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Abstract: The development of a self-consistent thermodynamic theory of quantum systems is of
fundamental importance for modern physics. Still, despite its essential role in quantum science and
technology, there is no unifying formalism for characterizing the thermodynamics within general
autonomous quantum systems, and many fundamental open questions remain unanswered. Along
these lines, most current efforts and approaches restrict the analysis to particular scenarios of ap-
proximative descriptions and semi-classical regimes. Here, we propose a novel approach to describe
the thermodynamics of arbitrary bipartite autonomous quantum systems based on the well-known
Schmidt decomposition. This formalism provides a simple, exact, and symmetrical framework for
expressing the energetics between interacting systems, including scenarios beyond the standard
description regimes, such as strong coupling. We show that this procedure allows straightforward
identification of local effective operators suitable for characterizing the physical local internal ener-
gies. We also demonstrate that these quantities naturally satisfy the usual thermodynamic notion of
energy additivity.

Keywords: quantum thermodynamics; open quantum systems; strong coupling

1. Introduction

In previous decades, there have been many efforts to extend thermodynamics results
and concepts to both encompass microscopic systems out of equilibrium [1,2] and to include
genuine quantum phenomena. This context, aligned with the state-of-the-art capability
to manipulate delicate quantum systems across a wide variety of physical platforms,
has been fomenting the current endeavours to develop a self-consistent thermodynamic
theory of quantum systems [3–6]. Interestingly, despite all recent extensive research and
advances in quantum thermodynamics [7–13], some open questions are exceptionally
notorious, especially those concerning central aspects of the theory. In particular, there
are no universally accepted general definitions for the quantum counterparts of the most
basic thermodynamic quantities and, therefore, no formalism has been consolidated for a
quantum thermodynamic description suitable for arbitrary quantum systems. This context
poses a fundamental restriction to many cases of interest and highlights a core issue in
the field.

While there is no ambiguity in defining proper thermodynamic quantities for macro-
scopic systems in equilibrium, fundamental subtleties arise once one must account for
non-negligible interactions and intrinsically quantum properties of out-of-equilibrium
systems. In this sense, the identification of physical, local, internal energy and quantum
thermodynamic entropy is not as straightforward as in the classical scenario, since it is
unclear how to proceed in the presence of these notions. Although different definition
approaches have been reported in the literature [14–21], this task remains elusive and
far from consensus. Naturally, any attempt to describe energy exchanges, such as work
and heat, inherits this fundamental uncertainty and brings its own conceptual issues and
challenges [22–27].

Additionally, most current approaches in quantum thermodynamics commonly rely
on a particular class of assumptions and approximations, which inevitably limits their
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application to a small set of regimes. In particular, it is often assumed weakly-coupled
systems, Markovian dynamics, and semi-classical external control are present [14,28–30].
Despite being well-suited for specific scenarios, such assumptions clearly exclude several
relevant situations.

Along these lines, it is clear that the current status of the theory is restrictive and does
not allow for the description and characterization of thermodynamic processes for general
contexts, especially for autonomous quantum systems and in the presence of strong cou-
pling. In this respect, many efforts have been made to expand quantum thermodynamics
to these broader conditions [15,16,18,31–37]. Nevertheless, there is no general framework
that is suitable for arbitrary quantum systems.

This work is inserted in this context. Here, we introduce a novel approach for ana-
lyzing the energetic exchange occurring between parts of a generic autonomous quantum
system. The proposal presented here is exact and follows the notorious mathematical pro-
cedure of the Schmidt decomposition for bipartite quantum systems. Interestingly, despite
its simplicity and powerful statement, it is still not explicitly and widely considered in the
context of quantum thermodynamics. Such a framework will permit us to describe the dy-
namics and energetics within general interacting subsystems in a symmetrical manner, i.e.,
regardless of their individual local properties, specific details, and dimensionality, they will
be treated equally. Moreover, it will not demand any approximations and complementary
hypotheses, such as the commonly used ones concerning the interaction regimes, charac-
teristics of the dynamics, and Hamiltonian structure, i.e., weak-coupling, Markovianity,
and strict energy conservation. From a formal perspective, we introduce time-dependent
local effective Hamiltonians for the subsystems naturally containing their respective bare
ones and the contributions of the interaction term. We identify these elements as the
representative operators to characterize the subsystem’s physical internal energies, which
allows us to extend the valuable classical thermodynamic notion of energy additivity to
arbitrary interacting bipartite quantum systems. Such identification represents one of our
main results.

2. Results
2.1. System Description

As a quantum universe, we consider a finite and isolated quantum system composed
of two interacting subsystems with dimensions d(1) and d(2). In addition, let us assume
that—without any loss of generality—d(1) ≤ d(2). The whole system Hamiltonian reads

Ĥ(0) := Ĥ(1) ⊗ 1̂(2) + 1̂(1) ⊗ Ĥ(2) + Ĥint, (1)

where Ĥ(k) is the local bare Hamiltonian of subsystem (k) with k = 1, 2 and Ĥint is the term
encompassing all interactions between them.

At any time t, the universe’s quantum state is depicted by a pure state represented
by the state vector |Ψ(t)〉, whose dynamics are unitary and ditacted by the Schrödinger
equation ih̄ d

dt |Ψ(t)〉 = Ĥ(0)|Ψ(t)〉. The local state of each subsystem is determined by the
reduced density matrix of the universe, such that ρ̂(1,2)(t) ≡ tr2,1{|Ψ(t)〉〈Ψ(t)|}. No
additional assumptions regarding the universe, its constituents, or the Hamiltonians
are considered.

2.2. Schmidt Decomposition Approach

Naturally, |Ψ(t)〉 can be written according to any conceivable basis. Nevertheless, the well
known Schmidt decomposition [38] provides the following particular and convenient form

|Ψ(t)〉 =
d(1)

∑
j=1

λj(t)|ϕ
(1)
j (t)〉 ⊗ |ϕ(2)

j (t)〉, (2)
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for every time t, where {λj(t) ≥ 0; j = 1, . . . , d(1)} and {|ϕ(k)
j (t)〉; j = 1, . . . , d(1)} are

the time-local Schmidt coefficients and local Schmidt basis of subsystem (k), respectively.
Considering its form, the representation given by Equation (2) will prove itself a handful
and compelling one for a number of reasons. Notice that, despite a potential distinction
between d(1) and d(2), the vector state decomposition runs in a single-index sum that is
bounded by the smallest dimension in question, the hypothesis d(1). Furthermore, there is
a one-to-one relation between the Schmidt basis elements, i.e., each Schmidt ket |ϕ(1)

j (t)〉

from subsystem (1) is related to subsystem (2) Schmidt ket |ϕ(2)
j (t)〉. Additionally, it

is guaranteed that the Schmidt coefficients λj(t) are unambiguously defined, while the
Schmidt bases are unique up to eventual degenerate coefficients and a phase degree of
freedom, in the sense that Equation (2) is invariant over simultaneous local phases changes.
Additionally, it already provides the pure-orthonormal ensemble representation of the
subsystem’s local density matrices ρ̂(k)(t), i.e., their simultaneous spectral decompositions
are given by the squared Schmidt coefficients {λ2

j (t)}j and the Schmidt basis {|ϕ(k)
j (t)〉}j,

such that ρ̂(k)(t) = ∑d(1)
j=1 λ2

j (t)|ϕ
(k)
j (t)〉〈ϕ(k)

j (t)|. In particular, notice that both local state
representations are—in general—of mixed state and have the same spectrum whenever the
universe is pure.

The autonomous time evolution executed by the whole system at any time interval
[t0, t1] also induces the local dynamic changes, which, in turn, are mainly non-unitary
and strongly influenced by the presence of the interaction term Ĥint. Let us now focus
on the changes in the Schmidt decomposition elements and define the local dynamical
maps Ũ (k) : H(k) → H(k) as the operators characterizing the Schmidt basis dynamics,
i.e., |ϕ(k)

j (t)〉 = Ũ (k)(t, t0)|ϕ
(k)
j (t0)〉 for any t ≥ t0 with lim

t→t0
Ũ (k)(t, t0) = 1̂(k). Since

the Schmidt basis at distinct times corresponds to different orthonormal bases for the
same Hilbert space, the relationship above is unitary, and one can define the local time-
translation generators H̃(k)(t) = H̃(k)†(t) of the Schmidt basis {|ϕ(k)

j (t)〉}j, such that

ih̄ d
dt Ũ

(k)(t, t0) = H̃(k)(t)Ũ (k)(t, t0), and therefore,

ih̄
d
dt
|ϕ(k)

j (t)〉 = H̃(k)(t)|ϕ(k)
j (t)〉, (3)

for all j. Alternatively, H̃(k)(t) can be simply cast as

H̃(k)(t) ≡ ih̄
d(k)

∑
j=1

(
d
dt
|ϕ(k)

j (t)〉
)
〈ϕ(k)

j (t)|. (4)

Still, we can go one step further and show that Equation (4) above can be directly related to
the local bare Hamiltonian Ĥ(k), as follows (see Section 4)

H̃(k)(t) = Ĥ(k) + Ĥ(k)
LS (t) + Ĥ(k)

X (t), (5)

i.e., H̃(k)(t) can be split into the sum of three distinct elements, including the bare Hamilto-
nian. The additional operators are responsible for the time dependency of H̃(k)(t), where
Ĥ(k)

LS (t) is a general Lamb-shift-like term, in the sense that it is diagonal in the bare eigen-

basis, i.e., [Ĥ(k)
LS (t), Ĥ(k)] = 0 for all t, and Ĥ(k)

X (t) contains only non-diagonal elements.
Note that, in the absence of interactions between the partitions, both subsystems will indi-
vidually evolve over time in a unitary fashion. Under these circumstances, the role of the
time-translation generator of the Schmidt basis will be naturally assigned to the respective
local bare Hamiltonians. That is, the free evolution of the Schmidt basis will be simply

|ϕ̄(k)
j (t)〉 = e−

i
h̄ Ĥ(k)(t−t0)|ϕ(k)

j (t0)〉. In this sense, it is clear that (i) the elements Ĥ(k)
LS (t) and

Ĥ(k)
X (t) are direct local byproducts of the interaction term and vanish for non-interacting



Entropy 2022, 24, 1645 3 of 13

systems; (ii) Equation (5) acts as an effective Hamiltonian. Thus, from now on, H̃(k)(t) will
be referred to as the local effective Hamiltonian of subsystem (k).

Additionally, the local effective Hamiltonians are responsible for guiding the unitary
component of the dynamics of ρ̂(k)(t), i.e.,

ih̄
d
dt

ρ̂(k)(t) = [H̃(k)(t), ρ̂(k)(t)] + D̂
(k)
t ρ̂(k)(t), (6)

where D̂
(k)
t ρ̂(k)(t) = ih̄ ∑d(1)

j=1

(
d
dt λ2

j (t)
)
|ϕ(k)

j (t)〉〈ϕ(k)
j (t)| is the non-unitary part that explic-

itly depends on the time-functional form of the Schmidt coefficients.

2.3. Internal Energies and Additivity

By construction, in the Schrödinger picture, the time-translation generator of isolated
and closed quantum systems is the functional of energy. Thus, the total internal energy,
U(0), contained within the universe under consideration is completely specified by the bare
Hamiltonian Ĥ(0), i.e., one can readily identify

U(0) ≡ 〈Ĥ(0)〉

where 〈.〉 ≡ 〈Ψ(t)|(.)|Ψ(t)〉. Additionally, since the bipartition is isolated, no energy flows
inward or outward of the system. Along these lines, it is easy to see that the unitary
evolution of |Ψ(t)〉 naturally guarantees internal energy conservation, such that

d
dt

U(0) = 0. (7)

Interestingly, it is unclear how to obtain a consistent and meaningful analogy for the
interacting subsystems. In general, the notion of local internal energy is blurred by non-
negligible interactions within the whole system, i.e., the total internal energy can be written
as the sum of the individual local contributions of the expectation values of the bare
Hamiltonians and the interaction term,

U(0) = 〈Ĥ(1)〉(t) + 〈Ĥ(2)〉(t) + 〈Ĥint〉(t).

Thus, unless considering particular scenarios, it is clear that the interaction is indispensable
for the computation of the universe’s energy. Yet, its role is uncertain when one attempts to
establish the local observable to characterize the subsystem’s internal energy. Along these
lines, given that the interaction term actively influences their local dynamics, one could
expect that its contribution should be shared between them in one way or another.

In this context, it is desirable that two relevant properties for any suitable definition
of local internal energies (i) are determinable by local measurements, i.e., associated with
the expectation value of a local operator and (ii) are an additive quantity. While the first
condition guarantees the means for a local characterization, the second also allows for the
intuitive picture of energy flowing from one system to another without including energetic
sinks or sources, i.e., the sum of the local internal energies is a conserved quantity. These
features, of course, are not trivial, especially because the interaction term is a global feature.
This fact, however, suggests that an effective approach for describing local internal energy
provides the most promising route. Otherwise, a global picture would be necessary for
characterizing the energetic flux, which is impractical for most realistic scenarios.

We first remark that the expectation value of the local effective Hamiltonians presented
earlier satisfies both desired features for being interpreted as the representative quantities
for characterizing the subsystem’s physical internal energies. Thus, by identifying

U(k)(t) := 〈H̃(k)(t)〉, (8)
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the local internal energies become locally accessible properties, and one can show that their
sum is equal to the constant universe’s internal energy, such that

U(0) = U(1)(t) + U(2)(t) (9)

and all energy flowing from subsystem (1) is fully transferred to subsystem (2), i.e., no
additional energetic source is required (see Section 4). Additionally, by directly relating these
general expressions to the universe’s internal energy, the relationship between the operators
Ĥ(k)

LS (t), Ĥ(k)
X (t) and the interaction term becomes more apparent. Indeed, the expectation value

〈Ĥint〉(t) is such that one finds 〈Ĥint〉(t) = 〈Ĥ
(1)
LS (t)〉+ 〈Ĥ

(1)
X (t)〉+ 〈Ĥ(2)

LS (t)〉+ 〈Ĥ
(2)
X (t)〉. It

is worth mentioning that their numerical values might be extremely different, despite the
symmetrical decomposition form seen above.

Note that such a description is general, symmetrical, and does not rely on approxi-
mation, particular regimes, or additional restrictive hypotheses concerning the subsystem
dynamics, the Hamiltonian structure, and the coupling strength. This identification repre-
sents one of our main results.

2.4. Phase Gauge

As mentioned earlier, the Schmidt basis is unique up to the eventual degenerate
Schmidt coefficients and a phase choice freedom. While the former is unimportant to our
current purposes, the latter brings nontrivial consequences to our formalism. From a global
perspective, it is easy to see that the simultaneous addition of local phases {θj(t)}j ∈ R,
such that

|ϕ′(k)j (t)〉 = e(−1)k−1iθj(t)|ϕ(k)
j (t)〉, (10)

maintains the universe state form in an unchanged state, i.e., the phases cancel out and
|Ψ′(t)〉 = |Ψ(t)〉. Such phase invariance expresses an internal gauge freedom choice inbuilt
in the Schmidt decomposition that directly affects the identification of the local effective
Hamiltonians, i.e., instead of describing the state vector with the basis {|ϕ(k)

j (t)〉}j, one can

use {|ϕ′(k)j (t)〉}j and find its time-translation generator H̃′(k)(t). Given Equation (4), the
gauge transformation defined in Equation (10) above implies the following expression for
H̃′(k)(t) in terms of H̃(k)(t) and {θj(t)}j

H̃′(k)(t) = H̃(k)(t) + (−1)k h̄
d(k)

∑
j=1

(dθj(t)
dt

)
|ϕ(k)

j (t)〉〈ϕ(k)
j (t)|. (11)

Naturally, its expectation value also transforms accordingly, such that

〈H̃′(k)(t)〉 = 〈H̃(k)(t)〉+ (−1)k h̄
d(k)

∑
j=1

λ2
j (t)

(dθj(t)
dt

)
. (12)

Thus, it is clear that from a local point of view that these phases are relevant and should be
carefully scrutinized.

Note that a gauge change adds an extra diagonal term on the Schmidt basis that only
depends on the time derivative of the phases. In general, these additional quantities change
the local effective Hamiltonian structure such that both their eigenbasis and eigenvalues are
affected, which also implies that the spectral gaps are not necessarily invariant. Still, as ex-
pected, such transformations maintain the description of the local density matrices and their
dynamical Equation (6) in an unchanged state, given that [|ϕ(k)

j (t)〉〈ϕ(k)
j (t)|, ρ̂(k)(t)] = 0

for all j and t. More importantly, these terms shift the expectation values 〈H̃(k)(t)〉 in such
a way that the change obtained by subsystem (1) is compensated by the one acquired
by subsystem (2). Hence, both the universe’s internal energy U(0) and the additivity
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property are guaranteed to be invariant over these modifications, i.e., U′(0) = U(0) and
〈H̃′(1)(t)〉+ 〈H̃′(2)(t)〉 = 〈H̃(1)(t)〉+ 〈H̃(2)(t)〉.

Hence, given the freedom of choosing the Schmidt basis for writing the state vector, it
is clear that, for the same bipartite quantum system, several local effective Hamiltonians
are suitable for consistently describing the subsystem’s dynamics, any observable physical
quantity, and the universe energetics. However, despite H̃(k)(t) possessing the desired
properties to successfully fulfill the role of physical local internal energies, such freedom
also brings a significant ambiguity in identifying a single pair of preferential operators and
quantifying them.

Notably, such mathematical freedom of adding local phases is not necessarily physi-
cally consistent for characterizing energy in general when seeking its association with the
time-translation generator of the dynamics [39]. As mentioned earlier, if there are no interac-
tions between the bipartitions, they will behave independently as isolated quantum systems.
In this scenario, the Schmidt basis dynamics can be described by ih̄ d

dt |ϕ̄
(k)
j (t)〉 = Ĥ(k)|ϕ̄(k)

j (t)〉,
and the individual local internal energies can be readily identified as U(k) ≡ 〈Ĥ(k)〉, where
d
dt U(k) = 0. Along these lines, once considering the interaction term negligible, similar con-

clusions should be obtained regardless of the chosen gauge. In this respect, if {|ϕ(k)
j (t)〉}j

is indeed the Schmidt basis, such that |ϕ(k)
j (t)〉 → |ϕ̄(k)

j (t)〉 when Ĥint → 0, then it is

guaranteed that H̃(k)(t) → Ĥ(k) and, since the phases are arbitrary and independent of

the interaction term, H̃′(k)(t)→ Ĥ(k) + (−1)k h̄ ∑d(k)
j=1

( dθj(t)
dt

)
|ϕ̄(k)

j (t)〉〈ϕ̄(k)
j (t)|. Notice that,

while the former is the time-translation generator of the basis {|ϕ̄(k)
j (t)〉}j, the latter is

the one relative to the basis {e(−1)k−1iθj(t)|ϕ̄(k)
j (t)〉}j. More importantly, it is clear that, in

general, not all local effective Hamiltonians (phases) are suitable for correctly describing
local energy measurements in the limit behavior of non-interacting systems. Neverthe-
less, this is achieved iff d

dt θj(t) = α for all j, since additive constants only shift the bare
Hamiltonian spectrum. Thus, as long all phases are equal linear functions of time, we
have a physically consistent set of gauges satisfying H̃′(k)(t) = H̃(k)(t) + (−1)k h̄α1̂(k) and
〈H̃′(k)(t)〉 = 〈H̃(k)(t)〉+ (−1)k h̄α in a way that the remaining freedom is also guaranteed
to maintain the spectral gaps of the local effective Hamiltonian invariant. Despite being
local operators, observe that such a procedure requires knowledge of the “whole” in order
to determine the “parts” energetics, i.e., obtaining the physical local effective Hamiltonians
requires knowledge about the interaction of the parts (a non-local property) to fix the
correct physical phase gauge. Hence, in order to construct a local and consistent energy
description for the parts, one cannot rely solely on local features (see Reference [40] for a
recent discussion).

In summary, by restricting ourselves to gauges such that
{

d
dt θj(t) = α

}
j
, where α ∈ R,

one can identify the expectation values 〈H̃(k)(t)〉 as the local physical internal energies
up to an additive constant, U(k)(t) := 〈H̃(k)(t)〉 and U′(k)(t) = U(k)(t) + (−1)k h̄α. In
this sense, even though different gauges provide distinct absolute internal energy values,
energy measurements differences remain identical.

3. Conclusions

In this work, we introduced a novel formalism suitable for describing the energetics
within arbitrary autonomous quantum systems. Despite being presented for pure quan-
tum states, the generalization for mixed ones is straightforward (see Section 4). Formally,
the procedure is based on the well-known Schmidt decomposition given by Equation (2),
which provides the basis for the identification of the local effective Hamiltonians defined
by Equation (4). We highlighted the fact that these operators possess the desired proper-
ties for being considered suitable candidates for characterizing the subsystem’s internal
energies, i.e., their expectation values are local quantities and naturally satisfy the classical
thermodynamic notion of energy additivity for the bipartition, as shown in Equation (9). In
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contrast with current approaches, such a framework is exact, treats both partitions on equal
footing, and does not rely on additional restrictive hypotheses and approximations, i.e.,
specific types of dynamics, convenient Hamiltonian structures, particular coupling regimes
and semi-classical descriptions.

Along with such an identification, we verified the existence of an internal phase gauge
freedom corresponding to the phase choices {θj(t)}j within the Schmidt decomposition pro-
cedure. As shown in Equations (11) and (12), this arbitrary choice affects the structure of the
local effective Hamiltonians and, in general, manifests as a time-dependent contribution to
their expectation values. Nevertheless, despite the mathematical freedom, physical consis-
tency during gauge transformations is only achieved for phases such that d

dt θj(t) = α

for all j, where α ∈ R. In this case, we have H̃′(k)(t) = H̃(k)(t) + (−1)k h̄α1̂(k) and
〈H̃′(k)(t)〉 = 〈H̃(k)(t)〉+ (−1)k h̄α, and the limit behavior H̃′(k)(t)→ Ĥ(k) + (−1)k h̄α1̂(k) is
satisfied for Ĥint → 0. Thus, by identifying the local internal energies as U(k)(t) := 〈H̃(k)(t)〉,
different gauges would provide distinct absolute values for these quantities but equiv-
alent spectral gaps. In this sense, the energy shift (−1)k h̄α is analogous to the classical
thermodynamic freedom in the definition of internal energy [41].

In the current status of quantum thermodynamics, where there is no general method-
ology suitable for describing the energetic exchanges of arbitrary interacting quantum
systems on equal footing, the procedure devised here represents a viable alternative to
fill this important gap and a promising route for the characterization of general quantum
thermodynamic processes. In particular, it provides a means to describe scenarios that do
not fall under the standard description regimes, especially for strongly coupled systems,
and in the absence of external classical agents. Additionally, the presented formalism has
the potential to aid in the understanding and characterization of the thermodynamic role
played by entanglement, especially during these energy exchanges. This understanding
is also of fundamental interest for practical purposes, such as designing genuine quan-
tum heat engines. One may ask about the eventual energetic differences and similarities
between bound and free entangled states [42,43] (see [44] for a recent contribution to this
question and [45] for the relationship between the Schmidt number and bound entan-
glement). Investigations on this matter establish an interesting and relevant avenue for
future work.

4. Additional Information
4.1. Local Effective Hamiltonian

Given the following spectral decomposition for the local bare Hamiltonian

Ĥ(k) ≡
d(k)

∑
j=1

b(k)j |b
(k)
j 〉〈b

(k)
j |, (13)

where {b(k)j }j and {|b(k)j 〉}j are its respective bare eigenenergies and eigenbasis, one

can define the projections 〈b(k)j |ϕ
(k)
l (t)〉 := r(k)jl (t)e−

i
h̄ b(k)j t, such that

〈b(k)j |
d
dt
|ϕ(k)

l (t)〉 =
(

d
dt

r(k)jl (t)
)

e−
i
h̄ b(k)j t − i

h̄
b(k)j r(k)jl (t)e−

i
h̄ b(k)j t.

Additionally, given the orthonormality 〈b(k)α |b
(k)
β 〉 = δαβ, it is easy to see that

d(k)

∑
l=1

r(k)αl (t)
(

r(k)βl (t)
)∗

e
i
h̄

(
b(k)β −b(k)α

)
t
= δαβ.
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Finally, by casting H̃(k)(t) in the bare eigenbasis representation and using the previous
relations, one can rewrite the local effective Hamiltonian according to Equation (5), i.e.,

H̃(k)(t) = Ĥ(k) + Ĥ(k)
LS (t) + Ĥ(k)

X (t),

where

Ĥ(k)
LS (t) ≡ ih̄

d(k)

∑
j=1

d(k)

∑
l=1

(
d
dt

r(k)jl (t)
)

r(k)∗jl (t)

|b(k)j 〉〈b
(k)
j |,

and

Ĥ(k)
X (t) ≡ ih̄

d(k)

∑
j=1

d(k)

∑
m 6=j

d(k)

∑
l=1

d
dt

r(k)jl (t)r(k)∗ml (t)

e
i
h̄

(
b(k)m −b(k)j

)
t|b(k)j 〉〈b

(k)
m |.

4.2. Local Internal Energy Additivity

Given Equations (2) and (3) for the Schmidt decomposition and the Schmidt basis
dynamics, we have the following equation

ih̄
d
dt
|Ψ(t)〉 =

(
H̃(1)(t) + H̃(2)(t)

)
|Ψ(t)〉+

d(1)

∑
j=1

(
ih̄

d
dt

λj(t)
)
|ϕ(1)

j (t)〉 ⊗ |ϕ(2)
j (t)〉.

Thus, since ih̄ d
dt |Ψ(t)〉 = Ĥ(0)|Ψ(t)〉, we obtain

〈Ψ(t)|Ĥ(0)|Ψ(t)〉 = 〈Ψ(t)|
(

H̃(1)(t) + H̃(2)(t)
)
|Ψ(t)〉+

〈Ψ(t)|
d(1)

∑
j=1

(
ih̄

d
dt

λj(t)
)
|ϕ(1)

j (t)〉 ⊗ |ϕ(2)
j (t)〉.

Nevertheless, notice that due to the normalization of |Ψ(t)〉, the second contribution is
necessarily null. Therefore,

〈Ĥ(0)〉 = 〈H̃(1)(t)〉+ 〈H̃(2)(t)〉 = U(0). (14)

4.3. Generalization for Mixed States

The generalization of our formalism for mixed states is straightforward. If the uni-
verse’s quantum state is described by the following ensemble of pure states ρ̂(0)(t) ≡
∑d(0)

η=1 Pη |Ψη(t)〉〈Ψη(t)|, where 〈Ψα(t)|Ψβ(t)〉 = δαβ and ∑d(0)
η=1 Pη = 1, then the previous

procedure can be applied to every individual element of the ensemble: for every ket |Ψη(t)〉,
we have an associate Schmidt decomposition

|Ψη(t)〉 =
d(1)

∑
j=1

λη j(t)|ϕ
(1)
η j (t)〉 ⊗ |ϕ

(2)
η j (t)〉, (15)

where λη j(t) and |ϕ(1,2)
η j (t)〉 are its respective Schmidt coefficients and basis; thus, we

can define the ηth local effective Hamiltonian H̃(k)
η (t) ≡ ih̄ ∑d(k)

j=1(
d
dt |ϕ

(k)
η j (t)〉)〈ϕ

(k)
η j (t)| for

subsystem (k), such that H̃(k)
η (t) = Ĥ(k) + Ĥ(k)

LS;η(t) + Ĥ(k)
X;η(t).

In this case, the total internal energy U(0) ≡ 〈Ĥ(0)〉 is given by the following average

over the ensemble of pure states U(0) = ∑d(0)
η=1 PηU(0)

η , where U(0)
η ≡ tr{Ĥ(0)|Ψη(t)〉〈Ψη(t)|}

is immediately recognized as the universe’s internal energy relative to the ηth state |Ψη(t)〉,
which also satisfies d

dt U(0)
η = 0 for all η. As expected, we can also show that every energy

element will satisfy the bipartition additivity property, such that
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U(0)
η = U(1)

η (t) + U(2)
η (t), (16)

where U(k)
η (t) ≡ 〈Ψη(t)|H̃(k)

η (t)|Ψη(t)〉. However, the entire subsystem’s internal energy is

simply identified as the averages of its possible values, i.e., U(k)(t) = ∑d(0)
η=1 PηU(k)

η such that

U(0) = U(1)(t) + U(2)(t). (17)

Additionally, it is worth mentioning that this description allows us to represent and
characterize systems initially prepared at thermal states with the inverse of tempera-

ture β, i.e., if the universe’s Hamiltonian is given by Ĥ(0) ≡ ∑d(0)
η=1 b(0)η |b

(0)
η 〉〈b

(0)
η | then

Pη ≡ e−βb(0)η /Z(0), with Z(0) = tr{e−βb(0)η } and |Ψη(t0)〉 ≡ |b
(0)
η 〉, such that ρ̂(0)(t) ≡

∑d(0)
η=1 e−βb(0)η /Z(0)|b(0)η 〉〈b

(0)
η | = ρ̂

(0)
th . Note that, despite the universe state being thermal, the

local states do not necessarily preserve the Gibbs form relative to their bare Hamiltonians,
especially under strong coupling regimes. In fact, they are given by the following general
and exact expression

ρ̂(k)(t) =
d(0)

∑
η=1

e−βb(0)η

Z(0)

d(1)

∑
j=1

λ2
η j(t)|ϕ

(k)
η j (t)〉〈ϕ

(k)
η j (t)|. (18)

In the case where the whole universe is considered to be in a thermal state characterized
by the inverse temperature β, the so-called Hamiltonian of the mean force [46,47] of
subsystem (1)

Ĥ(1)
MF ≡ −

1
β

ln

(
tr2{e−βĤ(0)}
tr2{e−βĤ(2)}

)
(19)

is usually defined and commonly understood as its effective Hamiltonian in a way that the

local equilibrium state becomes an effective Gibbs one: ρ̂(1) = tr2{ρ̂
(0)
th } ≡ e−βĤ(1)

MF /Z(1)
MF,

where Z(1)
MF ≡ tr1{e−βĤ(1)

MF} [37,48,49]. Such an operator naturally encompasses both the
temperature and the interaction term. More importantly, this formulation suggests that
the local internal energy of the subsystem in question may simply be obtained by U(1)

MF ≡
−∂βln(Z(1)

MF). Alternatively, one can define the effective energy operator Ê(1)
MF = ∂β(βĤ(1)

MF)

and express U(1)
MF as the following expectation value U(1)

MF = tr1{ρ̂(1)Ê
(1)
MF}. It is important

to mention that, in general, the operators Ĥ(1), Ĥ(1)
MF and Ê(1)

MF are not necessarily equivalent.
Under these circumstances, it would be interesting to understand: (i) the eventual relation-
ships between the local effective Hamiltonians H̃(1)

η (t) introduced here and the operators
shown above; (ii) the implications of the different definitions of local energies U(1)(t) and
U(1)

MF. In this sense, it is interesting to notice that while U(1)(t) is directly related to H̃(1)
η (t),

U(1)
MF depends on Ĥ(1)

MF and its derivative. Additionally, it is important to emphasize that the

additive property is not observed for Û(1,2)
MF in general cases, as will be seen in the example

below. Thus, the energy flowing from subsystem (1) is not entirely acquired by subsystem
(2), i.e., it is required to include an additional energetic source or sink to guarantee the
universe’s energy balance. Nevertheless, a priori, it is unclear how to establish a general
and formal connection between all these quantities. In this wise, future research will be
necessary to elucidate these questions in depth.

However, despite the similar strategy of defining an effective Hamiltonian and effec-
tive local energies, the framework presented above lacks generality, since it is restricted to
a particular scenario of thermal equilibrium. In this sense, any other situation is outside its
scope. Additionally, once considering the entire bipartition, the energy additivity property
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is not required or expected to be satisfied. These crucial drawbacks do not happen in the
proposal introduced in this paper.

4.4. Example

Finally, we illustrate the concepts presented in this paper with a simple–but paradig-
matic–example as a proof of principle. Let us consider as our universe two distinguishable
interacting two-level systems described by the following symmetrical Hamiltonian:

Ĥ(0) = h̄
ω

2
σ̂
(1)
z ⊗ 1̂(2) + 1̂(1) ⊗ h̄

ω

2
σ̂
(2)
z + h̄gσ̂

(1)
z ⊗ σ̂

(2)
z (20)

where Ĥ(1,2) ≡ h̄ ω
2 σ̂

(1,2)
z are the local bare Hamiltonians, Ĥint ≡ h̄gσ̂

(1)
z ⊗ σ̂

(2)
z is the interac-

tion term, σ̂
(1,2)
z is the usual Pauli matrix such that σ̂

(1,2)
z |±(1,2)〉 = ±|±(1,2)〉, g is the cou-

pling constant, and h̄ω is the spectral gap for Ĥ(1,2). Additionally, let us further assume the
universe’s state is initially described by the Gibbs ensemble with the inverse of temperature
β, i.e., ρ̂(0)(t0) = ∑4

η=1 Pη |Ψη(t0)〉〈Ψη(t0)| ≡ e−βĤ(0)
/Z(0) with Z(0) = tr{e−βĤ(0)}.Thus,

the set of time-evolved orthonormal pure states is already in the Schmidt decomposition
form (see Equation (15)) and is simply identified as

|Ψ1(t)〉 = e−
i
h̄ h̄(g+ω)(t−t0)|+(1)〉 ⊗ |+(2)〉,

|Ψ2(t)〉 = e−
i
h̄ h̄ ω

2 (t−t0)e
i
h̄ h̄ ω

2 (t−t0)e
i
h̄ h̄g(t−t0)|+(1)〉 ⊗ |−(2)〉,

|Ψ3(t)〉 = e
i
h̄ h̄ ω

2 (t−t0)e−
i
h̄ h̄ ω

2 (t−t0)e
i
h̄ h̄g(t−t0)|−(1)〉 ⊗ |+(2)〉,

|Ψ4(t)〉 = e−
i
h̄ h̄(g−ω)(t−t0)|−(1)〉 ⊗ |−(2)〉

Notice that, for every |Ψη(t)〉 with η = 1, . . . , 4, the Schmidt rank is one, which implies
that only a single element of the Schmidt basis for each two-level system, constituted by
{|ϕ(k)

η+(t)〉, |ϕ
(k)
η−(t)〉}, plays a role in the dynamics of the pure state and, therefore, is relevant

for accounting the energetics. Additionally, it is clear that these kets can be written as

|ϕ(k)
η±(t)〉 = e−

i
h̄ c(k)η±(t−t0)|±(k)〉, such that ih̄ d

dt |ϕ
(k)
η±(t)〉 = c(k)η±|ϕ

(k)
η±(t)〉 and c(k)η± are constant

phase coefficients satisfying

c(1)1+ + c(2)1+ = h̄(g + ω) = U(0)
1 ,

c(1)2+ + c(2)2− = −h̄g + h̄
ω

2
− h̄

ω

2
= U(0)

2 ,

c(1)3− + c(2)3+ = −h̄g + h̄
ω

2
− h̄

ω

2
= U(0)

3 ,

c(1)4− + c(2)4− = h̄(g−ω) = U(0)
4 ,

where U(0)
η ≡ 〈Ψη(t)|Ĥ(0)|Ψη(t)〉 is the universe’s internal energy relative to the ηth

pure state, and the set of coefficients {c(1)1− , c(2)1− , c(1)2− , c(2)2+ , c(1)3+ , c(2)3− , c(1)4+ , c(2)4+} is relative to the
Schmidt basis elements absent in the pure states, or, analogously, in the local density matri-
ces. Given the nature of this particular Hamiltonian, it is also clear that the phases obtained
by the Schmidt basis above during the time-evolution contain both the contribution of the
local bare Hamiltonian and the interaction term. Additionally, considering the symmetry of
the subsystems, this readily suggests the following identification: c(1)1+ = c(2)1+ = h̄(g + ω)/2,

c(1)4− = c(2)4− = h̄(g− ω)/2, c(1)2+ = c(2)3+ = −h̄(g− ω)/2 and c(2)2− = c(1)3− = −h̄(g + ω)/2. As
expected, once considering g→ 0, these phases are exactly the dynamical ones that would
be obtained in a free evolution.

Under these circumstances, one can show that the local effective Hamiltonians have
the following simple form H̃(k)

η = c(k)η+|+(k)〉〈+(k)| + c(k)η−|−(k)〉〈−(k)|. While half of the
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coefficients are already identified, the remaining ones can be determined as long we
guarantee that H̃(k)

η → Ĥ(k) whenever g→ 0. Thus, one can write

H̃(1)
1 =

h̄
2
(ω + g)σ̂(1)

z , H̃(2)
1 =

h̄
2
(ω + g)σ̂(2)

z

H̃(1)
2 =

h̄
2
(ω− g)σ̂(1)

z , H̃(2)
2 =

h̄
2
(ω + g)σ̂(2)

z

H̃(1)
3 =

h̄
2
(ω + g)σ̂(1)

z , H̃(2)
3 =

h̄
2
(ω− g)σ̂(2)

z

H̃(1)
4 =

h̄
2
(ω− g)σ̂(1)

z , H̃(2)
4 =

h̄
2
(ω− g)σ̂(2)

z

such that the local internal energies, U(k)
η ≡ 〈Ψη(t)|H̃(k)

η |Ψη(t)〉, are identified by

U(1)
1 = c(1)1+ = U(2)

1 =
h̄
2
(ω + g),

U(1)
2 = c(1)2+ = U(2)

3 =
h̄
2
(ω− g),

U(2)
2 = c(2)2− = U(1)

3 = − h̄
2
(ω + g),

U(1)
4 = c(1)4− = U(2)

4 = − h̄
2
(ω− g).

As expected, it is clear that the additivity is fulfilled for all η, i.e., U(0)
η = U(1)

η + U(2)
η .

Additionally, this property remains satisfied from the perspective of the whole ensemble of
pure states since

U(0) =
4

∑
η=1

PηU(0)
η = U(1) + U(2), (21)

where U(0) is the total internal energy of the universe and U(k) = ∑4
η=1 PηU(k)

η is the whole
internal energy attributed to subsystem (k). It is worth mentioning that we might consider
different phase gauges by simply adding a constant value in any local effective Hamiltonian
of subsystem (1) and consistently subtracting the same quantity in the subsystem (2)
counterpart. Naturally, this would imply different absolute values of energy but would
preserve both the spectral gaps and the additivity property.

Additionally, it is interesting to compute the Hamiltonian of the mean force, Equation (19),
relative to this example and its respective effective energy operator Ê(1,2)

MF = ∂β(βĤ(1,2)
MF ).

Hence, we can show that

Ĥ(1,2)
MF =− 1

β
ln

(
2 cosh

(
βh̄(g + ω

2 )
)

eβωh̄ + 1

)
|+(1,2)〉〈+(1,2)|

− 1
β

ln
((

tanh
(

βωh̄
2

)
+ 1
)

cosh
(

βh̄(g− ω

2
)
))
|−(1,2)〉〈−(1,2)|

Ê(1,2)
MF =

(
ωh̄eβωh̄

eβωh̄ + 1
− h̄

2
(2g + ω) tanh

(
βh̄
2
(2g + ω)

))
|+(1,2)〉〈+(1,2)|

+
h̄
2

(
(ω− 2g) tanh

(
βgh̄− βωh̄

2

)
− 2ω

eβωh̄ + 1

)
|−(1,2)〉〈−(1,2)|.

Thus, it is clear that Ĥ(1,2)
MF 6= Ê(1,2)

MF 6= H̃(1,2)
η and [Ĥ(1,2)

MF , H̃(1,2)
η ] = [Ê(1,2)

MF , H̃(1,2)
η ] = 0

for all η. Finally, the local internal energies obtained from this framework are given by
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U(1,2)
MF =

h̄
(

2g
(

eβωh̄ + 1
)(

e2βωh̄ − 2eβh̄(2g+ω) + 1
))

2
(
eβωh̄ + 1

)(
e2βωh̄ + 2eβh̄(2g+ω) + 1

)
−

h̄ω
(

eβωh̄ − 1
)(

eβωh̄
(

eβωh̄ − 2e2βgh̄ + 4
)
+ 1
)

2
(
eβωh̄ + 1

)(
e2βωh̄ + 2eβh̄(2g+ω) + 1

)
=⇒ U(1)

MF + U(2)
MF 6= U(0)

Notice that, despite also providing an effective description of the local internal energies, in
the sense that it also contains the contribution of the interaction term, the quantities U(1,2)

MF
and U(1,2) do not agree with each other. More importantly, the additivity of energy is not
satisfied, i.e., U(1)

MF + U(2)
MF 6= U(0) = U(1) + U(2).
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12. Dag, C.B.; Niedenzu, W.; Ozaydin, F.; Müstecaplıoğlu, Ö.E.; Kurizki, G. Temperature control in dissipative cavities by entangled
dimers. J. Phys. Chem. C 2019, 123, 4035–4043. [CrossRef]
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