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Abstract: Underwater acoustic target recognition is very complex due to the lack of labeled data
sets, the complexity of the marine environment, and the interference of background noise. In order
to enhance it, we propose an attention-based residual network recognition method (AResnet). The
method can be used to identify ship-radiated noise in different environments. Firstly, a residual
network is used to extract the deep abstract features of three-dimensional fusion features, and then a
channel attention module is used to enhance different channels. Finally, the features are classified by
the joint supervision of cross-entropy and central loss functions. At the same time, for the recognition
of ship-radiated noise in other environments, we use the pre-training network AResnet to extract the
deep acoustic features and apply the network structure to underwater acoustic target recognition
after fine-tuning. The two sets of ship radiation noise datasets are verified, the DeepShip dataset
is trained and verified, and the average recognition accuracy is 99%. Then, the trained AResnet
structure is fine-tuned and applied to the ShipsEar dataset. The average recognition accuracy is 98%,
which is better than the comparison method.

Keywords: underwater acoustics; combined features; channel attention module; ResNet; transfer
learning

1. Introduction

In recent years, underwater acoustic target recognition has been widely used to detect
marine ships, evaluate the impact of ship radiated noise, and recognize marine life [1].
However, feature identification of underwater acoustic targets has become difficult due to
the time-varying nature of underwater acoustic channels, the correlated absorption and
scattering of sound, and the increasingly complex marine noise environment. Usually,
underwater acoustic target recognition is performed by well-trained sonar specialists. The
identification results are unstable due to the different experiences of the specialists and
lousy weather [2]. Therefore, using an underwater acoustic target recognition algorithm to
identify ship radiated noise becomes particularly important.

Thanks to the development of deep learning methods, the accuracy of recognition and
recognition algorithms in the field of audio signal processing has improved significantly.
The deep learning method is used to process massive amounts of data, extracting more
useful sample features for recognition and showing good performance in underwater
acoustic target recognition [3,4]. Li et al. [5] introduced slope entropy into underwater
acoustic signal processing to obtain higher recognition rate. Hong et al. [6] used fused
features to train an 18-layer residual neural network containing the central loss function of
the embedding layer (namely ResNet18 in this paper) and adopted various strategies to
prevent model overfitting, which improved the accuracy to 94.3% on the ShipsEar dataset.
Hong et al. [6] used a joint loss function containing a central loss function to monitor
the characteristics of different underwater acoustic targets. However, using the joint loss
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function will equally monitor all features, including ocean background noise and other
interference information, reducing the network’s recognition effect. At the same time,
for the identification of data in different environments, the number of channels required
is different, the number of channels is small, and the features of each dimension cannot
be fully extracted, while the number of channels is large, which will contain more ocean
background noise and other interference information, which will affect the recognition
effect. In addition, when ResNet18 is applied to other ship-radiated noise datasets, it may
lead to overfitting problems due to the small number of samples available for training.

The attention mechanism has made gratifying progress in solving the problem that
residual networks are affected by interference information. Chen et al. [7] use reverse
attention to guide the side output residual learning in a top-down manner, which improves
the residual network’s attention to residual details and improves the detection performance.
Lu et al. [8] used the three-layer parallel residual network structure to learn the spectrum
and spatial features, and then used the three-dimensional attention module to enhance
the expressiveness of the features from the channel and spatial domain, achieving better
classification results. Fan et al. [9] use the trunk branch of the residual structure to extract
features, and mask branches imitate the attention mechanism to add soft weights to the
features extracted from the trunk branch to optimize the extracted features and obtain
better performance. Tripathi and Mishra [10] used four two-layer residual blocks to build
the network. After the fourth layer, they used attention modules to deal with intra-class
inconsistencies, which improved the compactness and increased by 11.50% and 19.50%,
respectively, over the benchmark model on the two datasets.

Inspired by the success of the attention mechanism and overcoming the problems
of residual networks, we propose a new recognition method based on attention residual
networks (AResnet). We use a three-layer residual block. The trunk branch of the residual
block uses a 7 × 7 convolution kernel, and the mask branch uses a 1 × 1 convolution
kernel. Each mask branch is followed by a spatial attention module to weight different
channels. In order to adapt the network to different environments, we use residual blocks
with 256 channels in three layers and 512 channels in two layers to fully extract features.
After each residual block, we use channel attention module to suppress ocean background
noise and other interference information and enhance features that can better represent
target features.

There is also some literature that introduces attention mechanisms into underwater
acoustic target recognition. Xiao et al. [11] placed the attention module in front of the
hidden layer of DNN, and only retained the features related to the target to suppress
environmental noise and marine ship interference, thus achieving high accuracy of target
detection and recognition. Hu et al. [12] used the depth direction separable convolution
filter to decompose the original time-domain ship radiated noise signal into different
frequency components, and then extracted the signal features based on auditory perception.
Deep functions are integrated into the integration layer. Time-extended convolution is used
for long-term context modeling. Liu et al. [13] used the multi-resolution pooled convolution
scheme based on the Inception model to build the MCNN architecture, then used the
first eight layers of the ResNet50 model to extract features, and finally used the location
attention module and spatial attention module to optimize the feature information in
parallel. The average recognition accuracy on ShipsEar was 95.6%. Yang et al. [14] designed
a set of multi-scale depth convolution filters to decompose the original time domain signal
into signals with different frequency components, which realized the effective classification
of ship-radiated noise. Xue et al. [15] used a set of one-dimensional convolutions to
decompose the acoustic signal into the basic signal and used two two-layer residual
blocks to extract the basic signal features. After the residual block, the channel attention
mechanism was added to enhance the energy of residual convolution stable spectrum
features and obtain better recognition results.

We also introduce an attention mechanism into underwater acoustic target recognition.
Different from the above literature, we have constructed a new residual block, the attention-
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based convolution residual block, in which the main branch of the residual block has
three layers of convolution, the size of the convolution core is 7 × 7, and the mask branch
uses 1 × 1 convolution core, and then uses the channel attention module to assign weights
to different channels of the mask branch. At the same time, in order to make the network
adapt to the recognition of different environments, we use three 256-channel residual blocks
and two 512-channel residual blocks to fully extract target features by increasing the number
of channels of the attention-based residual blocks. At the same time, in order to reduce the
interference of ocean background noise and multi-target noise, a channel attention module
is used after each residual block to reduce the feature weight of ocean background noise and
multi-target noise, enhance the feature weight of the target, and improve the recognition
effect. Finally, the joint loss function, including the cross-entropy loss function and the
center loss function, can differentially supervise the abstract features of different channels,
effectively suppress the ocean background noise, and improve the adaptability of AResnet
in different environments. The network can fully extract the features of different dimensions
of underwater acoustic targets and adaptively enhance the abstract features of different
channels. The joint loss function is used to differentially supervise the abstract features of
different channels so that the features that can better represent the signal characteristics are
concentrated in the class center distribution, effectively improving the recognition effect.

The difficulty and number of samples obtained are different in different environments.
Although the early stopping strategy and the method of dynamically adjusting the learning
rate are adopted in the model’s design to avoid overfitting, there is still a problem of
insufficient samples when applied to the ship radiated noise dataset with a small sample
size. For this, we use the idea of transfer learning. First, AResnet is pre-trained on the
DeepShip dataset. The network structure is then fine-tuned and applied to the small-sample
ship radiated noise dataset. The proposed method is validated on two datasets of different
sizes. After training and testing on the DeepShip dataset, the average accuracy on the test
set is 99.0%. The pre-trained AResnet is trained and tested on the ShipsEar dataset, and the
average accuracy on the test set is 98.0%, which is a 3.6% improvement over the ResNet18
method proposed by Hong et al. [6].

The main contributions of this paper are as follows:

1. The joint loss function, including the center loss function and cross-entropy loss
function, combined with the channel attention module, improves the problem of
equal supervision of all features when mining discriminative information of fused
features. These features will contain other interfering information, such as ocean
background noise, and the same supervision will reduce the recognition effect of
the model.

2. The proposed AResnet method enhances different channels by increasing the width
of the residual network and combining the channel attention module, which not only
meets the requirements of network width due to environmental changes but also
suppresses background noise interference.

3. Aiming at the problem of insufficient samples, when the AResnet method is applied
to the small sample ship radiated noise data set, the trained network parameters are
migrated, and the structure is adjusted, which greatly improves the recognition effect
of ship radiated noise collected in different environments.

4. The proposed AResnet model is validated on datasets of different environments and
scales. The results are better than other methods.

The rest of this article is organized as follows. Section 2 describes the feature extraction
method and the proposed method for recognition. Section 3 presents the experimental data
and preprocessing methods, while Section 4 presents the recognition results and analysis.
Finally, Section 5 concludes the paper.

2. Method

The proposed recognition method mainly includes feature extraction and classifier
design. In terms of feature extraction, various feature extraction algorithms are used
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to extract features from each input signal frame. Then, multiple features are fused into
three-dimensional fusion features. The SpecAugment data augmentation method is used
to augment the three-dimensional fused features and take them as input to the ARes-
net network. AResnet includes multiple attention-based convolutional residual blocks
(AConv_block) and channel attention modules (CAM). AConv_block is used to extract
deep abstract features of ship-radiated noise. CAM performs differential enhancement on
different channels so that the extracted abstract features can better represent underwater
acoustic targets. Finally, we use a joint loss function, including a center loss function and a
cross-entropy loss function, to perform differential supervision on the features of different
channels to achieve underwater acoustic target recognition. The architecture diagram is
shown in Figure 1.
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2.1. Feature Extraction

It is necessary to extract some important features from each audio signal frame to
train AResnet. The original underwater acoustic signal is highly nonstationary but can be
regarded as local stationary. The signal with a sampling frequency of 22,050 Hz is divided
into frames with a window length of 43 ms, and each frame has 512 sampling points. In
order to ensure local stability, 40 frames are selected to extract underwater acoustic signal
features. Generally speaking, underwater acoustic signal features extracted by different
methods have different signal characterization capabilities, and using multiple features
for fusion can obtain better recognition results [16]. In order to represent the underwater
acoustic signal more, the Log-Mel spectrum, Mel Frequency Cepstrum Coefficient, Contrast,
Chroma, Tonnetz, and Zero crossing rate are extracted and fused into three-dimensional
fusion features.

Log-Mel spectrum—The spectrum diagram can intuitively display the local frequency
information of the input signal, which has more characteristics than the original audio
signal. However, the sound level heard by human ears does not have a linear relationship
with the actual (Hz) frequency, and the spectrum of linear scale is not enough to simulate
the auditory characteristics of human ears. Mel frequency is more in line with the auditory
characteristics of human ears. The Mel spectrum as the network’s input can highlight
the spectrum characteristics of underwater acoustic signals and obtain better recognition
results. The formula for converting from frequency to Mel scale is:

M( f ) = 1125 log (1 +
f

700
),

where f represents a linear frequency. Sixty Mel filter banks are considered to convert
the linear spectrum into the Mel spectrum. Then, the Mel spectrum is logarithmically
transformed into a Log-Mel spectrum. The Log-Mel spectrum is shown in Figure 2A.
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Figure 2. Visualize extracted features. By the model, from the left (A) Log-Mel spectrogram (B) Mel
Frequency Cepstral Coefficients (C) features after splicing of Chroma, Contrast, Tonnetz, and zero-
crossing rate.

MFCC—The Mel-Frequency Cepstral Coefficients (MFCCs) are other features extracted
by applying a Discrete Cosine Transform (DCT) to the log-compressed Mel scale power
spectrum [17]. MFCC helps to remove background noise from the recording and obtain
effective target features in the spectrum. The MFCC is shown in Figure 2B.

Contrast—Contrast is evaluated by dividing the spectrogram into different sub-
bands [18]. For each sub-band, the energy contrast is estimated by comparing the average
energy of the top and bottom quantiles. The high contrast values generally correspond
to clear narrowband signals, and low contrast values correspond to broadband noise. We
consider six coefficients per frame for this feature.

Chroma—Chroma represents the tonal content of an audio signal in a compact form
and shows how much energy is present at each tone level [19]. We consider 24 Chroma
per frame.

Tonnetz—Tonnetz obtained 12 chromaticity vectors by mapping pitches onto the ver-
tices of this hexahedral polyhedron, converting the harmonic relations to small Euclidean
distances [20].

Zero-crossing rate—The zero-crossing rates are the number of times the signal crosses
the zero point per frame.

The Contrast, Chroma, Tonnetz, and zero-crossing rates are combined in a concate-
nated form. The concatenated features are shown in Figure 2C. In feature fusion, the
Log-Mel spectrum is used as the first channel, the MFCC is used as the second channel,
and the cascade features of Contrast, Chroma, Tonnetz, and zero-crossing rate are used as
the third channel. As the network input, the dimension of this three-dimensional fusion
feature is 3 × 60 × 41.

In order to avoid model overfitting, after feature fusion, the fused features are en-
hanced. When other dimensional features remain unchanged, SpecAugment [21] is used to
enhance the log Mel spectrum before training to avoid overfitting. SpecAugment originates
from the data enhancement method of speech recognition and can be directly applied to the
feature input of neural networks. The enhancement strategy includes distortion features,
masking frequency channel blocks, and masking time blocks [21]. We perform multiple
distortion features, mask frequency channel block, and mask time block operations on
the Log-Mel spectrogram of the first channel of the fused feature. The log Mel spectrum
features after data enhancement are shown in Figure 3.
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2.2. Attention-Based Residual Network

The attention-based residual network proposed in this paper is composed of
AConv_block and CAM. The role of CAM is to differentially enhance the abstract fea-
tures of different channels in the network, and its structure is shown in Figure 4B. After
the data passes through the adaptive max-pooling layer and the adaptive average pooling
layer, data are entered into the multi-layer perceptron. The results are added together using
the SoftMax activation function to output the probability of each class. Each convolutional
layer uses 3× 3 filter kernels with Ip/4 and Ip filters in each subsequent layer. The network
applies a Rectified Linear Unit (ReLU) nonlinear activation function to the output of the
first convolutional layer.
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The details are listed as follows:
Stage 1: The fused features with the size of 3 × 60 × 41 are zero-padding and input

into a convolutional layer with 3 × 3 filter kernels and a stride of 2 × 2. After the batch
normalization layer, the Gaussian Error Linear Unit (GELU) non-linear activation function
is applied to their outputs. After CAM and max-pooling layer, the shape is adjusted to
64 × 32 × 23. The GELU is defined as:

GELU(xi) = 0.5× xi(1 + tan h(

√
2
π
(xi + 0.044715× xi

3))),

where xi is the input to the nonlinear activation on the ith channel.
Stage 2: The network is stacked by AConv_block (F1, F2, F3) and CAM. The

AConv_block (F1, F2, F3) is shown in Figure 5, where F1, F2, and F3 are the number
of convolutional layers. Before the convolution operation of the main branch, the input
is filled with 3 × 3 Zero fill, then enter with 7 × 7 Convolution layer of filter core. The
convolution layer of mask branch uses 1 × 1 Filter core.

Stage 3: After the adaptive average pooling layer, the shape is adjusted from
512 × 15 × 11 to 512 × 7 × 5. After the data are flattened, they are input into a fully
connected layer consisting of 24 hidden units. Finally, the fully connected layer with
5 hidden units is connected.

It should be mentioned that to increase the model’s generalization ability, AConv_block
(F1, F2, F3) uses GELU after the convolution operation.
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2.3. Joint Loss Function

The cross-entropy loss function is a supervisory signal to train the network in most
convolutional neural networks. However, the problem with using the cross-entropy loss
function is that the intra-class variation of sample features is noticeable, reducing the
model’s discriminative ability. Wen et al. [22] proposed a solution that uses the center
loss function to compensate for the cross-entropy loss function, which can enhance the
robustness and discriminative ability of the model through the joint supervision of the
cross-entropy and center loss function. Specifically, the center loss function provides a
center for each class, and the sample features of the same class are distributed around
the center of the class. The joint loss function, which includes the central loss function,
minimizes the intra-class distance while keeping the feature separability, which makes
the intra-class distance closer and the inter-class distance farther. The recognition task
{(xi, yi)}N

i=1 contains N samples of xi and their corresponding labels yi. The samples are
entered into the network to extract the sample features F(xi).The joint loss function is
defined as:

Lc(class = j)− ln (
ewT

j x+b

∑N
i=1 ewT

j x+b
) + λ ∑N

i=1 D( f (xi), ci),

where the first term represents the cross-entropy loss function, the second term represents
the center loss function, and λ ∈ [0, 1] is used to balance the two-loss functions. ci is the
class center of the mini-batch dataset, the function D(·) represents the distance function, j
is the class number, x is the input, wj is the weight, b is the bias, and N is the total number
of classes. The center loss function will adjust the distance between samples of the same
class to focus on the class center during training.

Figure 6 plots the 2D features with different weights obtained when validating on the
ShipsEar dataset to illustrate the distribution. Figure 6A shows that under the supervision
of the cross-entropy loss function, the data exhibits clear separability, but there is still
significant intra-class variation. It is not appropriate to use these features directly for
identification. Figure 6B shows that, under the supervision of the joint loss function, the
inter-class distance changes significantly, and the feature distribution is concentrated. This
is more conducive to the recognition of the classifier.
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3. Experimental Data and Preprocessing
3.1. Experimental Data

The underwater acoustic target datasets based on ship-radiated noise used in the
experiments are DeepShip [23] dataset and ShipsEar [24] dataset.

The Deepship dataset was generated from audio recordings collected at the Georgia
Strait Delta node between 2 May 2016, and 4 October 2018. The audio was recorded using
an IcListen AF hydrophone with a sampling rate of 32,000 Hz, the acquisition diagram is
shown in Figure 7. The hydrophone is placed at a depth of 141–147 below the horizontal
plane. The upper part of the hydrophone is connected to the surface buoy. In order to mark
the recorded data, the Automatic Identification System (AIS) data are used to obtain the
location and time stamp of any particular vessel passing through the deployed sensors. We
only consider the signal sent by the ship when there is only one ship within the hydrophone
radius of 2 km. The data will stop whenever the ship is 2 km away from the hydrophone.
The duration of each recording varied from 6 seconds to 1530 s, and a total of 613 pieces of
data were acquired. The collected objects come from 265 ships, divided into four categories:
tug, cargo ship, passenger ship, and an oil tanker. The dataset is divided as shown in
Table 1.
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Table 1. DeepShip data recognition details.

Category Class A Class B Class C Class D

Ship type Tug Cargo ship Passenger ship Oil tanker

Total Recordings 70 110 193 240
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The ShipsEar dataset was produced from ship-radiated noise collected along the
Spanish Atlantic coast in Northwest Spain. The audio was recorded using a digitalHyd
SR-1 recorder with a sampling rate of 52,734 Hz, the acquisition diagram is shown in
Figure 8. The upper part of the hydrophone is connected to the surface buoy for easy
recovery. The bottom of the hydrophone is connected to the underwater buoy to ensure
that it is vertical. The height of the hydrophone on the seabed is selected according to the
depth of the mooring point. Whenever possible, three hydrophones with different depths
and different gains are used to maximize the dynamic range of the recording. In very
shallow areas (below 10 m in depth), record with one or two hydrophones. An auxiliary
vessel is used to deploy hydrophones and schedule recording based on vessel movement
information obtained from the Port Authority and the Automatic Vessel Identification
System (AIS). Each recording lasted from 15 s to 10 min, with a total of 90 records. The
collection objects include 11 types of ships, including fishing boats, ocean liners, ferries
of various sizes, containers, ro-ro ships, tugboats, pilot boats, yachts, and small sailboats
as background noise near the coast. Unlike artificially constructed datasets, real-world
data contains more man-made and natural background noise, with high background noise
from waves hitting port infrastructure, and occasional sounds from marine mammals,
making the experiments more valuable. The ShipsEar dataset is divided into five categories,
including four categories of ships and one category of background noise. The detailed
division of the dataset is shown in Table 2.
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Table 2. ShipsEar data recognition details.

Category Ship Type Total Recordings

Class A Fishing boats, trawlers, mussel boats,
tugboats, and dredgers 17

Class B Natural environment noise 12
Class C Motor boats, sailboats, pilot boats 19
Class D Passenger ferry 30
Class E Ocean-going ships and ro-ro ships 12

3.2. Data Preprocessing

After removing the blank area, the original audio signal is divided into 5-s audio
clips. DeepShip obtains 11,174 audio clips, and ShipsEar obtains 2223 audio clips. A
total of 70% of the segment is used as the training data set, 20% as the verification data
set, and 10% as the test data set. Then, the 5 s audio clip is cut into a sample section
containing 20,480 sampling points. Each frame has 512 sample points, and the sample
segment includes 40 frames. We can extract signal features from each frame for underwater
acoustic target classification. It is worth mentioning that we use the python library Librosa
to load audio files and extract the characteristics of ship-radiated noise.
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4. Experimental Results and Analysis

The AResnet is built using Pytorch 1.8.1 as the backend and verified on a computer
with Nvidia GeForce RTX 3060 and AMD R7-5800H CPU to verify the effectiveness of the
proposed architecture.

Training used an Adam optimizer with a dynamically adjusted learning rate and joint
loss function, including center loss function and cross-entropy loss function as the loss
function. The initial value of the learning rate is 0.0001, and the learning rate is dynamically
adjusted by decreasing 50% every 10 cycles. The batch size during training is set to 128,
the maximum number of the training is set to 300, and the training is performed using the
early stopping method. The training stops when the loss on the validation dataset drops
below 0.00005 for 20 consecutive epochs. This strategy can effectively reduce training time
and avoid overfitting.

In the demonstration of experimental results, we use precision, recall, and F1-score
to evaluate the recognition performance of the network. The formula of each index is
as follows:

Precision =
Tp

Tp + Fp

Recall =
Tp

Tp + FN

F1-score =
2TP

2TP + FP + FN
where TP is true positive, FP is false positive, and FN is false negative.

4.1. Experimental Results and Analysis of DeepShip Dataset

To verify the performance of the architecture proposed in this paper, the DeepShip
dataset is used, and the experimental results are shown in Figure 9. The training loss and
validation loss decrease rapidly in about 10 cycles. For the convention of comparison,
classifier performance is measured using classification accuracy, defined as the average
precision. In contrast, the training accuracy and validation datasets increase quickly and
soon reach a relatively stable process. The best accuracy on the validation dataset is 99.3%.
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Table 3 shows that AResnet achieves an average precision, recall, and F1-score of 99.0%
on the four types of ship-radiated noise. Support represents the number of samples for
each class on the test dataset. Taking the average accuracy rate as the reference standard,
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class A (tugboat) has the best recognition effect, with an average accuracy rate of 99.3%.
The least effective is class B (cargo ships), with an average accuracy of 98.2%.

Table 3. Test results of AResnet on DeepShip dataset.

Precision Recall F1-Score Support

Class A 0.993 0.996 0.994 1695
Class B 0.982 0.966 0.974 500
Class C 0.995 0.989 0.992 1690
Class D 0.985 0.992 0.989 1690
Average 0.990 0.990 0.990 5575

The recognition results are compared with DNN, CNN, and CRNN, and the average
precision, recall, and F1-score are shown in Table 4. The network is optimized using the
Adam optimizer with a learning rate of 0.001. The best network parameters are selected
for testing after training 100 times. The structure of DNN is 2048-1024-512-256-128-64-4, in
which a Relu activation function follows each layer, and its average precision, recall, and
F1-score are 98%. The convolutional layer structure of CNN is 48-128-192-192-128, where
each layer is followed by a Relu activation function and uses 3 × 3 convolution kernels
to extract features. Zero padding is used to maintain the output size. The convolutional
layer of 1, 2, and 5 are followed by the max-pooling layer to compress the output. After
the max-pooling layer, a drop of 0.5 is used, and the output result of the fully connected
layer with the number of input nodes is 2048-2048-4. Its average precision, recall, and
F1-score are all 96.4%. CRNN shows higher performance than DNN and CNN, with 98.6%
precision in average precision, recall, and F1-score. The convolutional layer of CRNN
uses the structure 64-128-256-256. After each layer, the Relu activation function and the
maximum pooling layer are used. The convolutional layers use 3 × 3 convolution kernels
to extract features. Two layers of LSTM follow the last convolutional layer for recognition.

Table 4. Test results of fusion features in different models.

Precision Recall F1-Score Support

AResnet 0.990 0.990 0.990 5575
DNN 0.980 0.980 0.980 5575
CNN 0.964 0.964 0.964 5575

CRNN 0.986 0.986 0.986 5575

These four optimized network structures all show high performance on the DeepShip
dataset, but the AResnet proposed in this paper has higher accuracy than other methods.

4.2. Experimental Results and Analysis of ShipsEar Dataset

The method proposed in this paper is further tested on the ShipsEar dataset to show
the method’s performance in the small sample ship radiated noise dataset. In this work,
the ResNet18 is compared with AResnet to verify the effectiveness of the proposed method.
ResNet18 used an 18-layer residual network with a central loss function in the embedding
layer to train the fused features at an adaptive learning rate. This paper uses the same
processing method for data preprocessing and feature extraction for the ShipsEar dataset.
We apply the transfer learning idea to data training. The transfer learning framework
uses the network trained on the DeepShip dataset to fine-tune the recognition layer of
the network model to make it suitable for the recognition of the ShipsEar dataset. The
experimental results show that ResNet18 has an accuracy of 94.4% on the test dataset. The
accuracy of the attention residual neural network based on transfer learning is 98.0% on
the test dataset and is increased by 3.6%.

As can be seen from Figures 10 and 11, both networks show good performance in
preventing overfitting. However, the ResNet18 takes 125 epochs to train, and the best
accuracy on the validation dataset is 95.4%. The AResnet only needs 37 epochs, and the best
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accuracy of the validation dataset is 97.4%. The AResnet has shorter training epochs and
higher accuracy compared with ResNet18. This proves that the proposed attention-based
residual network performs better on passive underwater acoustic target recognition.
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from the left (A) the loss of ResNet18 on the training and test datasets of ShipsEar, (B) the accuracy of
ResNet18 on the training and test datasets of ShipsEar.
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Figure 11. Loss and accuracy of AResnet based on transfer learning on training and test datasets
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Table 5 describes the details of the two recognition models in terms of precision, recall,
and F1-score. The average precision, recall, and F1-score of ResNet18 is 94.4%, and support
represents the number of each category on the test dataset. The AResnet has an average
precision, recall, and F1-score of 98.0%. AResnet outperforms ResNet18 by the classifier
performance validated on the test dataset. To further compare the recognition effect of each
category, the average precision is uniformly selected for measurement. In ResNet18, the
best results are class B (natural environment noise), with an average accuracy of 98.3%. The
worst results are class C (motorboats, sailboats, and pilot boats), with an average accuracy
of 90.9%. The best and worst recognition results on the test dataset in AResnet are also
the average accuracy of 100% and 96.6% for classes B and C. The recognition effect of
class C is not high performance on these two methods. One possible reason is that the
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training datasets for class C (motorboats, sailboats, pilot boats) are small and undertrained.
Moreover, the radiation noise generated by class C is small, and it is easy to be mixed
into the background noise, and the average accuracy of the two methods is low. Overall,
AResnet outperforms ResNet18 in recognition.

Table 5. Test results of AResnet and ResNet18.

Class Precision Recall F1-Score Support

AResnet Class A 0.983 0.962 0.973 185
Class B 1.000 0.991 0.996 115
Class C 0.966 0.953 0.960 150
Class D 0.981 0.981 0.981 420
Class E 0.976 1.000 0.988 240
Average 0.980 0.980 0.980 1110

ResNet18 Class A 0.950 0.919 0.934 185
Class B 0.983 1.000 0.991 115
Class C 0.909 0.867 0.887 150
Class D 0.941 0.945 0.943 420
Class E 0.948 0.983 0.965 240
Average 0.944 0.944 0.944 1110

In order to evaluate the robustness, standard deviation (STD) and arithmetic mean
are used to characterize the robustness of the model. The lowest STD reflects the strong
robustness of the method. The calculation formula is as follows: c = ∑n

i=1 ci
n

std =
√

1
n−1 ∑n

i=1(ci − c)2

The statistical results of the mean and variance of AResnet and ResNet18 listed in
Table 6. The results show that the AResnet method achieves the minimum STD, which
indicates that the AResnet method is more robust than the ResNet18 method.

Table 6. Mean and STD of AResnet and ResNet18.

Method Mean STD

AResnet 0.981 0.012
ResNet18 0.946 0.026

We will perform five-fold cross-validation on ShipsEar, and then perform paired
t-tests on the results of each fold cross-validation to show the statistical significance of the
classification results obtained by the methods used in this paper. Table 7 shows the AResnet
and ResNet18 t-test results for 3D fusion features. It can be observed that the AResnet
method is more significant than Resnet 18 method.

Table 7. The results of paired t-test of AResnet and ResNet18.

Method 1 Method 2 p-Value (p < 0.05)

AResnet ResNet18 0.0115

4.3. Comparison in Computational Efficiency and Floating-Point Operation

To calculate the total calculation time of a single era of the network, the time required
for forward and backward transmission of a single batch is calculated as follows:

tb =
n

∑
i=0

b(Li)
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where n is the number of layers in the network, and b(Li) is the layer i and Li belongs to
the type of layer I. The total execution time of the network is calculated as follows:

t = omtb

where m is the number of batches required to process data, and o is the number of cycles
required to train the network.

The Table 8 shows the computational efficiency of all methods used in this study
in terms of the number of floating-point operations (FLOP) and the computational time
spent in each period of the model. The results in Table 8 were obtained using a system
containing Nvidia GeForce RTX 3060 and AMD R7-5800H CPUs. It can be seen that the
number of FLOPs of the proposed method AResnet is far more than the models based on
CRNN, CNN, DNN, and ResNet18. In terms of calculation time, the proposed method also
takes more time than the models based on CRNN, CNN, DNN, and ResNet18. Compared
with other models, AResnet has no advantage in computing floating point numbers and
computing time.

Table 8. The performance of different methods on DeepShip and ShipEar datasets.

Dataset Method FLOPs (G) Params (M) Computation Time (s/epoch)

DeepShip AResnet 1.46 G 9.47 M 138 s
DNN 0.02 G 17.91 M 7 s
CNN 0.72 G 132.44 M 78 s

CRNN 0.23 G 2.87 M 31 s
ShipsEar AResnet 1.46 G 9.47 M 28 s

ResNet18 0.06 G 0.78 M 7 s

5. Conclusions

We propose a residual network underwater acoustic identification method based on
attention, which performs better on different ship-radiated noise data sets. By increasing
the width of the model and combining it with the channel attention module, we can
fully extract the features of different samples and enhance the differences in the features
of different channels so as to suppress the interference of ocean background noise and
improve the applicability of the model in different environments. At the same time, the
joint loss function, which includes the cross-entropy loss function and central loss function,
monitors different features differently, solving the problem of equal monitoring of all
features, including interference information, when mining the distinguishing information of
different sample features. The recognition accuracy of this method on the DeepShip dataset
is 99.0%. The AResnet trained on DeepShip is used as a migration learning framework.
After fine-tuning, it is applied to the ShipsEar dataset. The average recognition rate reaches
98.0%, which is better than the comparison method.

The residual network based on attention focuses on target characteristics, suppresses
multi-source interference, avoids gradient disappearance or gradient explosion, and can
show good performance when the training data are sufficient. The residual network
based on transfer learning and attention has a wide range of applications, shows good
performance in underwater acoustic target recognition in different environments, and can
be easily applied to other marine target recognition tasks. As part of future work, we intend
to adaptively increase or decrease the number of hidden nodes during training to adapt to
changing marine environments with fewer parameters.
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