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Abstract: Quantum Machine Learning (QML) has not yet demonstrated extensively and clearly its
advantages compared to the classical machine learning approach. So far, there are only specific
cases where some quantum-inspired techniques have achieved small incremental advantages, and
a few experimental cases in hybrid quantum computing are promising, considering a mid-term
future (not taking into account the achievements purely associated with optimization using quantum-
classical algorithms). The current quantum computers are noisy and have few qubits to test, making
it difficult to demonstrate the current and potential quantum advantage of QML methods. This
study shows that we can achieve better classical encoding and performance of quantum classifiers
by using Linear Discriminant Analysis (LDA) during the data preprocessing step. As a result, the
Variational Quantum Algorithm (VQA) shows a gain of performance in balanced accuracy with the
LDA technique and outperforms baseline classical classifiers.

Keywords: quantum machine learning; quantum data encoding; classical encoding; dimensionality
reduction

1. Introduction

Machine Learning (ML) is a predominant tool nowadays to solve several chal-
lenges in different industries, such as credit scoring [1], fraud analysis [2], product
recommendation [3], and demand forecasting [4], among other extensively explored use
cases. Under this premise, the research of the quantum computing properties applied to
ML has expanded rapidly in recent years since a proven advantage could be a highly
useful cross-industry.

The recent progress of these explorations in Quantum Machine Learning (QML) [5]
put a spotlight on quantum technology, introducing a challenge to determine if QML
will provide an advantage over classical machine learning or not. The actual devices are
noisy, meaning that the depth or consecutive gate operations are limited [6–8]. Qubits
will lose their entanglement, and so will also lose the information. These devices make
up the NISQ era [9] and limit the use of quantum algorithms or hybrid algorithms to
be useful [10].

A few cases are already on the market, showing promising results and some companies’
commitment to the quantum machine learning journey. One example is CaixaBank (Spanish
Bank), which is working and testing QML models using the Pennylane quantum framework
to define a scoring model for risk assessment [11].

One of the major concerns to even grasp a reliable result remains on the input/output
concept and on the number of available good qubits to use. The bound of 100+ was reached
by IBM [12], but it is still insufficient to use complex algorithms that require thousands or
millions of qubits depending on the type of problem to be addressed [13].

To be practical in a business context, QML techniques need to avoid the small-number-
of-qubits constraint and create a methodology to use big datasets on the current NISQ
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devices. Previous works showed great potential in splitting big circuits and learning the
weights of the different gates separately or reusable qubits for image classification [14].

In this paper, we approach the input problem by comparing different preprocessing
and classifier methods on small and larger datasets with a binary target. The objective is
to determine a specific architecture for preprocessing, dimensionality reduction of the
dataset structure, the encoding manner and the corresponding classifier. We demonstrate
that using Linear Discriminant Analysis (LDA) within the preprocessing phase is better
than Principal Component Analysis (PCA) when the dataset possesses an important
number of features. We generalize this approach by studying the effect of LDA on the
encoding qubits.

Different tabular datasets (Section 2) are used to understand the link between the
number of features and the encoding process (Section 5). We develop a pipeline (Section 3)
to compare the classical and quantum classifier. This study leads us with a review of the
current literature to determine and discuss rules to obtain a quantum advantage with the
current NISQ devices.

2. Datasets

The dataset selection in this research aims to emulate real business case scenarios
where the users can find imbalanced dataframes, a small or large number of features
and also represent—in this case—the financial behavior of a group of people. We used
well-known datasets extracted from UCI and Kaggle to achieve more than 100 features per
datapoint in a CSV file for one of the cases. Nevertheless, we wanted to use an even larger
dataset, but it was extremely difficult to find information with more variables and features
in a public and open license manner.

2.1. UCI—Default of Credit Card Clients Dataset

The dataset (https://www.kaggle.com/datasets/uciml/default-of-credit-card-clients-
dataset (accessed on 3 July 2022)) contains information about credit card clients collected
in Taiwan from April 2005 to September 2005 [15]. The data possesses 25 features and
30,000 rows corresponding to individual clients. This data was extracted from Kaggle but is
originally stored in the well-known University of California, Irvine (UCI) dataset repository.

The objective of using this dataset is to deal with a classification problem assessing
the prediction of default under credit card usage. This data is imbalanced, having 22% of
defaulters and 78% of non-defaulters. The variables have demographics, payments, billing
and current credit card information features.

In this research, the dataset was used as it is and without modifications such as
oversampling, undersampling, SMOTE or any previous transformation until we applied
the preprocessing designed for the quantum pipeline.

2.2. Fraud Detection Dataset

This dataset (https://www.kaggle.com/datasets/volodymyrgavrysh/fraud-detection-
bank-dataset-20k-records-binary (accessed on 3 July 2022)) reflects the information of bank
fraud transactions on 20,468 datapoints and 114 features. This data was extracted from
Kaggle and was originally uploaded by Volodymyr Gavrish (https://www.kaggle.com/
volodymyrgavrysh (accessed on 3 July 2022)).

The objective of using this dataset is to identify which users are fraudsters or not due
to the transactional information. The data is imbalanced with 27% under class 1 and 73%
in class 0.

In this research, the dataset was used as it is as well and without modifications until
we applied the preprocessing designed for the quantum pipeline.

An important point to be highlighted in this dataset is that it looks very similar to a
real-world scenario (+100 features and 1000s of data points), but we didn’t manage to
confirm the source of the information; so, the assumption is that it must be synthetic or
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generated. Anyway, this file has more than 2000 downloads and 19,000 views on Kaggle
and remains one of the most-used dataframes to explore classification techniques.

3. Methods
3.1. Dimensionality Reduction

PCA is one of the predominant structures for dimensionality reduction in the ex-
ploration of classic data into QML algorithms [16]. This technique is used to reduce the
features and compress them into N variables to match a set of N qubits available to run
a classification algorithm using a gate-based quantum circuit. This method is commonly
used for unsupervised linear transformation and to find the maximum variance in high-
dimensional data. PCA reduces dimensions by examining the correlation between various
features, creating orthogonal axes, or principal components, with the direction of maximum
variance as a new subspace.

There are many alternatives to PCA, but one of them demonstrates a significant
impact when we are dealing with quantum classification problems. LDA is a supervised
method that considers class labels by reducing the number of dimensions. LDA seeks to
identify a subspace of features that optimizes class separability optimally. LDA operates
by computing the d-dimensional mean vector for each class label and then constructing a
scatter matrix within each class and between them.

As we mentioned, both PCA and LDA are linear transformation techniques that
decompose matrices into eigenvalues and eigenvectors. PCA is unsupervised and does not
consider class labels, whereas LDA does. These two techniques will be applied to classical
data preprocessing for QML. We will demonstrate the advantage of the LDA surpassing
PCA under a small number of qubits and with relevant features.

3.2. Training

The interest in QML is located in the quantum advantage that can be brought by such
new technology. A quantum advantage appears when the quantum algorithm approach
provides better or faster results than the classical equivalent. In this paper we benchmark
classical classifiers such as Logistic Regression [14], Decision Tree [17], Random Forest [17],
K-Nearest Neighbors [17], SVM [17], Quantum Kernel (QSVC) [18], and the Variational
Quantum Algorithm [19]. The models are benchmarked with k-fold cross-validation with
10 folds. Table 1 shows the metrics used to evaluate these algorithms.

Table 1. Metrics are used to evaluate the different classifiers and their corresponding equation. Where
TP, FP, TN, and FN are True Positive, False Positive, True Negative, and False Positive, respectively.
Po is the probability of Observed agreement, and Pc is the probability of chance agreement. MCC is
the Matthews correlation coefficient.

Metric Equation

Precision
TP

TP+FP

Recall
TP

TP+FN

F1-score
2×(Precision×Recall)

Precision+Recall

MCC
TP×TN˘FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)

BA
(

TP
(TP+FN)

/ TN
(TN+FP)

)
/2

In a classification task, TP stands for True Positive when the model predicts the right
positive value. TN stands for True Negative when a model correctly predicts a false value.
False positive is when the model predicts true instead of false, and FN is for false negative
when the model predicts false instead of true. With these values, it is possible to use
precision, the metric that quantifies the number of positive predictions made. The recall
is the metric to quantify the number of positive predictions made through all the positive
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predictions that could be made. The f1-score combines precision and recall to capture both
pieces of information. The Matthews correlation coefficient of the Phi coefficient is a metric
which uses all four values of the confusion matrix to evaluate the behavior of a classifier;
this metric is stronger than the previous ones. Balanced accuracy is the mean of sensitivity
and specificity, it is used to evaluate how strong a classifier is.

4. Backends

Quantum computers and simulator backends are not trivial decisions when a fast
iteration is needed with larger datasets. Typically, machine learning models need several
adjustments and iterations until we put them in production or under real-world operation
(fine-tuning). In the case of QML, the challenge is the same, but the hardware ecosystem
is different. A quantum algorithm can be run on a simulator (simulation of a perfect and
noisy quantum computer) and real devices.

Simulators

Mainly the use of quantum simulators allows us to test and evaluate the results under
potential real quantum computation scenarios and typically gives us a chance to operate
up to 50 qubits using classical computers. In the case of this experiment, we are using the
Qiskit Aer simulator and the default qubit simulator device from Pennylane [20] only.

Qiskit Aer is a high-performance simulator for Qiskit Terra that provides a highly
adjustable noisy model for investigating quantum computing in the NISQ domain. The
core is designed in C++ for speed and includes elements from IBM’s high-performance
online simulators into a local simulator that is scaled to operate even on your own laptop
or server.

Pennylane’s default qubit simulator is a simple state-vector designed in Python (with
JAX, Autograd, Torch, and Tensorflow). This simulator is recommended by Pennylane for
optimization with a reduced number of qubits or when stochastic expectation values are
going to be used.

The objective behind using simulators alone in this research is that we can have fast
iterations, adjustments, and results. Our choice does not mean that our models’ code and
structure cannot be applied to real quantum hardware. The main factors that make the
difference are the time (speed) and the noise since simulators run in a fraction of the time
compared with real quantum computers (in the case of the QML architectures used in this
investigation) and also without noise depending on the configuration. In our case, we
subtracted the noise from the simulations.

5. Algorithms
5.1. Machine Learning Models

Classification problems are part of the supervised learning domain, and that is why
we used several classical algorithms in this subarea of ML to set a benchmark against the
hybrid quantum-classical approach.

5.1.1. Logistic Regression

This method is one of the simplest for the binary classification problem [21]. The
model is trained to learn the parameters of the linear equation ŷ(i) = β0 + β1x(i)1 +

β2x(i)2 + . . . + βnx(i)n where βn are the coefficients of the linear regression, xn are the
features for the i sample. Linear regression is used in regression tasks, but the method
can be applied in the classification task by a subtle embedding in a logistic function such
as Equation (1) to compute a probability.

P(y(i) = 1) =
1

1 + e−(β0+β1x(i)1 +...+βnx(i)n )
, (1)
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where P is the probability that the label y for the sample i corresponds to the value 1. The
probability is computed for each sample (the model learns the corresponding coefficients) and
the probability threshold is fixed at 0.5 to separate the binary outcome. If P(y(i) = 1) < 0.5,
the corresponding label is 0; if P(y(i) = 1) ≥ 0.5, the label is 1. The logistic regression method
requires a lot of samples to be stable to efficiently approximate the βn parameters.

5.1.2. Decision Tree

A decision tree also called “Classification and Regression Trees” (CART), is a sort of
binary graph where the next child is based on the previous decision. The base of the tree is
the root, and then two branches are created, which are split into categories of “yes” or “no”.
A tree structure is built by successive decisions until the latest, called the leaf, is reached.
This type of technique is simple but prone to overfitting. They are powerful algorithms
capable of fitting complex datasets. The learning process is done with the Gini criteria or
entropy (Equation (2)).

Hi =
n

∑
k=1

Pi,k log2 Pi,k, (2)

where i is the ith node, Pi,k is the probability of the category k.

5.1.3. Naïve Bayes

The Naïve Bayes or NB algorithm is a simpler version of the Bayes theorem (Equation (3)).

P(AB) =
P(BA) · P(A)

P(B)
, (3)

where A and B are events, P(AB) is the probability of A given B is true, P(BA) is the
probability of B given A is true, P(A) and P(B) are the independent probabilities of A and B,
respectively. In the case of the NB classifier, the probabilities are conditionally independent.
It significantly reduced the computation and transformed it into a tractable problem.

5.1.4. k-Nearest Neighbors

The k-Nearest Neighbors (k-NN) is a simple non-parametric distance-based algorithm.
The hypothesis is that a similar point will be closed in an n-dimensional space. A point will
be encoded and positioned by distance computation (e.g., Euclidean distance). Then, the
algorithm takes the k nearest neighbours and computes the classes’ average to predict the
corresponding class for that new point.

5.1.5. SVM

Support Vector Machines (SVM) are a class of algorithms based on class separation by
a plan. An SVM will create a plan to create a binary separation between the classes. Then,
the algorithm will compute the distance of each point and plan to maximize the distance.
When the classes are not linearly separable, SVM can be used with kernels. Kernels are a
trick to compute small successive plans to separate classes in complex datasets. They are
particularly efficient in high-dimensional space.

5.2. Dimensionality Reduction
5.2.1. SVD

Singular Value Decomposition, or SVD, was established to decompose the matrix
representation of data into distinct matrices. It’s a factorization process for real and
complex matrices. These transformations are based on eigenvalue decomposition to
diagonalize a matrix.



Entropy 2022, 24, 1656 6 of 16

5.2.2. PCA

Principal component analysis or PCA is a widely used method for dimensionality
reduction in the context of machine learning. The objective is to transform a large dataset
(a high number of features) into a compact representation containing the data’s important
information (orthogonal projection). Reducing the dimension is closely related to loss in
accuracy, but PCA as SVD uses the eigenvalue decomposition process to transform the
covariance matrix involved in the process. The components are a linear combination of
various features to create uncorrelated new features. The first component will contain the
maximum amount of the information; then, the remaining information will be contained in
the second, etc. The geometrical representation of PCA is that components represent the
direction of the maximal amount of variance (rotation).

5.2.3. SKPP

Projection pursuit is a generalization of PCA [22] where the method aims to find the
best projections through the feature to maximize or minimize a projection index. To find
the relevant project index, the method uses the Kurtosis-based projection [23]. In a case of a
supervised dataset, the algorithm is named Supervised Kurtosis Projection Pursuit (SKPP).
The Kurtosis index can be expressed as:

K =
1/n ∑n

i=1(zi − z̃)4

(1/n ∑n
i=1(zi − z̃)2)

2 , (4)

where n is the number of samples, zi is the individual sample value, and z̃ is the sample
mean. The numerator is the fourth central moment, and the denominator is the biased
sample variance.

5.2.4. LDA

Linear Discriminant Analysis is similar to PCA; they are linear transformations to re-
duce the dimensionality of datasets (eigenvalue decomposition). Where PCA will maximize
the variance, LDA will maximize the axes for class separation. LDA will create a subspace
of k-dimensions from the n-dimensions space of the original data where k ≤ n− 1. The
subspace is computed taking into account the label to maximize the separation of classes.

5.3. Quantum Machine Learning Models

Quantum Computing (QC) and Machine Learning (ML) have been mixed to develop
the new area of Quantum Machine Learning (QML). This new field of study incorporates
ideas from both aspects to provide better answers by boosting the performance of either ML
algorithms or quantum experiments, or both. By utilizing quantum resources to increase
machine learning in terms of speed and/or performance, researchers could obtain potential
alternative and/or more accurate solutions.

5.3.1. Quantum Kernel

The quantum kernel methods [24,25] in principle are the same as their classical ver-
sions, which aim to classify data by defining what is similar in a given space because of their
distance using a feature mapping function. The main difference in the quantum version of
kernels is that it maps out the data points from the original input to a high-dimensional
Hilbert feature space, expanding the possibilities to find the best classification possible [26].
One of the well-known classical methods that utilize the kernel properties is the support
vector machine (SVM), also known as support vector classifier (SVC), which is dedicated to
finding a hyper-plane that can separate the classes of the datapoints, expanding as much as
is possible the distance between both groups.

In this research, we use a similar structure of an SVC, but ours is boosted with a quan-
tum kernel. The mechanism of quantum kernel functions resembles the conventional
one, but its implementation relies on quantum superposition states and entanglement.
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Also, in the case of quantum kernels, the output values are statistically dependent on
probabilities, so some researchers call this method a probabilistic kernel function.

5.3.2. Variational Quantum Classifier

A Variational Quantum Classifier (VQC) [27–29] is a supervised quantum-classical
hybrid method widely used in NISQ devices and simulators. The cost function in the case of
this algorithm is calculated using iterative measurements, which also provide the possibility
of mitigating errors. This method allows the researcher and developers to map classical
data and grab benefits for an increasingly ample feature space in quantum. The quantum
execution for supervised learning employs variational algorithms that are implemented
using differential programming, state preparation that encodes classical data sets into
amplitude and rotations of qubits for quantum hardware or simulators to comprehend,
and qubits that are executed using parameterized unitary operations; all parameters are
modifiable according to given rules. The outcome of the quantum execution is the output,
which categorizes the input data.

5.4. Quantum Encoding

Quantum encoding is the process of passing from classical data to quantum represen-
tations. There are many ways to process classical data and create a useful representation.
In this study, we used a quantum feature map (Qiskit ZZFeatureMap) and angle encoding
(Pennylane) to be used with QSVC and VQC, respectively.

5.4.1. Quantum Feature Map

A feature map is a new representation for data encoding [26,30–32] and it is repre-
sented as a Hilbert space where the transformation x → |φ(x)〉 is applied to pass from the
original representation x into a linear separable space via a unitary operator φ(x). In other
words, we encode the classical data into quantum states and map them to Hilbert space.

The feature map is a good (sometimes infinite) projection for using SVM that is
designed to create a hyperplane between classes. This hyperplane is a linear separation of
two subspaces that are automatically created by the feature map (different data projections
make the separation easier with higher dimensions).

5.4.2. Angle Encoding

Angle encoding is a process of encoding classical information by rotations [33]. The
classical information is represented by angles of rotation in corresponding gates and can be
written as Equation (5):

|x〉 =
n⊗
i

R(xi)|0n〉, (5)

where R is rotation gates such as Rx, Ry and Rz. Angle encoding is used when the dimension
of the feature vector x is equal to the number of qubits.

5.5. Workflow

In Figure 1, we present the workflow we used throughout this study to compare the
selected algorithms (classical and quantum). The set of algorithms was applied to the data
representation generated by dimensionality reduction methods. The workflow is composed
of five steps:

1–2 Steps 1 and 2 can be associated: Load the data and apply an Exploratory Data
Analysis. The objective is to clean the data and normalize it with a good format for
the dimensionality reduction method.

3 Dimensionality reduction: SVD, PCA, SKPP and LDA are used to reduce the number
of features to two compressed dimensions. SVD, PCA and SKPP were used with
two components. LDA was used on a split dataset. Each half part was reduced with
one component by LDA.
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4 Quantum encoding: The classical data is encoded into a quantum representation by
quantum feature maps. This step was only used for quantum algorithms.

5 Applied models: The selected set of algorithms (ML and QML) is applied to the data
encoding (classical or quantum) and evaluated through the same metrics (Table 1).

Figure 1. High-level workflow of the process for the hybrid quantum approach followed in this
research. The input is a dataset in CSV format that is analyzed and divided depending on the following
decomposition strategies to be applied. The next step is dimensionality reduction using different
techniques, but mainly PCA and LDA as the main comparison in this exploration. Once the reduction
is executed—to match with the qubits to be used in the algorithm—a quantum encoding must be
conducted, and the following quantum algorithm must be applied to extract the results.

During the workflow, we evaluate the set of selected algorithms based on the same
sample of data. 800 data samples were used for the training process, and 200 were used for
the test. Only two qubits were chosen through this study to show the usability of a small
number of qubits in a business context. Two datasets close to the real world were selected
to estimate the importance of current quantum algorithms with NISQ devices.

6. Results

This section will present the results obtained by applying the workflow to the two
datasets we selected. The core of the analysis is to take the position of the business
context. The classical machine learning algorithms are applied to both datasets, without
dimensionality reduction, and serve as a baseline. Then, the quantum algorithms are
applied to a subset of each dataset with diverse dimensionality reduction techniques. This
choice is motivated by focusing on only two qubits to compare the results. Indeed, current
commercial solutions provide quantum computers with two qubits. Also, cloud-free
available quantum computers are up to five qubits.

We focus on a small number of qubits to demonstrate the usability of quantum
algorithms in a business context. The quantum version of SVM (QSVC) and a variational
quantum algorithm (VQA) have been used to challenge the classical machine learning
methods. The subsample is constituted of 800 samples for the training phase and 200
for the test phase. Each model, classical and quantum, will be evaluated with the
metrics presented in Table 1. Each metric for each algorithm is associated with an error
bar determined by a k-fold cross-validation approach with 10 folds. Only the VQA
was computed differently due to its implementation, and it is not provided with an
associative error.

We will analyze the results for both datasets separately in the following subsections.
Classical machine learning models were also applied to the same sample with the same di-
mensionality reduction approaches; the results are provided for comparison in Appendix A.
These results are discussed in Section 7 Discussion.
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6.1. UCI Credit Card Default Dataset

Table 2 shows the results for the baseline determined with the classical machine learning
models. LR and SVM show a non-convergence state with predictions only for the majority
class. Naïve Bayes classifier shows the smallest precision compare to CART and KNN. The
baseline demonstrates that classical methods struggle to create a good classifier to separate the
minority class from the majority class. The precision is at a maximum of 38.74% for the KNN,
and the best f1-score is reached by CART with a small value of 39.10%. These poor metrics are
the results of an extremely imbalanced dataset. Little information is provided by the minority
class, which tends to complexify the classification process. Machine Learning methods are
best suited for a balanced dataset, but this condition is rarely present in the industry.

Table 3 shows the results for QSVC and VQA applied to the UCI Credit Card dataset.
They are used with SVD, PCA, SKPP and LDA dimensionality reduction techniques. QSVC
with the SKPP technique shows metrics with 0.00%, meaning a non-separation between
both classes. QSVC, in this case, predicts only the majority class output, ignoring the
minority class. The other algorithms associated with the different dimensionality reduction
approaches show a convergence. VQA with SVD, VQA with PCA, and VQA with SKPP
provide interesting results, comparable to or better than the baseline. LDA is the best
dimensionality reduction for both quantum algorithms. Both algorithms show the best
results in each metric on the UCI dataset.

Figure 2 shows the difference between LDA and PCA methods for the UCI Credit
Card dataset. The LDA representation provides a net advantage for quantum encoding.
The use of LDA shows a quantum advantage for QSVC and VQA algorithms. Figure 3
shows a histogram representation of the metrics for both the ML and QML approaches.

Table 2. Baseline ML models for the UCI Credit Card default dataset. The results for logistic
regression (LR), k-Nearest Neighbors (KNN), Naïve Bayes (NB) and Support Vector Machine (SVM)
are computed with k-fold cross-validation with 10 folds.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) −0.22 (0.44) 49.99 (0.01)
KNN 38.74 (2.03) 15.45 (1.51) 22.07 (1.76) 12.43 (0.76) 54.26 (0.65)
CART 37.79 (1.51) 40.53 (1.51) 39.10 (1.34) 20.99 (1.45) 60.76 (0.75)

NB 24.71 (0.89) 88.41 (1.55) 38.62 (1.15) 11.94 (1.74) 55.82 (0.88)
SVM 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 50.00 (0.00)

Table 3. Quantum models applied on the UCI Credit Card default dataset with the corresponding
dimensionality methods.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

QSVC (SVD) 20.00 (40.00) 2.21 (4.82) 3.92 (8.45) 5.98 (12.30) 51.10 (2.41)
VQA (SVD) 77.50 26.72 39.74 19.75 58.00

QSVC (PCA) 12.00 (29.93) 1.06 (2.14) 1.88 (3.84) 0.51 (8.04) 49.93 (1.30)
VQA (PCA) 88.10 25.87 40.00 18.95 58.55

QSVC (SKPP) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.0 (0.0)
VQA (SKPP) 25.58 27.5 26.51 7.3 53.75
QSVC (LDA) 67.02 (13.31) 33.44 (10.08) 43.96 (10.97) 38.51 (10.97) 64.6 (5.08)
VQA (LDA) 41.30 100.00 58.46 59.28 92.54
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LDA PCA
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Figure 2. Metrics comparison between VQC and QSVC using LDA and PCA applied on UCI Credit
Card default dataset.

QUANTUM CLASSICAL
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Figure 3. Metrics comparison of VQC and QSVC with CART and KNN (best classical algorithms)
with the application of LDA using UCI Credit Cards dataset.

6.2. Fraud (Bank) Detection Dataset

Table 4 shows the results for the baseline for the fraud (bank) detection dataset
with classical ML. The precision is up to 70% for LR, KNN, and CART, but NB has a
precision of less than 30%, and SVM shows metrics with 0.00%. Table 5 show the results
for the quantum algorithms with the different dimensionality reduction techniques. PCA
demonstrates the worst representation for QSVC (Figure 4). The algorithms did not
converge. LDA shows the best results for both QSVC and VQA. SKPP also demonstrates
interesting results for both algorithms. It is worth noting that four quantum algorithms
beat the best precision value of the baseline and the other metrics are close to the classical
ML models.
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Even if the baseline classical ML models perform well, the quantum algorithms provide
a small advantage over the LDA approach (as the UCI Credit Card fraud dataset results).
Figure 5 shows VQA and QSVC compared to CART and KNN (metrics representation).

Table 4. Baseline ML models for the fraud (bank) detection dataset. The results for logistic regres-
sion (LR), k-Nearest Neighbors (KNN), Naïve Bayes (NB) and Support Vector Machine (SVM) are
computed with k-fold cross-validation for 10 folds.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 71.54 (2.77) 47.27 (1.96) 56.88 (1.62) 46.89 (1.88) 70.2 (0.88)
KNN 74.34 (1.77) 64.56 (2.36) 69.09 (1.91) 59.16 (2.65) 78.22 (1.39)
CART 80.68 (1.87) 81.69 (2.06) 81.17 (1.63) 74.27 (2.25) 87.28 (1.21)

NB 28.43 (1.07) 96.95 (0.88) 43.96 (1.3) 12.58 (1.36) 54.07 (0.54)
SVM 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.0 (0.0)

Table 5. Quantum models applied on the fraud (bank) detection dataset in combination with the
corresponding dimensionality methods.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

QSVC (SVD) 85.02 (11.42) 39.24 (8.53) 52.94 (8.19) 49.55 (7.54) 68.45 (3.97)
VQA (SVD) 62.50 72.22 60.61 26.57 74.09

QSVC (PCA) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.0 (0.0)
VQA (PCA) 67.39 25.41 36.90 7.16 53.09

QSVC (SKPP) 56.28 (11.17) 46.46 (7.21) 50.3 (6.8) 35.53 (8.7) 66.65 (4.02)
VQA (SKPP) 89.86 68.89 77.99 70.67 82.60
QSVC (LDA) 82.35 (10.29) 65.92 (8.79) 72.93 (8.14) 66.35 (9.9) 80.67 (4.94)
VQA (LDA) 84.00 84.44 75.68 55.81 83.92
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Figure 4. Metrics comparison between VQC and QSVC using LDA and PCA applied on fraud (bank)
detection dataset.
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Figure 5. Metrics comparison of VQC and QSVC with CART and KNN (best classical algorithms)
with the application of LDA using fraud (bank) detection dataset.

7. Discussion and Conclusions

In this study, we demonstrate that specific preprocessing techniques could play a crucial
role when discussing quantum machine learning. We focus on the encoding part, the classical
one, to evaluate the effect on quantum algorithms. We show that a quantum computer can
extract more meaningful information from classical data and leverage classification results
just using a few dimensions. As postulated in [34], quantum advantage does not need to be
measured by the ability to beat classical ML models but can be regarded as a better information
extraction technique. The few numbers of qubits of currently accessible quantum computers
force researchers to look for new alternatives. Classical dimensionality reduction programs,
such as SKPP, PCA or LDA, are useful to compress classical high feature datasets (100+) into a
number that can be used with a quantum computer. Here, we tested with two dimensions for
two qubits. LDA shows more promising results for supervised machine learning tasks with
quantum computers. The prevalence of LDA under PCA was not explored in this paper but
will be explored in the future to understand how LDA provides a better data representation
for qubit encoding. Further analysis will be needed to determine the positive effect of LDA in
supervised QML. Also, we will study the potential impact of PCA on unsupervised tasks. As
in classical ML, we need to determine which methods have a better effect on specific types
of data.

Tables A1–A8 show the results where the classical methods were also applied with the
dimensionality reduction methods. The DR also improves the performances of these methods,
but quantum algorithms are comparable to them. More investigation will be needed, but
the preprocessing part of big real-world datasets plays an important role in the usability of
quantum computing in the industry. Better quantum data encoding will also be required to
demonstrate a strong difference between classical and quantum machine learning.

Classical ML methods selected for this study were not tuned specifically on the two
datasets. Default parameters were chosen. Only LR was used with a max iteration parameter
fixed at 1000 iterations. Indeed, on the fraud detection dataset, the default limit was reached,
and LR was not converging. KNN was trained with the number of neighbours fixed at seven.
In the case of quantum algorithms, the data is encoded with a feature map. The parameters
of the feature map were not tuned but fixed through the study with a number of repetitions
of 2 and a feature dimension of 2. Further investigation is needed to explore the effect of the
feature map on the output of the QSVC. VQA was used with an angle embedding method



Entropy 2022, 24, 1656 13 of 16

(rotations gates) and a strongly entangled layer. Neither were tuned, and alternatives will be
explored in the future. An interesting perspective will also be to study the impact of different
ansatzes [35,36] on the VQA results.

Also, in this study, we used only two datasets close to the real-world data in the
finance domain. The results demonstrate a quantum advantage with QSVC and VQA, but
we need to extend the approach with other datasets (higher number of features) in other
domains to create a benchmark through a general application. We demonstrate that the
quantum era needs to be seriously investigated by the industrial people, but more work is
needed to fully demonstrate the advantages.
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Appendix A. All Results

We applied the classical ML algorithms with the reduced data representation after the
different dimensionality reduction approaches. The next sections will provide a table per
dimensionality reduction technique for both datasets with all the algorithms applied.

Appendix A.1. UCI Credit Card Fraud Dataset

The Tables A1–A4 provide the performance by metrics for classical machine learning and
quantum algorithms applied on the same sample with dimensionality reduction techniques.

Table A1. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the UCI Credit Card fraud dataset using the SVD dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 30.00 (45.83) 1.70 (2.61) 3.22 (4.93) 3.53 (11.92) 50.50 (1.57)
KNN 55.49 (8.66) 36.86 (10.08) 43.06 (7.05) 31.20 (6.48) 63.47 (3.73)
CART 36.35 (9.50) 38.49 (13.49) 36.84 (11.02) 15.86 (11.91) 57.70 (5.23)

NB 73.27 (19.89) 17.36 (10.28) 25.78 (11.65) 25.23 (8.60) 57.07 (4.12)
SVM 69.94 (15.02) 26.29 (9.15) 37.24 (10.20) 33.27 (9.59) 61.34 (4.12)

QSVC 20.00 (40.00) 2.21 (4.82) 3.92 (8.45) 5.98 (12.30) 51.10 (2.41)
VQA 77.5 26.72 39.74 19.75 58.00

Table A2. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the UCI Credit Card fraud dataset using the PCA dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 50.00 (0.00)
k-NN 35.70 (7.98) 20.98 (7.05) 26.07 (7.78) 10.72 (9.61) 54.49 (3.98)
CART 30.02 (7.31) 34.82 (10.15) 33.55 (8.89) 9.69 (9.87) 54.87 (4.31)

NB 18.33 (18.93) 8.63 (12.14) 10.22 (12.45) 4.01 (6.56) 51.61 (2.38)
SVC 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 50.00 (0.00)

QSVC 12.00 (29.93) 1.06 (2.14) 1.88 (3.84) 0.51 (8.04) 49.93 (1.30)
VQA 88.10 25.87 40.00 18.95 58.55
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Table A3. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the UCI Credit Card fraud dataset using the SKPP dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 74.12 (15.51) 28.58 (8.58) 40.66 (10.14) 37.16 (11.54) 62.64 (4.72)
KNN 59.37 (9.33) 36.18 (9.87) 43.85 (8.48) 33.71 (8.71) 63.97 (4.67)
CART 34.4 (8.39) 36.7 (13.78) 35.13 (10.53) 15.15 (13.59) 57.94 (7.37)

NB 66.66 (14.72) 25.42 (9.45) 36.27 (11.71) 31.74 (12.55) 60.82 (5.00)
SVM 83.45 (16.05) 28.62 (8.78) 41.83 (10.09) 41.00 (11.03) 63.23 (4.59)

QSVC 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.0 (0.0)
QVA 25.58 27.5 26.51 7.3 53.75

Table A4. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the UCI Credit Card fraud dataset using the LDA dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 64.75 (37.02) 12.36 (9.46) 19.89 (14.14) 22.66 (14.89) 55.61 (4.39)
KNN 57.06 (20.44) 33.36 (12.55) 40.71 (12.24) 32.17 (14.4) 62.99 (6.6)
CART 34.83 (9.49) 34.12 (11.25) 33.93 (9.39) 17.25 (10.27) 58.6 (5.34)

NB 62.58 (15.57) 39.13 (9.38) 47.41 (10.23) 39.19 (11.71) 66.25 (5.07)
SVM 66.64 (11.82) 22.86 (9.57) 33.2 (11.84) 30.9 (10.38) 60.01 (4.51)

QSVC 67.02 (13.31) 33.44 (10.08) 43.96 (10.97) 38.51 (10.97) 64.6 (5.08)
VQA 41.30 100.00 58.46 59.28 92.54

Appendix A.2. Fraud (Bank) Detection Dataset

The Tables A5–A8 provide the performance by metrics for classical machine learning and
quantum algorithms applied on the same sample with dimensionality reduction techniques.

Table A5. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the fraud (bank) detection dataset using the SVD dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.0 (0.0)
KNN 72.68 (12.47) 39.64 (7.18) 51.07 (8.42) 43.15 (10.07) 67.16 (4.12)
CART 51.43 (10.02) 52.18 (8.99) 51.46 (8.86) 34.59 (10.84) 67.36 (5.26)

NB 24.82 (8.84) 82.45 (28.21) 38.11 (13.41) 9.61 (9.35) 53.78 (3.82)
SVM 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.0 (0.0)

QSVC 85.02 (11.42) 39.24 (8.53) 52.94 (8.19) 49.55 (7.54) 68.45 (3.97)
VQA 62.50 72.22 60.61 26.57 74.09

Table A6. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the fraud (bank) detection dataset using the PCA dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 83.63 (9.04) 64.7 (6.18) 72.48 (4.73) 66.24 (5.72) 80.29 (2.94)
KNN 80.37 (7.02) 61.57 (8.58) 69.5 (7.18) 62.33 (8.6) 78.42 (4.75)
CART 70.76 (9.29) 73.34 (8.35) 71.58 (6.67) 62.54 (8.03) 81.76 (4.28)

NB 30.41 (4.79) 93.01 (3.43) 45.63 (5.65) 22.64 (5.44) 61.36 (3.5)
SVM 93.20 (5.19) 55.0 (10.32) 68.47 (7.92) 65.19 (7.71) 76.78 (5.01)

QSVC 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 50.0 (0.0)
VQA 67.39 25.41 36.90 7.16 53.09
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Table A7. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the fraud (bank) detection dataset using the SKPP dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 87.16 (5.86) 71.47 (6.47) 78.18 (3.27) 72.25 (3.98) 83.79 (2.77)
KNN 88.87 (4.79) 86.52 (4.37) 87.52 (2.6) 83.21 (3.65) 91.23 (1.95)
CART 78.31 (6.43) 79.63 (3.65) 78.88 (4.53) 71.21 (6.25) 85.85 (2.84)

NB 90.75 (7.93) 58.3 (8.13) 70.66 (7.21) 65.76 (8.64) 78.05 (4.43)
SVM 88.15 (5.97) 82.49 (4.81) 85.05 (3.89) 80.06 (5.21) 89.16 (2.53)

QSVC 56.28 (11.17) 46.46 (7.21) 50.3 (6.8) 35.53 (8.7) 66.65 (4.02)
VQA 89.86 68.89 77.99 70.67 82.60

Table A8. Classical (LR, KNN, CART, NB, and SVM) and quantum models (QSVC, VQA) applied to
the fraud (bank) detection dataset using the LDA dimensionality reduction.

Precision (%) Recall (%) f1-Score (%)
Matthews Balanced

Corcorref (%) Accuracy (%)

LR 94.74(6.39) 58.67 (7.57) 72.14 (6.06) 68.9 (6.38) 78.81 (3.84)
KNN 82.17 (9.5) 69.7 (8.97) 74.71 (5.57) 68.33 (6.78) 82.34 (4.13)
CART 70.56 (10.19) 72.22 (8.58) 70.77 (6.53) 61.46 (8.82) 80.96 (4.49)

NB 94.74 (6.32) 58.32 (7.72) 71.91 (6.43) 68.64 (7.0) 78.63 (4.02)
SVM 94.74 (6.39) 57.76 (8.17) 71.36 (6.38) 68.22 (6.59) 78.36 (4.08)

QSVC 82.35 (10.29) 65.92 (8.79) 72.93 (8.14) 66.35 (9.9) 80.67 (4.94)
VQA 84.00 84.44 75.68 55.81 83.92
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