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Abstract: The main aim of this study was to predict current and future flood susceptibility under
three climate change scenarios of RCP2.6 (i.e., optimistic), RCP4.5 (i.e., business as usual), and RCP8.5
(i.e., pessimistic) employing four machine learning models, including Gradient Boosting Machine
(GBM), Random Forest (RF), Multilayer Perceptron Neural Network (MLP-NN), and Naive Bayes
(NB). The study was conducted for two watersheds in Canada, namely Lower Nicola River, BC and
Loup, QC. Three statistical metrics were used to validate the models: Receiver Operating Charac-
teristic Curve, Figure of Merit, and F1-score. Findings indicated that the RF model had the highest
accuracy in providing the flood susceptibility maps (FSMs). Moreover, the provided FSMs indicated
that flooding is more likely to occur in the Lower Nicola River watershed than the Loup watershed.
Following the RCP4.5 scenario, the area percentages of the flood susceptibility classes in the Loup
watershed in 2050 and 2080 have changed by the following percentages from the year 2020 and 2050,
respectively: Very Low = —1.68%, Low = —5.82%, Moderate = +6.19%, High = +0.71%, and Very
High = +0.6% and Very Low = —1.61%, Low = +2.98%, Moderate = —3.49%, High = +1.29%, and
Very High = +0.83%. Likewise, in the Lower Nicola River watershed, the changes between the years
2020 and 2050 and between the years 2050 and 2080 were: Very Low = —0.38%,
Low = —0.81%, Moderate = —0.95%, High = +1.72%, and Very High = +0.42% and Very Low = —1.31%,
Low = —1.35%, Moderate = —1.81%, High = +2.37%, and Very High = +2.1%, respectively. The impact
of climate changes on future flood-prone places revealed that the regions designated as highly and
very highly susceptible to flooding, grow in the forecasts for both watersheds. The main contribution
of this study lies in the novel insights it provides concerning the flood susceptibility of watersheds in
British Columbia and Quebec over time and under various climate change scenarios.

Keywords: climate change; machine learning (ML); geographical information systems (GIS); flood
susceptibility mapping; natural hazards

1. Introduction

Floods have become the most prevalent natural catastrophe, accounting for 44% of all
natural disasters and harming 1.6 billion people globally between 2000 and 2019 [1]. Floods
are the most common natural disaster in Canada [2]. According to the Canadian Disaster
Database [3], there were 241 flood disasters in Canada between 1900 and 2005, about five
times as frequently as wildfires, the second most common natural hazard in Canada.

Climate change poses a significant peril to present and future generations. Climate
change has made natural disasters more unpredictable, causing them to occur more fre-
quently and with more significant impact [4]. Climate changes inducing hydrological
changes and precipitation amounts affect the likelihood of flood occurrences. Accordingly,
floods are more likely to occur in areas where the climate shifts toward more intense and
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frequent precipitation [5]. Although flood avoidance is inescapable, accurate flood forecast-
ing, which considers the impacts of climate changes through proper models, might aid in
future damage reduction.

Due to the intrinsic complexity of the flood phenomenon and the influence of various
variables on floods, simple models are insufficient for accurate flood prediction [6]. In
general, flood susceptibility modeling and mapping methodologies have been developed
using two main types of models: physically-based and data-driven; albeit certain studies to
assess flood susceptibility employed Multi-Criteria Decision Analysis (MCDA), such as
the Analytical Hierarchy Process (AHP) and Analytical Network Process (ANP) [7-9]. The
main drawback of the MCDA-based flood models is that they are prone to be distorted due
to their dependence on expert knowledge [10].

Although physical models have shown to be capable of investigating a wide range of
phenomena (e.g., rainfall-runoff [11], hydraulic models of flow [12], and flood [13]), devel-
oping physical flood-prediction models requires using fundamentally complex equations
and in-depth knowledge and expertise of the flood phenomenon [14,15]. Owing to the
drawbacks of the physical models, the usage of advanced data-driven models has been
increasingly popular in recent decades [16-18]. When compared to physical models, data-
driven models have three key advantages: (1) nonlinearity and numerical formulating of
the flood based on historical data without requiring knowledge about the underlying phys-
ical processes, (2) providing more straightforward implementation with low computation
cost, high performance, and high accuracy [19], and (3) relatively minor complexity [20].

Among the data-driven models, various ML models have been suggested and im-
plemented to assess flood susceptibility [21,22]. The most frequently used ML models
are Decision Tree (DT) [23], Random Forest (RF) [24,25], Naive Bayes (NB) [26-28], Mul-
tilayer Perceptron Neural Network (MLP-NN) [29,30], Adaptive Neuro-Fuzzy Inference
System (ANFIS) [31,32], Support Vector Machine (SVM) [33], Gradient Boosting Machine
(GBM) [34], Fuzzy Logic [35], etc. Although there is no consensus on which method or
group of methodologies may produce the most accurate predictions [36], ML models have
recently successfully assessed flood susceptibility with greater accuracy [37,38].

Flood susceptibility is described as a quantitative or qualitative assessment of a place
with geographical distribution of floods and a high likelihood of flooding [39]. Flood
susceptibility maps illustrate the susceptibility of places to flooding and highlight locations
that are prone to flooding. Enhancing the accuracy of flood susceptibility maps is a concern
for flood disaster management researchers and decision-makers. Flood susceptibility maps
become more practical to local governments and policy-makers as flood estimations get
more precise. In recent years, advances in data collection and preparation methods using
RS and GIS have led to an increase in the reliability and accuracy of flood prediction
models, and consequently flood susceptibility mapping [40-42]. RS provides a variety
of data sources, data with excellent quality, day and night data gathering capabilities,
and rapid analysis [43,44], and GIS is designed for the storage, retrieval, and analysis of
geographically referenced data [45].

Numerous studies have been conducted using ML models to evaluate the impacts
of climate change on the flood susceptibility [46-50]. However, ML models of MLP-NN,
RFE, NB, and GBM have not yet been used to investigate the impacts of climate change
on the flood susceptibility for two watersheds in Canada, namely, Lower Nicola River,
BC and Loup, QC. In doing so, we investigated the impacts of climate changes for the
years of 2020, 2050, and 2080 under three different climate change scenarios of RCP2.6 (i.e.,
optimistic scenario), RCP4.5 (i.e., business as usual scenario), and RCP8.6 (i.e., pessimistic
scenario) to contribute towards a dynamic estimation of flood susceptibility in these areas.
Moreover, another highlight of the present study was to consider various topographic, hy-
drologic, environmental, and geologic flood conditioning factors yield by means of RS and
GIS techniques.
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2. Materials and Methods
2.1. Description of the Study Areas

This study focuses on two watersheds, one in Quebec (QC) and the other in British
Columbia (BC) provinces. On 3 May 2017, Eastern Canada was flooded due to heavy
rain, with QC being the worst hit. The Loup watershed located in QC was one of the
watersheds affected by the May 2017 flood. Likewise, the watershed of the Lower Nicola
River, located in south-central BC province, was struck by a flood triggered by heavy rain
on 14 November 2021. The location of both watersheds was depicted in Figure 1.
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Figure 1. The geographical location of study watersheds, namely Loup, QC and Lower Nicola
River, BC.

This study used four flood susceptibility assessment models to predict flood suscep-
tibility in two different study regions correctly. The primary modeling technique for this
investigation was broken down into six significant steps: (i) gathering and preparing the
factors influencing flooding, (ii) iteratively picking flood and non-flood points in study
areas and calculating Moran’s I spatial autocorrelation for all factors; the set of points which
the p-value for all factors was obtained extremely close to zero and less than the threshold
(i.e., 0.05) was chosen to create the flood inventory map, (iii) assessing the correlation
between flood occurrence and flood influencing factors using multicollinearity analysis and
either including or excluding them in the following processes, (iv) training the ML models,
evaluating and comparing their performance using three statistical metrics, and choosing
the model with the highest accuracy, (v) gathering and preparing the annual precipitation
data in three years of 2020, 2050, and 2080 under three climate change scenarios (i.e., RCP2.6,
RCP4.5, and RCP8.5), and (vi) providing associated flood susceptibility maps with the
years and scenarios. The methodology flowchart of the research was shown in Figure 2.

2.2. Flood Inventory Maps

The flood inventory map depicts the flooded and non-flooded locations that are used
to train ML models. The basic premise behind the flood inventory map is that future
floods will follow the same pattern as previous floods. The flood inventory map can
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be produced by field survey, satellite images before and after the flooding, topographic
maps, and Google Earth software. Accordingly, having performed the Moran’s I spatial
autocorrelation analysis for all flood influencing factors in the points picked, the flood
inventory map was provided for each study watershed by ascertaining 120 flood sites
using data from previous floods collated from satellite images, topographic maps, and
Google Earth software in both watersheds (Figure 3). It is worth mentioning that the
flood inventory maps created for the Loup and Lower Nicola River watersheds were a
compilation of a single flood event that occurred on 3 May 2017, and 14 November 2021
respectively. Although, no specific literature on the number of flood-present and flood-
absent places has been discovered, an approximately equal number of them is preferred
for flood susceptibility mapping [27,51]. Accordingly, 120 non-flood sites were picked
randomly in both watersheds, to establish a dichotomous dependent variable for modeling.
Following the earlier studies [5,52], random selection was used to split two datasets into
training (70%) and testing (30%) sets.

2.3. Flood Explanatory Factors and Their Preparation Processes

The intensity and severity of floods majorly rely on topographic, hydrologic, environ-
mental, and geologic factors [53]. Accordingly, the sixteen factors reflecting topographic,
hydrologic, environmental, and geologic attributes were recognized, and the data that
describe each flood explanatory factor was compiled for both watersheds. Concerning
a thorough review of the related literature [5,54-56], the following sets of factors were
chosen: elevation, slope, aspect, plan curvature, profile curvature, roughness, Topographic
Wetness Index (TWI), land cover, precipitation, distance from rivers, drainage density,
lithology, soil, Stream Power Index (SPI), Normalized Difference Vegetation Index (NDVI),
and Normalized Difference Moisture Index (NDMI).

The influences of topographic-related factors (i.e., elevation, slope, aspect, curvature,
SPI, TWI, and roughness) derived from the digital elevation model (DEM) on flood oc-
currences have been well recognized in the literature [5,57,58]. The effects of elevation on
hydrology and floods are significant [59]. Floods are uncommon in high-elevation places,
while runoff gathers from above at lower altitudes, making floods more prevalent [60]. The
DEM with a spatial resolution of 30 m was produced through Shuttle Radar Topography
Mission (SRTM) and clipped to the study areas’ border. Slope determines the rates of
surface runoff [61]. Plan and profile curvatures reveal the concavity and convexity of slopes
influence on flow velocity [5]. The aspect factor is connected with water flow convergence
and directions [56]. The slope, aspect, plan and profile curvature layers were provided by
applying the spatial analyst tools of Slope, Aspect, and Curvature on the DEM, respectively.
SPI and TWI are also two common topographical factors affecting flow intensity and water
accumulation [62]. The SPI and TWI were also obtained from the DEM layer using the
Raster Calculator tool according to Equations (1) and (2), respectively.

SPI = a x tan @
TWI = ln< tai 5) )

Here, « denotes the cumulative upstream discharge at one point, or flow accumulation
(m?m~1), and B is the slope (in radian).

Roughness which indicates the elevation differences between neighboring pixels, is
another factor affecting the surface runoff [63]. To generate the roughness layer from the
DEM layer, the Focal Statistics tool was used three times to acquire the mean, minimum,
and maximum focal statistics layers. Then, the Raster Calculator tool was applied to them
using Equation (3).

Roughness = (FSyean — FSin)/ (FSmax — FSmin) (3)
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Here, FSyean, FSpin, and FSyqx represent the mean, minimum, and maximum focal
statistical layer, respectively.
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Figure 2. The methodology flowchart of research.

Another factor influencing the likelihood of flooding is stream density, which measures
how much of a watershed is drained by stream channels [64]. Having prepared the stream
layers from DEM using the Hydrology tools, the Line Density tool was used to obtain the
stream density layer. Concerning the earlier studies [65,66], the likelihood of flooding is
also influenced by proximity to a river. As the distance from rivers decreases, the chance of
flooding increases. To acquire the layer of distance from rivers, the Euclidean Distance tool
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was applied to the river polyline shapefile. Soil and land cover are also influencing factors
due to their influence on the infiltration and runoff speed [67,68]. Likewise, geology which
indicates underlying rock types impacts infiltration and runoff in watersheds [38]. To obtain
the Soil, Land cover, and geology maps for the study areas, having downloaded the layers,
they were clipped to the study areas’ border. Precipitation is also a hydrologic factor that
significantly influences the incidence of floods [69]. To provide continuous layers of average
annual precipitation, first, annual precipitation was gathered at 10 climatological stations
(both inside and outside the watersheds) for the period 2000-2020. After calculating the
average annual precipitation at climatological stations, the Ordinary Kriging interpolation
method was used. Vegetation, which on one hand impacts the evaporation process and
hydrological cycle while also acting as a barrier to the flow of water over the ground, has
a substantial impact on run-offs and floods. Accordingly, NDMI, a metric indicating the
moisture content of vegetation, was employed in the modeling process [70]. There is also an
inverse relationship between vegetation density and floods [34]. NDVI, an essential metric
representing vegetation coverage, was also considered in the modeling process [71]. The
NDMI and NDVI layers in the study area were obtained from the Landsat 8 Operational
Land Imager (OLI) and Thermal Infrared Sensor (TIRS) satellite images using the Raster
Calculator according to Equations (4) and (5), respectively.

NIR — SWIR
NDMI = NIR + SWIR ()
NIR — R
NDVI= SRR ©®)

Here, NIR is the Near Infrared band (band 5 of Landsat 8), SWIR is the Short-Wave
Infrared band (band 6 of Landsat 8), and R is the Red band (band 4 of Landsat 8).
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Figure 3. Flood inventory maps: (a) Loup watershed, and (b) Lower Nicola River watershed.

All flood explanatory data acquired for this investigation, along with their sources,
were summarized in Table 1. The overall data preparation flowchart was given in Figure A1l
(Appendix A). Moreover, each flood explanatory factor was plotted on a map after the
preparation processes (Figures A2 and A3, Appendix B). All the factors were designed to
have a comparable spatial scope of 30 m pixel size due to the spatial resolution of the land
cover data (i.e., 30 m).
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Table 1. Flood explanatory data along with their sources.

Original Format

Primary Input Data Sources Source Derived Map
Elevation
Slope
Aspect
Shuttle Rad‘ar. United States Geological Survey (USGS); Plan curvature
Topography Mission Raster https:/ /earthexplorer.usgs.gov/ -
(SRTM); DEM (accessed on 1 March 2022) Profile curvature
SPI
TWI
Roughness
Government of Canada, Natural resources Canada;
Land cover map Vector (i.e., polygons) https:/ /open.canada.ca/data/en/dataset/4e615eae-b9 Land cover map

0c-420b-adee-2ca35896caf6 (accessed on 1 March 2022)

Climatological stations

Vector (i.e., points)

Meteorological data

Numerical data

Government of Canada, Environment and natural
resources;
https:/ /climate.weather.gc.ca/historical_data/search_
historic_data_e.html (accessed on 1 March 2022)
and Climate Data Canada;
https:/ /climatedata.ca/ (accessed on 1 March 2022)

Precipitation
map

Streams, Rivers, and
water bodies

Vector (i.e., polylines)

Government of Canada, Statistics Canada;
https:/ /open.canada.ca/data/en/dataset/448ec403-663
5-456b-8ced-d3ac24143add (accessed on 1 March 2022)

Distance from
rivers

Drainage density

Government of Canada, Natural resources Canada,
Geological Survey of Canada;

Geological map Vector (i.e., polygons) https:/ /geoscan.nrcan.gc.ca/starweb/geoscan/servlet.  Lithological map
starweb?path=geoscan/downloade.web&search1=R=29
5462 (accessed on 1 March 2022)
Government of Canada, Agriculture and Agri-Food
Soil map Vector (i.e., polygons) Canada; Soil map
’ https:/ /open.canada.ca/data/en/dataset/5ad5e20c-f2
bb-497d-a2a2-440eec6el0cd (accessed on 1 March 2022)
Landsat 8 Operational ) )
Land Imager (OLI) R United States Geological Survey (USGS); NDVI
and Thermal Infrared aster https:/ /earthexplorer.usgs.gov/
Sensor (TIRS) (accessed on 1 March 2022) NDMI

2.4. Multicollinearity of Flood Explanatory Factors

Before implementing the models, a multicollinearity investigation of the independent

variables is indispensable to reduce the risk of inaccuracy in flood susceptibility models.
The multicollinearity analysis investigates whether the variables are affected by multi-
collinearity. In doing so, multicollinearity involves tightly coupling many independent
variables in a multiple regression model and removing variables with significant collinear-
ity. Variance inflation factors (VIF) and tolerance (TOL) are two exponents frequently used
to analyze the multicollinearity of variables.

Table 2 shows the VIF and TOL calculated values for the proposed flood influencing
factors in multicollinearity analysis in both watersheds. The TOL values less than 0.1
or VIF values greater than 10 indicate the multi-collinearity issue [72]. However, the
threshold of 5 for VIF was taken into consideration in this study to choose significant
independent predictors with a high degree of certainty. Accordingly, except for DEM factor
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in the Loup watershed, the rest of the 15 explanatory variables were allowed for usage
throughout the modeling process. In the Lower Nicola River watershed, on the other hand,
the multicollinearity statistics indicated that all 16 explanatory variables could be included
in the modeling process.

Table 2. VIF and Tolerance values in multi-collinearity analysis for all flood explanatory factors in
both watersheds.

Collinearity Statistics in the Collinearity Statistics in the

Predictors/Factors Loup Watershed Lower Nicola River Watershed
Tolerance VIF Tolerance VIF
SPI 0.735 1.360 0.632 1.581
TWI 0.344 2.906 0.383 2.612
Precipitation 0.228 4.388 0.680 1.470
Drainage density 0.388 2.575 0.368 2718
Distance from rivers 0.379 2.641 0.413 2.419
Lithology 0.356 2.811 0.805 1.242
Soil 0.511 1.955 0.578 1.731
Land cover 0.358 2.790 0.824 1.213
NDVI 0.231 4.338 0.458 2.182
NDMI 0.350 2.858 0.615 1.626
Roughness 0.444 2.254 0.856 1.168
Plan curvature 0.573 1.746 0.622 1.607
Profile curvature 0.572 1.747 0.663 1.509
Aspect 0.760 1.316 0.928 1.077
Slope 0.571 1.752 0.472 2.119
DEM 0.164 6.107 0.338 2.956

2.5. Predicting Future Precipitation Data

Many variables impact climate, most notably human activity, and greenhouse gas
emissions. Although there are considerable uncertainties in climate forecasts due to the
complex nature of the climate system, greenhouse gas emissions, and human activities,
some aspects of this variability are thought to be predictable for a decade or more in
advance. Emissions scenarios are one method of presenting a variety of possible futures
depending on various future emissions. Accordingly, a collection of scenarios known as
Representative Concentration Pathways (RCPs) is frequently used to investigate future
climate change. RCPs are intended to offer probable future human emission trends. These
include considering future greenhouse gas emissions, deforestation, population growth,
and a variety of other factors. Based on best practices in the global science community, the
Government of Canada typically offers three RCPs: RCP8.5 (high global emission scenario),
RCP4.5 (medium global emission scenario), and RCP2.6 (low emission global scenario) [73].

In this study, Coupled Model Intercomparison Project Phase 5 (CMIP5) climate model
datasets which were downscaled and bias-adjusted using the BCCAQv2 method were
utilized. The preparation of future precipitation data was carried out in two steps: first, the
annual precipitation data under three emission scenarios of RCP2.6 (optimistic scenario),
RCP4.5 (business as usual scenario), and RCP8.5 (pessimistic scenario) were collected (from
https:/ /climatedata.ca/ (accessed on 1 March 2022)) at climatological stations inside and
outside of the study areas in the years 2020, 2050, and 2080; then, the annual precipitation
amounts at stations were interpolated in ArcGIS using the Ordinary Kriging interpolation
method to provide continuous annual precipitation layers for all three scenarios. Hav-
ing prepared the precipitation layers that corresponded with each scenario for the years
2020, 2050, and 2080, they were used in the ML models to provide the associated flood
susceptibility maps.
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2.6. Methods for Flood Susceptibility Modeling
2.6.1. Multilayer Perceptron Neural Network (MLP-NN)

MLP-NN is classified as a feed-forward neural network trained using supervised and
back-propagation learning methods. MLP-NN has been widely employed as a benchmark
model in a variety of studies owing to its capabilities in the prediction and modeling of
nonlinear and complicated phenomena [74,75]. Basically, the MLP-NN model comprises a
system of simply interconnected neurons that are organized into three layers: an input layer,
one or more hidden layers, and finally, an output layer. Neurons in each layer receive values,
which are multiplied by corresponding weights, then summed up and passed through
a nonlinear function (i.e., activation function) [76]. Using the activation function on the
weighted sum enables the MLP-NN to account for the nonlinear relationship between the
independent and dependent variables [77]. Accordingly, the MLP-NN model estimates the
nonlinear connections between the independent variables (i.e., flood explanatory factors)
and the dependent variable (i.e., flood occurrences).

The neurons in two sequential layers are linked by the unknown weights whose
values are estimated through the iterative back-propagation learning technique. The
back-propagation approach is generally an iterative gradient-based learning technique
(e.g., Stochastic Gradient Descent (SGD)) that aims to reduce the discrepancy between the
outputs of the network and actual target values (i.e., reduce the value of the cost function)
by estimating the weights in each iteration [76]. The architecture of an MLP-NN was
shown in Figure 4. The connections of the nodes from different layers are made using
Equations (6)—(8).

d
tj =¢ ( . WjiX; + wO]> 6)
=
nHl
Yk = <P< wiktj + w0k> (7)
=1
Tle
2y = f( WioYk + wOv) 8)
k=1

Wik

(D
R
=
g

€N
1

Xz —>

)
<

oY
e
£

Xg—>

Figure 4. The structure of the MLP-NN model.

Here, presuming the MLP-NN made up of two hidden layers, d, ny,, and ny, are
the number of nodes in the input, first hidden, and second hidden layer, respectively.
wjj, Wik, and wy, are the connection weights between two nodes from two consecutive
layers. Moreover, Woj, Wok, and wy, are the intercepts of the input, first hidden and second
hidden layer, respectively. x;, tis Yio and z, are the nodes in each input layer, first hidden,
second hidden, and output, respectively. ¢ is the activation function of all layers except the
output layer, and f is the activation function of the output layer.
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2.6.2. Naive Bayes (NB) Model

NB methods are a set of supervised learning algorithms based on Bayes’ Theorem and
the assumption of conditional independence between every pair of features. In other words,
an NB classifier posits that the existence of one feature in a class is independent of the
presence of any other feature. The Bayes theorem proposes a method for computing pos-
terior probability P(c|x1,xp,---,x4) from P(c), P(x1,x2,- -+ ,x4), and P(x1,x2,- -+ ,x4|c)
(Equation (9)) given the naive conditional independence assumption (Equation (10)) [78].

P(x1/x2/"' /xd|c) *P(C)

P(C|x1/x2/' © ,Xd) = P(xll Xy, - /xd> (9)
d

P(x1,x2,- -+, x4)c) = [ TP(xilc) = P(x1]c) * P(xa]c) * - -+ P(xq|c) (10)
i=1

Here, P(c|x1, X, - ,Xg) is the posterior probability of class (c, target) given features,
(x1,x2,- -+ ,x4), P(c) is the prior probability of class, P(x1,xp,---,x4|c) is the likelihood
which is the probability of predictor given class, and P(x1,x,- - - , x4) is the prior probabil-
ity of predictor.

The Gaussian NB method was chosen from among the various types of NB methods
(e.g., Gaussian, Multinomial, Complement, Bernoulli) owing to its common use in classifi-
cation. The Gaussian NB model assumes that features follow a normal distribution, and
the likelihood of the features is calculated according to Equation (11). The parameters o,
and . in Equation (11) are estimated using maximum likelihood.

L 2
o)« o529

2.6.3. Random Forest (RF)

RF is one of the popular ML algorithms for addressing multi-classification and predic-
tion issues [79]. The RF technique is a collection of DTs used to predict categorization or
regression. The main procedure of the RF algorithm is to (1) resample the original data set
using bootstrap (i.e., sampling with replacement) to generate various subsets with sizes
equal to the original set, (2) use the subsets to construct DTs, and (3) combine the prediction
or classification results of all the decision trees to obtain the final results [80]. One of the
significant issues with DTs is that they are highly sensitive to training data and tend to
over-fit the training detests, consequently, perform poorly when an unknown dataset is
given. Using the RF method to address this flaw is a viable option. Accordingly, a portion
of the input records, as well as features, were picked at random, and DTs were created
according to each set of inputs and features chosen.

2.6.4. Gradient Boosting Machine (GBM)

GBM is a supervised machine learning approach for classification and regression
problems that use a prediction model in the form of an ensemble of weak prediction models.
The central notion underlying it is a model built from a set of weak learners, commonly
decision trees (DTs). The GBM is similar to functional gradient descent in that it applies
a new learner to residual errors created by the prior learner to minimize a loss at each
gradient descent step [81]. As with other boosting methods, various loss functions might be
considered. The constructed decision tree is optimized with the gradient boosting approach
in this model. Gradient boosting approaches create the solution and address the over-
fitting problem by maximizing the loss functions in a stage-wise structure [82]. Presuming
a custom base-learner h(x,0) (such as a decision tree) and a loss function ¥ (y, f(x)); directly
estimating the parameters is challenging; hence, an iterative model is recommended. The
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model will be updated, and h(x,6) will be chosen as the new base-learner feature, with the ¢
increment driven by Equation (12) [81].

I¥(y, f(x))

X
o) } F)=F1(x)

Instead of searching the function space for a general solution for the boost increment,
one may just select the new function increment that is the most correlated with g;(x).
This replaces the hard optimization problem with the standard least-squares optimization
problem according to Equation (13) [81].

gt(x) = Ey{ (12)

N

(P, 0) = arg miny g Y[ —gi(x;) + ph(x;,0)]? (13)
i

The procedure of GBM algorithms include: (i) presuming that fy is constant,
(ii) calculating g¢(x) and training h(x;,0) function, and (iii) finding element p; and up-
dating the function f; = fi_1 + p;h(x;, ).

2.7. Model Evaluation Metrics
2.7.1. Receiver Operating Characteristic (ROC) Curve

A ROC curve is a graphical plot that illustrates the diagnostic ability of a binary
classifier system as its discrimination threshold is varied. The ROC curve is a popular
method for assessing the performance of predictive models [83]. This accuracy criterion
has been increasingly utilized in a variety of susceptibility mapping applications using
ML models, including landslide [84,85], earthquake [86,87], and flood [88-90]. For quan-
titative evaluation, this method employs the area under the ROC curve (AUC), which
plots false positive rate (FPR) (Equation (14)) on the x-axis against true positive rate (ITPR)
(Equation (15)) on the y-axis [91]. A higher AUC value depicts a better goodness-of-fit
of the model. Generally, AUC values ranging from 0.8 to 0.9 indicate extremely strong
performance for the prediction model [88].

e FP
FPR =1 — Specificity = TPLTN (14)
e TP
TPR = Sensitivity = TP+ EN (15)

Here, TP (true positive) and TN (true negative) are test results that correctly indicate
the presence and absence of a condition or characteristics, respectively. FP (false positive)
and FN (false negative) are test results that incorrectly indicate the presence and absence of
a condition or characteristics, respectively.

2.7.2. Figure of Merit (FOM)

The FOM is a statistical measure of sample set similarity and diversity. Equation (16)
is used to calculate the FOM, which is the equivalent of the Jaccard index. The FOM has a
value range of 0 to 1, with 1 being the ideal match [92].

TP

FOM=—
OM = T FP T EN

(16)

2.7.3. F1 Score

In binary classification statistical analysis, the F-score measures a test’s accuracy. The
accuracy and recall (or sensitivity) of the test are used to calculate it, with precision equaling
the number of true positive results divided by the total number of positive results, including
those that were incorrectly identified. The harmonic mean of accuracy and recall is the F1
score (also known as the Dice similarity coefficient). The maximum possible F-score is 1,
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which indicates flawless accuracy and recall, while the lowest possible F-score is 0 if neither
precision nor recall is zero. F1 score is calculated according to Equation (17) and auxiliary
Equations (18) and (19) [93].

2 x precision * recall

F 17
! precision + recal 17)
. TP
precision = TP L P (18)
TP
recall = TPLEN 19)

3. Results
3.1. Model Validation and Performance Assessment

Before evaluating the findings, it is indispensable to determine the optimal values of
various hyper-parameters in each ML model. Accordingly, to designate the ideal values for
hyper-parameters and reduce the over-fitting issues, the 5-fold cross-validation method
was used. Having employed the 5-fold cross-validation method, the ROC-AUC values for
the training and validation dataset (Table 3) were calculated, considering the ideal values
of corresponding hyper-parameters in each ML model.

Table 3. The ROC-AUC value achieved for the training and validation dataset using various

ML models.
The Loup Watershed The Lower Nicola River Watershed
ML Models
Training Validation Training Validation

RF 1.0 1.0 1.0 0.9968

NB 0.9991 0.9805 0.9776 0.9571
MLP-NN 0.9644 0.9614 0.8817 0.8503
GBM 1.0 0.9978 1.0 0.9967

Three accuracy metrics of ROC-AUC, FOM, and F1 score were utilized to quantitatively
measure and compare the efficiency of ML models in assessing flood susceptibility and
validate the models (Table 4). It is worth emphasizing that these performance indicators
were used to evaluate the models’ spatial distribution performance since they reflect the
degree to which the observed flood points overlap the flood susceptibility. Even though
the differences in performance between the RF and GBM models were insignificant, the
RF model outperformed the GBM model with a very trifle difference given three accuracy
metrics. Moreover, the models were ranked in order of performance from the best to the
worst: RF, GBM, NB, and MLP-NN. The ROC curves were also plotted in Figure 5 to
evaluate and compare the classifiers” quality independent of the threshold.

Table 4. The calculated values of three accuracy metrics for each ML model.

ML The Loup Watershed The Lower Nicola River Watershed

Models  gRoc.auc  FOM F1Score ROC-AUC  FOM F1 Score
RF 0.9992 0.9767 0.9882 0.9996 0.9787 0.9892
NB 0.9548 0.8864 0.9398 0.9884 0.8036 0.8911
MLP-NN 0.9643 0.7857 0.88 0.9411 0.6458 0.7848
GBM 0.9901 0.9333 0.9655 0.9979 0.9787 0.9892

3.2. Flood Susceptibility Map

Providing the flood susceptibility maps and investigating the impacts of climate
change on flood susceptibility of study areas throughout time were the primary objectives of
this study. Accordingly, the flood susceptibility maps were mapped for both Loup (Figure 6)
and Lower Nicola River (Figure 7) watersheds in the years 2020, 2050, and 2080 under
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three climate change scenarios of RCP2.6, RCP4.5, and RCP8.5. As briefly explained in
Section 2.5, to provide flood susceptibility maps under climate change scenarios, the former
precipitation layer was replaced with the intended climate change scenario precipitation
layer; then, the intended precipitation layer was fed the ML model along with the rest flood
explanatory factors. Finally, the resulted flood susceptibility values were stratified into
five classes from very low to very high susceptibility using the natural break classification
technique in ArcGIS 10.8 software. The area percentages of each flood susceptibility class
given the year and climate change scenario were calculated for both the Loup watershed
(Figure 8) and the Lower Nicola River watershed (Figure 9).
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Figure 5. ROC curves along with the AUC values for each ML model: (a) the Loup watershed and
(b) the Lower Nicola River watershed.

Considering the scenario RCP4.5 as the baseline scenario, the derived flood suscep-
tibility map of the Loup watershed in the year 2020 revealed that the flood susceptibility
was very low in 54.25% of the Loup watershed, low in 18.74%, moderate in 8.48%, high
in 8.03%, and very high in 10.49%. Likewise, the resulted flood susceptibility map for the
Lower Nicola River watershed in the year 2020 under the scenario RCP4.5 indicated that
approximately 25.5%, 22.44%, 19.33%, 17.41%, and 15.32% of the watershed were in very
low, low, moderate, high, and very high susceptibility classes, respectively. Assuming no
changes in the emission scenario in the following years, in the year 2050, the flood suscep-
tibility will be very low, low, moderate, high, and very high in 52.57%, 12.92%, 14.67%,
8.75%, 11.09% of the Loup watershed, respectively, and in the year 2080, in 50.96%, 15.9%,
11.18%, 10.03%, 11.92% of the watershed, respectively. Likewise, the area percentages of
flood susceptibility classes for the Lower Nicola River in the year 2050 will be 25.12%,
21.63%, 18.38%, 19.13%, 15.74%, respectively, and in the year 2080 will be 23.81%, 20.28%,
16.57%, 21.5%, and 17.84%, respectively. Following the changes in the flood susceptibility
classes in the Loup watershed, it can be concluded that irrespective of some fluctuations,
the overall trend of changes is decreasing for the area percentages of very low and low
flood susceptibility classes and increasing for the area percentages of the moderate, high,
and very high flood susceptibility classes. As a result, the area percentages of the very low
and low flood susceptibility classes were lowered and added to the area percentages of
the moderate, high, and very high flood susceptibility classes, indicating that the flood
susceptibility of the Loup watershed worsens over time. Similarly, the trend of changes
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in the flood susceptibility classes in the Lower Nicola River watershed was decreasing in
the very low, low, and moderate classes and increasing in the high and very high classes,
indicating that the flood susceptibility of the Lower Nicola River watershed worsens over
time, as well.
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Figure 6. The flood susceptibility maps of the Loup, QC watershed in the years 2020, 2050, and 2080
under three climate change scenarios.

Comparing the area percentages of flood susceptibility classes in both watersheds
revealed that the area percentages of the Loup watershed in the moderate, high, and very
high flood susceptibility classes were relatively small compared to the area percentages of
the same flood susceptibility classes in the Lower Nicola River watershed. This indicates
flooding is more likely in the Lower Nicola River watershed than in the Loup watershed.
Moreover, it can be concluded that the most flood-prone areas in the Loup watershed
were in the southern and southeast, whereas in the Lower Nicola River watershed, the
most flood-prone regions were in the center, northeast, and northwest. Furthermore,
concerning the area percentages of flood susceptibility classes in both watersheds and
their corresponding precipitation amounts, it can be concluded that despite the relatively
high precipitation amounts in the Loup watershed compared to the Lower Nicola River
watershed, significantly larger area of the Lower Nicola River watershed was susceptible
to flooding. As a result, our findings indicated that climatological flood explanatory factors
single-handedly are inadequate in identifying flood-prone regions and that topographic,
hydrologic, environmental, and geologic factors must be considered and investigated in
addition to them.
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Figure 7. The flood susceptibility maps of the Lower Nicola River, BC watershed in the years 2020,
2050, and 2080 under three climate change scenarios.

The magnitude and direction of changes in the area percentages of flood suscepti-
bility classes over three years (i.e., 2020, 2050, and 2080) were calculated and presented
in Figure 10 (the Loup watershed) and Figure 11 (the Lower Nicola River). Following
Figures 10 and 11, it can be concluded that despite some fluctuations in the area per-
centages of flood susceptibility classes, the most changes in the very low and low flood
susceptibility classes were in the direction of decreasing and the majority of changes in
the high and very high flood susceptibility classes were in the direction of increasing flood
susceptibility in both watersheds. It is worth mentioning that the red color denoted the
changes toward increasing the susceptibility (i.e., positive changes), and the blue color indi-
cated the changes toward decreasing susceptibility (i.e., negative changes). Our findings
indicated that climate change affects the flood susceptibility of watersheds, even though
the changes in the flood susceptibility of watersheds are scant.

The variations in area percentages of flood susceptibility classes were plotted in
Figure 12 to provide a better depiction of changes throughout time. The results in Figure 12
indicated that the changes in the Loup watershed mostly happened between the years
2050 and 2080 under the climate change scenario RCP2.6 and between the years 2020 and
2050 under the climate change scenarios RCP4.5 and RCP8.5. In the Lower Nicola River
watershed, on the other hand, the most changes occurred between 2050 and 2080 in all
climate change scenarios.
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(2020) ~ (2050) = (2080) = (2020) = (2050) = (2080) = (2020) = (2050) = (2080)
54.55 54.89 47.42 54.25 52.57 50.96 53.03 52.71 47.72
20.33 20.18 18.04 18.74 12.92 15.9 19.59 13.96 16.21
8.08 6.94 14.26 8.48 14.67 11.18 8.08 13.12 12.91
7.78 6.92 8.51 8.03 8.75 10.03 8.32 8.94 9.98
9.26 11.07 11.77 10.49 11.09 11.92 10.98 11.27 13.17
Figure 8. Area percentages of flood susceptibility classes under three climate change scenarios of
RCP2.6, RCP4.5, and RCP8.5 in the Loup watershed.
RCP2|! RCP!! RCP2|! RCP!! RCPI! RCP]! RCP!! RCP]! RCP!!
(2020) =~ (2050) = (2080) = (2020) = (2050) = (2080) = (2020) = (2050) = (2080)
25.1 23.73 23.71 25.5 25.12 23.81 27.5 27.11 26.04
22.03 22.29 21.7 22.44 21.63 20.28 22.07 23.22 21.4
20.48 19.57 20.68 19.33 18.38 16.57 16.64 15.72 13.79
18.36 19.4 16.46 17.41 19.13 21.5 16.39 14.15 19.24
14.03 15.01 17.45 15.32 15.74 17.84 17.4 19.8 19.53

Figure 9. Area percentages of flood susceptibility classes under three climate change scenarios of
RCP2.6, RCP4.5, and RCP8.5 in the Lower Nicola River watershed.

In addition to investigating changes over time, the changes in the area percentages
of flood susceptibility classes were assessed depending on three climate change scenarios:
optimistic (RCP2.6), business as usual (RCP4.5), and pessimistic (RCP8.5). The changes in
the area percentages of flood susceptibility classes concerning the changes in the climate
change scenarios in the Loup watershed and the Lower Nicola River watershed were
calculated and illustrated in Figures 13 and 14, respectively. As with the changes over
time, despite some fluctuations in area percentages of flood susceptibility classes, most
of the changes in the high and very high flood susceptibility classes in both watersheds
were toward rising as the scenarios changed from RCP2.6 to RCP4.5 and from RCP4.5
to RCP8.5. Following the findings in Figures 13 and 14, even though the changes in
the area percentages of each flood susceptibility class seem trivial, the area percentages
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of flood susceptibility classes in both watersheds were affected under various climate
change scenarios.

. RCP2.6 RCP4.5 RCP8.5
Flood susceptibility classes
2050 — 2020 2080 — 2050 2050 — 2020 2080 — 2050 2050 — 2020 2080 — 2050
Very low 0.34 -1.68 -1.61 -0.32 -4.98
Low -0.15 -2.14 -5.82 298 -5.63 275
Moderate -1.14 32 6.19 349 5.04 -0.21
High -0.86 1552 0.71 129 0.62 1.04
Very high 1.81 0.7 0.6 0.83 0.29 19
Figure 10. Changes (in %) in the area percentages of flood susceptibility classes based on the years in
the Loup, QC watershed.
. RCP26 RCP4.35 RCP8.5
Flood susceptibility classes
2050 — 2020 2080 — 2050 2050 — 2020 2080 — 2050 2050 — 2020 2080 — 2050
Very low -137 -0.02 0.38 -131 0.39 -1.07
Low 0.26 -0.59 -0.81 -135 1.15 -1.82
Moderate -091 1.11 -0.95 -131 -0.92 -193
High 1.04 1.72 237 224 509
Wery hich 0.98 244 0.42 21 24 -0.27
Figure 11. Changes (in %) in the area percentages of flood susceptibility classes based on the years in
the Lower Nicola River, BC watershed.
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Figure 12. Changes (in %) in the area percentages of flood susceptibility classes over the years:
(a) in the Loup watershed under scenario RCP2.6, (b) in the Loup watershed under scenario RCP4.5,
(c) in the Loup watershed under scenario RCP8.5, (d) in the Lower Nicola River watershed under
scenario RCP2.6, (e) in the Lower Nicola River watershed under scenario RCP4.5, (f) in the Lower
Nicola River watershed under scenario RCP8.5.
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2020 2050 2080
Flood susceptibility classes
RCP4.5 — RCP2.6 |RCP8.5 — RCP4.3|RCP4.5 — RCP2.6|RCP8.5 — RCP4.5| RCP4.5 — RCP2.6 | RCP8.5 —RCP4.5
Very low -0.3 -1.22 2:3); 0.14 3.54 -323
Low -1.59 0.85 1.04 -2.14 0.31
Moderate 0.4 -0.4 773 -1.35 -3.08 1L
High 0.26 0.28 1.83 0.19 155 -0.06
Very high 1.23 0.49 0.02 0.18 0.15 1225

Figure 13. Changes (in %) in the area percentages of flood susceptibility classes based on the changes
in the climate change scenarios in the Loup watershed.

2020 2050 2080
Flood susceptibility classes
RCP4.5 — RCP2.6 |[RCP8.5 — RCP4.5 |RCP4 5 — RCP2.6|RCP8 5 — RCP4 5|RCP4.5 — RCP2 6| RCP8.5 — RCP4 5
Very low 0.4 2 139 1.99 2.23
Low 0.41 037 -0.66 1.59 112
Moderate NS -2.69 -1.19 2,66 278
High -0.95 -1.02 0.27 226
Very high 1.29 2.08 0.73 4.06 1.69
Figure 14. Changes (in %) in the area percentages of flood susceptibility classes based on the changes
in the climate change scenarios in the Lower Nicola River watershed.

To have a better representation of variations regarding the changes in the climate
change scenarios, the changes in area percentages of flood susceptibility classes were
plotted in Figure 15. The changes in the Loup watershed occurred mainly between the
scenarios RCP2.6 and RCP4.5 in the years 2050 and 2080 and almost the same in the year
2020. The most changes in the Lower Nicola River watershed, on the other hand, occurred
between RCP2.6 and RCP4.5 in 2080 and between RCP4.5 and RCP8.5 in the years 2020
and 2050.
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Figure 15. Changes (in %) in the area percentages of flood susceptibility classes regarding the changes
in the climate change scenarios: (a) in the Loup watershed in the year 2020, (b) in the Loup watershed
in the year 2050, (c) in the Loup watershed in the year 2080, (d) in the Lower Nicola River watershed
in the year 2020, (e) in the Lower Nicola River watershed in the year 2050, (f) in the Lower Nicola
River watershed in the year 2080.
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4. Discussion

Floods are one of the most hazardous natural disasters that usually result in consider-
able loss of life and significant property damage [94]. Changing climates induced by global
warming have affected the circulation patterns of the atmospheric and ocean currents and,
consequently the spatial and temporal patterns of precipitation. Accordingly, changes in
flood susceptibility are linked to climate changes. As the ability of the atmosphere to hold
moisture increases due to global warming, more frequent and heavier precipitation events
may occur, raising the peril of floods [95]. To the study by Houghton et al., (2001) [96], pre-
cipitation has increased by 0.5 to 1% every decade in much of the Northern Hemisphere’s
mid-to high latitudes over the last 100 years. As a result, evaluating flood-prone zones
under future precipitation circumstances is crucial for gaining a thorough knowledge of
future flood susceptibility patterns.

Having the capacity to predict the spatial patterns of flooding in watersheds and
assess their flood susceptibility could improve the managers’ abilities to reduce flood
losses. Accordingly, the primary objective of this study was to develop various ML models
to identify and predict current and future flood susceptible areas while considering the
spatial and temporal impacts of climate change on floods. From a spatial perspective,
there are three crucial elements in efficiently mapping flood susceptibility: (1) selection of
appropriate flood explanatory factors, (2) spatial resolution of the flood explanatory factors,
and (3) the accuracy and efficiency of data layer integration models [97]. Even though there
is no conventional technique for selecting the factors that would best predict future floods,
we chose various sets of factors regarding the literature review [5,54-56]. A variety of
meteorological, hydrological, and geospatial flood explanatory factors were collected and
prepared using RS and GIS techniques. Given the availability of data resources, various
flood explanatory factors with a spatial resolution of 30 m were collected and prepared
for both watersheds. Moreover, as the third substantial element in efficiently mapping
flood susceptibility, four various models of MLP-NN, RE, NB, and GBM, as promising ML
models, were employed to provide the flood susceptibility map.

Following the literature review, numerous ML models were formulated and developed
to map flood susceptibility [27,57,60,98-103]. In this study, four potential ML models of
MLP-NN, NB, RF, and GBM, were used to assess the flood susceptibility in two different
watersheds in Canada. Moreover, three accuracy criteria were used to evaluate and compare
the accuracy of the models. Regarding the results of three accuracy metrics, the RF model
outperformed the rest of the employed models, which was consistent with the findings of
other researchers who have described the RF model as a more accurate model [5,28].

After evaluating the efficiency and accuracy of the employed ML models, the model
with the best accuracy was chosen and run using the precipitation data in the years 2020,
2050, and 2080 under three climate change scenarios: optimistic (RCP2.6), business as
usual (RCP4.5), and pessimistic (RCP8.5). Accordingly, for each year as well as under
each scenario, a flood susceptibility map was provided for both watersheds. The results
of this study indicated that the flood susceptibility of both the Loup and Lower Nicola
River watersheds worsens over time. Our findings were consistent with the study by
Janizadeh et al., (2021) [34], demonstrating that flood susceptibility worsens over time.

Although the effects of climate change are still debatable, the impacts of climatic
variability require more investigation. While precipitation is recognized as the most sig-
nificant climatic factor for flooding in some places [104] and the runoff factor in flood
events [105], regarding many earlier studies, the most influential factors for flood events
include elevation [26,52], slope [52], distance from rivers [26,52,106,107], drainage density,
and land cover/land use [52,97]. Comparing the area percentages of flood susceptibility
classes in both watersheds given their corresponding precipitation maps demonstrated
that even though the Loup watershed receives significantly more precipitation than the
Lower Nicola River watershed, the area percentages of moderate, high, and very high
flood susceptibility classes in the Loup watershed were much trivial compared to the area
percentages of the same classes in the Lower Nicola River watershed. Consequently, our
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findings indicated that the precipitation factor single-handedly is inadequate in identifying
flood-prone regions and that topographic, hydrologic, environmental, and geologic factors
must be considered and investigated in addition.

Datasets in ML models are divided into training and test datasets, where the training
datasets are used for training and the performance of the models are evaluated based
on the test dataset. The trained model may have poor generalization in space and time
if the distributions between the training and test sets change (i.e., distribution shifts) or
if there are inherent sample dependencies. The in-built assumption of independent and
identical distribution (I.I.D) is automatically made when data is divided into training-test
sets. Accordingly, the assumption of L.1.D is central to almost all ML algorithms. However,
spatial autocorrelation and spatial heterogeneity (i.e., two intrinsic properties of spatial
data) violate L.L.D assumption [108]. Due to the increased resemblance between neighboring
data samples, spatial autocorrelation violates the independence principle. On the other
hand, because the data generating processes frequently change with respect to space,
spatial heterogeneity violates the identical distribution assumption [109]. To overcome
spatial autocorrelation and spatial heterogeneity issues, the process of choosing flood and
non-flood points was done iteratively and the set of points which the p-value of Moran’s I
for all factors was obtained extremely close to zero and less than the threshold (i.e., 0.05)
was chosen to create the flood inventory map.

Although ML models have produced encouraging results in flood forecasting, essential
uncertainties exist in their prediction results. Regardless of the ML model employed,
numerous error sources influence the prediction results. The errors come from at least
three significant sources. First, not only ML models but also all computational models are
amplifications and approximations of a complex physical system due to mathematical and
modeling restrictions. Second, ML models learn to extract patterns from the input data;
therefore, training models with insufficient quality or scarce data will result in uncertainty
in model predictions. Third, there will be more uncertainty since we cannot predict how
the properties of real system could alter in the future. When extrapolating from the past to
the future as is customary, uncertainty arises from both the imprecise depiction of the past
and the degree to which the future will resemble the past [110].

Strengths and Limitations

The strengths of this study include: (i) considering 16 various meteorological, topo-
graphic, hydrologic, environmental, and geologic flood conditioning factors in the flood
susceptibility assessment, (ii) using four various ML models, (iii) considering two alter-
native watersheds with diverse meteorological, topographic, hydrologic, environmental,
and geologic conditions and comparing the flood susceptibility of them with each other,
(iv) evaluating and comparing the performance of ML methods using three various ac-
curacy criteria, and (v) evaluating the flood susceptibility in three years and under three
climate change scenarios: optimistic (RCP2.6), business as usual (RCP4.5), and pessimistic
(RCP8.5).

Notwithstanding these strengths, this study had few limitations in terms of future
precipitation data and the preparation process of them. Future precipitation data have un-
certainty and include some level of errors. On the other hand, the interpolation process also
imports some level of errors in the data. Another limitation of this study was considering
only precipitation as the dynamic flood explanatory factor following the primary goal of
the study, while other factors such as land cover also vary over time. The creation of the
flood inventory map for a single flood occurrence was another research constraint. A single
flood event was considered in both study areas due to a paucity of data on previous flood
occurrences in the study areas.

5. Conclusions

Flooding is one of the most devastating natural disasters that can result in death, injury,
property destruction, loss of livelihoods and services, social and economic upheaval, and
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environmental havoc. Climate change has the potential to exacerbate the runoff rates and
patterns and the hydrological cycle, resulting in more intense precipitation and increases in
flood intensity, frequency, and severity.

In this study, four various ML models, including MLP-NN, NB, RF, and GBM, were
used to provide the current and future flood susceptibility maps in two different watersheds
in Canada, one in Quebec province and the other in British Columbia province. Moreover,
three RCP2.6, RCP4.5, and RCP8.5 climate change scenarios were examined to address the
implications of climate change.

Regarding the accuracy metrics, the RF model had the highest accuracy and was chosen
as the best ML model to provide the flood susceptibility maps. Regarding the provided
flood susceptibility maps, flooding is more likely in the Lower Nicola River watershed than
in the Loup watershed. The most flood-prone locations in the Loup watershed were in
the southern and southeast, while the most flood-prone areas in the Lower Nicola River
watershed were in the center, northeast, and northwest. The results of this study indicated
that the flood susceptibility of both the Loup and Lower Nicola River watersheds worsens
over time.

The contribution of this study lies in the identification of flood-prone areas over time
and under various climate change scenarios in two different watersheds. The spatial
forecasts provided by this research aim to assist disaster management agencies in making
critical decisions and contributions to mitigate the damages caused by floods, and to better
inform local communities and researchers on the important role and influence of climate
change on flood susceptibility.
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Appendix A. Data Preparation Flowchart
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Figure A1. The overall data preparation flowchart using the Model Builder extension of ArcGIS.
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Figure A3. Thematic maps of flood explanatory factors in the Lower Nicola River watershed:
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