0.8161 0.7935 0.7163
6 0.6813 0.9049 0.7067 0.7982 0.6741 0.7444 0.6167
7 0.6243 0.8268 0.8639 0.6105 0.6731 0.7354 0.8310

Table 3 shows the results of the comparative methods in terms of the MSE measure.
A fitted line’s MSE gauges how near it is to the data points. The value for each data point is
squared by measuring the vertical distance between the point and the given input value on
the curve fit. In terms of MSE measure, the modified DNR using the PSO method obtained
three best results out of seven, followed by the traditional DNR, which obtained two best
results out of seven. It is clear that the DNR-PSO method obtained the best forecasting
performance compared with the other methods.
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Table 3. Results of MSE.

Well No DNR WOA PSO GA DE SCA HS

1 1.2448 3.0317 3.2014 11.0028 6.6457 3.9658 7.3400
2 0.8966 1.0981 0.8370 1.3937 2.7396 2.0741 4.3414
3 1.3255 0.4977 0.4121 0.9910 2.3315 1.2026 4.6311
4 1.5443 2.3293 0.7931 3.1835 4.6442 3.0516 6.5817
5 0.8842 0.5290 0.6313 0.6392 3.5816 1.8358 2.8121
6 1.4605 0.8906 0.6090 1.1794 2.1170 2.1602 5.7905
7 1.7999 2.7891 4.1394 8.8920 11.2291 4.1695 8.0733

Table 4 shows the results of the comparative methods in terms of the MAE measure.
MAE measures mistakes between paired observations, reflecting the same phenomena
as that in the statistics. Analyses of expected data versus observed data, subsequent
time versus initial time, and one measuring technique versus an alternate measurement
technique, were alike to Y versus X comparisons. It is clear that, in Table 4, the performance
of the modified DNR using PSO is the best, followed by the modified DNR using the WOA
algorithm. Thus, according to the given results, we can conclude that both the PSO and the
WOA optimization methods have significant impacts on the performance of the traditional
DNR. They can be used with the DNR to improve the time-series forecasting problems,
such as the crude-oil-production forecasting problem. They showed a good ability to deal
with the forecasting of time-series data.

Table 4. Results of MAE.

Well No. DNR WOA PSO GA DE SCA HS

1 3.7466 3.3391 3.3165 7.5281 8.3595 4.9906 11.0914
2 2.5221 2.4802 1.4894 2.3512 6.8105 6.0657 12.0914
3 4.2634 1.8804 1.3854 3.2930 8.4244 4.6064 15.2934
4 4.7780 6.5083 2.7613 7.1260 13.4271 9.5137 21.5467
5 2.9867 2.7398 3.1507 2.1616 12.0793 7.3719 8.6512
6 4.7963 2.9525 3.1142 4.3524 7.6655 7.6302 19.1950
7 5.5770 2.0432 2.6755 3.9389 11.5414 4.1006 12.6019

According to the visual results, the plots given in Figures 2–4 show the results of
the tested cases using various optimization methods. Figure 2 shows the forecasting
results of the comparative methods for oil well number 4. It is clear that the optimization
methods can forecast the targeted results. The PSO was shown to be the best-performing
method, obtaining results which were near the actual values through the prediction process,
followed by WOA and DE. These results proved the general performance of such hybrid
optimization methods with DNR in solving difficult time-series problems.

Figure 3 shows the forecasting results of the comparative methods for oil well number
5. For the second case (well 5), we can see that the obtained results are very close to the best
results. Furthermore, in this case, the PSO and WOA obtained the best forecasting results
compared with the other methods. Figure 4 shows the forecasting results of the comparative
methods for oil well number 7. For the last case (well 7)—one of the most complicated
models in this research—the PSO and WOA were shown to be the best methods for solving
this case. Moreover, the results proved the optimization technique’s excellent ability to
handle completed problems.
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Figure 2. The results of well 4.

Figure 3. The results of well 5.
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Figure 4. The results of well 7.

Additionally, Figures 5 and 6 shows the forecasting results of six selected oil wells
using various advanced optimization methods. As shown in these figures, the performances
of the tested methods are clearly presented. We can see that the results obtained by PSO
and WOA are close to the targeted results in these figures. This type of experiment is
helpful in this field for determining the capabilities of the methods used in forecasting by
displaying the resulting data and comparing it with the actual recorded data. Therefore,
it is easy to judge here which methods are more robust and better for use in solving such
problems. In general, improvement methods have proven themselves in dealing with such
problems and obtain better results than the traditional methods used in this field.

Well 1

Figure 5. Cont.
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Well 2

Well 3

Figure 5. Forecasting results of all methods (i.e., well 1–well 3).

Well 5

Well 6

Figure 6. Cont.
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Well 7

Figure 6. Forecasting results of all methods (i.e., well 4–well 7).

3.3. Discussion

In this section, we discuss the achieved results. In our opinion, the applications of MH
optimization algorithms have significant impacts on the forecasting performance of the
DNR. As given in Tables 1–4, the forecasting method using the PSO- and WOA-optimized
DNR is the best approach for obtaining the most accurate forecasting results. As noticed
from Table 1, the PSO-optimized DNR is promising for tuning the forecasting model, and
it can lead to optimal forecasting results. Thus, the dendritic neural regression obtained
better results in tuning its parameters with the support of the optimization method. From
Table 2, we can see that the obtained results show the ability of the optimized DNR models
to extract the most accurate outputs. This supports the modification to the proposed
method used during the research process to find better solutions to solve such problems.
It is clear that the WOA recorded the best R2 results. Additionally, for the MSE indicator
(as shown in Table 3, we can notice that the optimized DNR with PSO obtained the best
performance, whereas the original DNR obtained the second-best performance. This
confirms the capability of the PSO to boost the forecasting ability of the DNR model.
Furthermore, the performance of the optimized DNR using PSO also recorded the best
results. We note that the PSO outperformed other comparative optimization algorithms
used to train and optimize the DNR.

Furthermore, Figures 2–5 proved the superior ability of the PSO- and WOA-optimized
DNR over the comparative methods in solving the time-series forecasting problem.

However, some other problems face individual MH optimization algorithms while
searching for solutions, such as being stuck at local optima and convergence speed. These
challenges sometimes have a terrible impact on the solution quality. Thus, the hybrid con-
cept could solve the issue of improving an individual MH optimizer; for example, two MH
algorithms could be combined to utilize both their advantages and to avoid their individual
limitations. This concept could be utilized in future work for more complex forecasting
problems using the DNR. In the current study, the application of an individual MH is suffi-
cient for producing acceptable forecasting results with reduced computation complexity.

4. Conclusions

Oil-production forecasting is critical in making necessary plans for developing coun-
ties. Artificial neural networks have recently been utilized in many applications, including
time-series forecasting and prediction. Dendritic neural regression (DNR) is an efficient
ANN that has shown good performance in various applications, including forecasting
applications. In this study, we presented a comprehensive evaluation of the applications
of the metaheuristic optimization algorithms for optimizing the DNR model. It is known
that the DNR can deal with the nonlinear characteristics of historical time-series data for
prediction and forecasting applications. However, its parameter-configuration process faces
some challenges and limitations. To this end, MH optimization methods can be employed
to improve configuration and to enable a method to obtain the best solutions. In this
study, we used six MH algorithms to optimize the DNR: the whale optimization algorithm
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(WOA), the particle swarm optimization algorithm (PSO), the genetic algorithm (GA), the
sine–cosine algorithm (SCA), differential evolution (DE), and the harmony search algo-
rithm (HS). We used real datasets for oil production from a real oilfield in China provided
by a local partner. We implemented extensive evaluation using performance indicators,
including RMSE, MAE, R2, and MRAE. We found that the applications of MH significantly
improve the prediction results. In short, the main contributions can be presented as follows:

• We present the first application for the DNR in the oil industry. This is the first time
that DNR has been used to forecast oil production.

• We present six optimized DNR models using the advances of MH and swarm intelli-
gence algorithms. The main idea was to optimize DNR parameters using the selected
MH optimization algorithms to boost the forecasting capability of the DNR.

• We implement extensive evaluation experiments with real-world oil-production
datasets that contain different oil wells’ historical production records to evaluate
the six modified DNR models and compare their outcomes.

However, using an individual MH optimization algorithm to train the DNR has some
limitations, especially during the search process. Sometimes, an individual MH algorithm
may be stuck at local optima while searching for the optimal solution. Thus, hybrid MH
methods could be employed in future work to optimize DNR models, avoiding those
limitations. In future work, an optimized DNR could be applied to other applications, such
as air pollution prediction and analysis, COVID-19 spread estimation, and real estate prices.
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and A.A.E.; software, M.A.A.A.-q. and A.A.E.; validation, L.A., A.M.A. and M.A.E. formal analysis,
L.A., A.M.A., H.V.T. and M.A.E.; investigation, M.A.A.A.-q. and A.A.E.; resources, M.A.A.A.-q.; data
curation, A.M.A.; writing—original draft preparation, M.A.A.A.-q., A.A.E., A.M.A. and H.V.T.;
writing—review and editing, L.A. and M.A.E.; visualization, A.A.E. and A.M.A.; supervision,
M.A.A.A.-q.; project administration, M.A.A.A.-q.; funding acquisition, M.A.A.A.-q. All authors
have read and agreed to the published version of the manuscript.

Funding: This work was supported by the National Natural Science Foundation of China (Grant
No. 62150410434).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Available by corresponding author upon request.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Sagheer, A.; Kotb, M. Time series forecasting of petroleum production using deep LSTM recurrent networks. Neurocomputing

2019, 323, 203–213. [CrossRef]
2. Liu, W.; Liu, W.D.; Gu, J. Forecasting oil production using ensemble empirical model decomposition based Long Short-Term

Memory neural network. J. Pet. Sci. Eng. 2020, 189, 107013. [CrossRef]
3. Ng, C.S.W.; Ghahfarokhi, A.J.; Amar, M.N. Well production forecast in Volve field: Application of rigorous machine learning

techniques and metaheuristic algorithm. J. Pet. Sci. Eng. 2022, 208, 109468. [CrossRef]
4. AlRassas, A.M.; Al-Qaness, M.A.; Ewees, A.A.; Ren, S.; Sun, R.; Pan, L.; Abd Elaziz, M. Advance artificial time series forecasting

model for oil production using neuro fuzzy-based slime mould algorithm. J. Pet. Explor. Prod. Technol. 2022, 12, 383–395.
[CrossRef]

5. Thanh, H.V.; Sugai, Y.; Nguele, R.; Sasaki, K. Integrated workflow in 3D geological model construction for evaluation of CO2
storage capacity of a fractured basement reservoir in Cuu Long Basin, Vietnam. Int. J. Greenh. Gas Control. 2019, 90, 102826.
[CrossRef]

6. Al Rassas, A.; Ren, S.; Sun, R.; Zafar, A.; Moharam, S.; Guan, Z.; Ahmed, A.; Alomaisi, M. Application of 3d reservoir geological
model on es1 formation, block nv32, shenvsi oilfield, China. Open J. Yangtze Oil Gas 2020, 5, 54–72. [CrossRef]

7. AlRassas, A.M.; Al-qaness, M.A.; Ewees, A.A.; Ren, S.; Abd Elaziz, M.; Damaševičius, R.; Krilavičius, T. Optimized ANFIS model
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