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Abstract: Applications requiring services from modern wireless networks, such as those involving
remote control and supervision, call for maintaining the timeliness of information flows. Current
research and development efforts for 5G, Internet of things, and artificial intelligence technologies
will benefit from new notions of timeliness in designing novel sensing, computing, and transmission
strategies. The age of information (AoI) metric and a recent related urgency of information (UoI)
metric enable promising frameworks in this direction. In this paper, we consider UoI optimization
in an interactive point-to-point system when the updating terminal is resource constrained to send
updates and receive/sense the feedback of the status information at the receiver. We first propose a
new system model that involves Gaussian distributed time increments at the receiving end to design
interactive transmission and feedback sensing functions and develop a new notion of UoI suitable
for this system. We then formulate the UoI optimization with a new objective function involving a
weighted combination of urgency levels at the transmitting and receiving ends. By using a Lyapunov
optimization framework, we obtain a decision strategy under energy resource constraints at both
transmission and receiving/sensing and show that it can get arbitrarily close to the optimal solution.
We numerically study performance comparisons and observe significant improvements with respect
to benchmarks.

Keywords: urgency of information; information freshness; resource constraints; Lyapunov optimization

1. Introduction

As demand from wireless networks exponentially increases to enable emerging tech-
nologies, the timeliness of data delivery and adaptation to the context of information
becomes essential for improved quality of service and experience in time-sensitive applica-
tions. To this end, the measurement and improvement of the timeliness of data delivery
and the effective adaptation to the context of delivered data have been fundamental chal-
lenges that researchers and practitioners have worked on actively in recent years. The
age of information (AoI) is a well-known metric to measure the timeliness of data from
the perspective of the nodes receiving or consuming data [1] and is expressed as the time
elapsed since the generation of the latest received data. Although AoI has received much
interest as a metric representing the freshness of information, new metrics are needed to
address nonlinearity in the aging of data and time-varying value or context associated
with flowing data. As a matter of fact, context-based applications (e.g., automatic driving
and artificial intelligence) and nonlinear age [2–4] (as in many IoT applications) require a
departure from AoI definition and analysis. Toward this end, the references [5,6] recently
proposed an urgency of information (UoI) framework by combining the timeliness and
context associated with information updates. In these papers, UoI was formally defined as
the product of context-aware weight and the cost resulting from real-time estimation error
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in a Gaussian dynamical system, the latter being a well-known nonlinear function of AoI.
UoI expression can be expressed in mathematical form as follows:

F(t) = wtδ(C(t)), (1)

where wt is the nonnegative coefficient representing the context or value at a specific time
t, δ(.) is the cost function, and C(t) is the instantaneous cost measuring the urgency. This
formulation subsumes the typical definition of AoI. If C(t) increases by one each time
an update is not received, then the common AoI problem can be formulated as wt = 1
and δ(Q(t)) = U(t)C(t), where U(t) is an indicator that shows whether the information
is updated or not. In our current paper, we will pursue a similar metric whereby the
urgency level is represented by a coefficient wt, which will be set as an independent,
identically distributed random process that shows how crucial the status information is at a
specific moment t. In addition, we will pursue a quadratic cost function. This formulation
enables us to analyze error increments and connect the proposed framework to the classical
AoI problem.

The UoI framework in this paper will be designed to measure the expected perfor-
mance degradation as a weighted sum of expected staleness or informativeness of the latest
sensed Gaussian process at the receiving end with respect to the transmitter and the lack
of synchrony between them, maintained by status updating from the transmitting end to
the receiving end. Our goal is to build a systematic understanding on the interaction of
feedback sensing and update transmission to maintain improved UoI levels measuring the
synchrony and informativeness of information at one side about the other side when both
actions are resource constrained. We will employ Lyapunov optimization tools to address
this crucial problem.

Lyapunov optimization methods and tools have been well-known to various research
communities to control queues and more generally dynamical systems in a near-optimal
sense. In the context of queuing theory, the state of a system at a particular time is the
vector of realizations of error variables which can easily be brought in queue forms by
lower bounding it by zero and studied for upper bounding the optimal cost. Typically, the
cost function is defined to take smaller value when the system moves toward the desirable
states. System stability is achieved by taking control actions that make the Lyapunov drift
in the negative direction toward zero. The key requirement is that all the queues and virtual
queues in the system are mean rate stable [7,8]. In addition, the target function is achieved
by taking control actions that minimize the Lyapunov penalty. However, because of the
system stability awareness, the solution always has a gap with the optimal solution. Due
to its general applicability in queuing theory, Lyapunov optimization is also used in AoI
analysis and optimization. Ref. [9] used Lyapunov optimization to identify the tradeoff
between AoI, accuracy, and completeness with the constrained throughput optimization
problem. Ref. [10] used Lyapunov optimization to jointly minimize the average cost of
sampling and transmitting status updates by users over a wireless channel subject to
average AoI constraints.

Our work’s motivation is rooted in AoI research that was presented in the recent past.
We next aim to cover some of the literature that relates to the proposed research in this paper.
The references [11,12] address varying source update frequency and [13,14] address service
rate in various queuing models. In the wireless network scenario, the scheduling algorithms
for optimizing AoI is studied extensively, such as those considering the channel state [15,16],
throughput [17–19], energy harvesting [20–22], and average resource constraints [23,24],
multiple sources [25–28], and multiple channels [29–32] to name a few. Ref. [33] studied the
calculation and iterative process of AoI in combination with queuing theory and gave the
analytic formula of average AoI under the random scheduling strategy. Ref. [34] explored
the impact of service rate on average AoI under fixed deadline constraints and random
exponential deadline constraints. Regarding link scheduling in wireless networks, ref. [35]
studied the link-scheduling problem for every time slot under periodic data updates, and
proposed random, greedy, Lyapunov optimization, Whittle Index, and other strategies for
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link scheduling to optimize the average AoI of the network. Ref. [36] proposed offline and
online scheduling algorithms based on the Markov decision process for the random data
arrival scenario.

Feedback is also an essential factor in wireless communication scenarios and can
influence the AoI performance significantly. In particular, it is well known that the feedback
may help maintain expedient processing, non-repetitive transmission, and hence, energy
efficiency in wireless transmission. For the case of battery-based non-energy harvesting
devices, it is also vital to schedule appropriate transmission and sensing strategies to
prolong the device’s life. As a result, the role of feedback and energy cost in AoI analysis
and optimization has received much interest from the research community (see e.g., [37–41]).
Additionally, ref. [42] proves that the AoI and energy-harvesting scheduling strongly differ
with or without the feedback. Refs. [43,44] minimized the AoI when the sensor uses
ON/OFF schemes with energy harvesting nodes. Ref. [45] focused on the extreme cases
of one unit battery and infinite battery situations to minimize the average peak AoI with
energy constraints. Most recently, the paper [46] provided an analysis of feedback cost in
AoI optimization over a point-to-point channel and determined specific conditions when
feedback may or may not be useful for AoI optimization.

Decisions to sense/receive updates under energy constraints have also been of interest
to AoI researchers. In particular, energy constraints can limit the chance of sensing new
data and hence cause AoI to increase. In this context, refs. [47,48] proposed the joint
scheduling of sense and transmission schemes to optimize the average peak AoI in an
energy-harvesting system. In this paper, we will combine the concept of feedback and
sensing, which means that the system will decide whether to sense the feedback information
as input. As other related research, refs. [49,50] studied the value of information (VoI) in
status update systems, and compared the performance of VoI with AoI. We also refer the
reader to the related paper [51]. Based on the idea that AoI is only important when the
receiver performs a query, refs. [52,53] proposed the age of information at query (QAoI)
and optimized the QAoI.

In this paper, we will extend the UoI optimization framework in [6] to an interactive
scenario by considering sensing/receiving costs at the updating terminal under energy
resource constraint by using a Lyapunov optimization framework. Resource constraints
in receiving/sensing the feedback can be interpreted as a limitation due to processing or
energy to make it available for decision making on update transmission. Our motivation
can be compared to that of [46] as well, which assumes the cost of feedback is incurred at
the receiving end. This new problem calls for coordinated decisions to sense the feedback
from the receiver and transmit the update to the receiver. Additionally, we need to account
for relativity with respect to the transmitter and receiver sides and measure urgency by
using a weight representing their importance under resource constraints. Our framework
will address these new issues.

As the main contributions of this paper, we extend the UoI optimization framework by
using a new definition that addresses the interactive nature of the setting when transmitting
and receiving/sensing information is costly and average resource constraints are present
on both actions. Constructing the objective function by assigning different weights to the
urgency levels at the transmitting and receiving terminals, we determine jointly optimal
scheduling of transmission and receiving/sensing the feedback by using a Lyapunov
optimization framework. We obtain the Lyapunov gap and show that the result can
be made arbitrarily close to the optimal solution. Our simulation results show that the
proposed algorithm performs significantly better than two benchmark schemes, namely
the greedy and AoI optimal algorithms.

The rest of the paper is organized as follows. In Section 2, we present the system model
of the UoI problem. In Section 3, we formulate the UoI problem and analyze it. In Section 4,
we offer numerical results to show the behavior of the solution. Finally, we conclude this
paper in Section 5 by summarizing our contributions and discussing future directions.
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2. System Model

We consider the system model in Figure 1. Here, the time is slotted: t = 1, 2, . . . , T. The
information-carrying signal in the service center and terminal, At and Qt, are as follows:

At+1 = (1−U2(t))At + Kt (2)

Qt+1 = (1− StU1(t))Qt + U2(t)At. (3)

The variable Kt ∼ N (0, σ2) represents the increments added to the information-carrying
signal At and is a Gaussian random variable independent over time and other variables.
For convenience, we take the variable A1, Q1 ∼ N (0, σ2); however, the initial conditions
are assumed given and do not determine the outcome as long as they come from a well-
behaving distribution that makes the expectations well defined (c.f. Lemma 3 below).
U1(t), U2(t) ∈ {0, 1} are decision variables to determine whether to transmit an update
and sense the feedback, respectively. Equation (2) represents the evolution of information
at the receiver with respect to the sensing at the transmitter. When U2(t) = 1, the sensing
action is activated and the information at both ends are synchronized except an additive
Gaussian noise due to causality and one time slot difference. The Equation (3) represents
the evolution of the information at the transmitter with respect to the receiver side. These
two equations represent the interaction between the transmitter and the receiver. Note
that if the transmission or sensing does not happen, i.e., if U1(t)St = 0 or U2(t) = 0,
then Qt or At, respectively, will become noisier. This is at the heart of the urgency of
information notion we pursue in this paper. When a transmission does not happen (due to
not transmitting or a channel erasure), the synchrony between the two sides, represented
by Qt, is not affected as long as a new sensing action is not taken. At the beginning of the
tth time slot, the terminal first decides U1(t) ∈ {0, 1} to determine whether to transmit the
information-carrying variable Qt to the service center or not. The transmission takes one
time slot and goes through an erasure-type wireless channel represented by St with a fixed
failure transmission rate p. In particular, St = 1 if the transmission is successful and St = 0
otherwise. At the same time, the service center feeds back At to the terminal, which also
takes one time slot with no failure rate. At the end of the tth time slot, the feedback arrives at
the terminal, and the terminal will decide U2(t) ∈ {0, 1} to determine whether to sense the
feedback or not. We can, in principle, let At and Qt evolve as max{(1−U2(t))At + Kt, 0}
and max{(1− StU1(t))Qt + U2(t)At, 0} with nonnegative initial values. These versions
bring these system states to the form of queues with potentially dependent arrivals and
departures. Our Lyapunov drift plus penalty-based analysis will be applicable for both
versions. We therefore prefer to keep them as in (2) and (3) in the ensuing analysis.

Now we can elicit our optimization problem P1 to minimize an upper bound of
average UoI:

min
πt

lim
T→∞

sup
1
T

T−1

∑
t=0

E
[
wt(Qt

2 + MAt
2)
]

(4)

s.t lim
T→∞

sup
1
T

T−1

∑
t=0

E[U1(t)] ≤ ϕ1 (5)

lim
T→∞

sup
1
T

T−1

∑
t=0

E[U2(t)] ≤ ϕ2, (6)

where πt is the set of sequence of decisions πt = {U1(t), U2(t)}, wt is the nonnegative
weight of urgency modeled as an i.i.d. random variable, M is the weight of the relative
error of the variable At at the transmitter side, ϕ1 is the energy (or frequency) constraint on
transmission, and ϕ2 is the energy (or frequency) constraint on sensing. In order to satisfy
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the average transmission/sensing frequency constraints (5) and (6), we define the virtual
queues Ht and Gt as follows, which are both initialized at 0:

Ht+1 = max{Ht − ϕ1 + U1(t), 0} (7)

Gt+1 = max{Gt − ϕ2 + U2(t), 0}. (8)

Next, let us consider the evolution of the transmission virtual queue: If the terminal
decides to transmit at time slot t, the transmission virtual queue Ht will increase by
1− ϕ1. Otherwise, it will decrease by ϕ1. As a result, the longer the virtual queue, the
more transfers will be performed. The virtual queue of sensing Gt evolves similarly.
Therefore, these two virtual queues can appropriately express the usage of the historical
transmission/sensing frequency.

Figure 1. Systemmodel with joint transmission and feedback reception.

3. Optimizing the Urgency of Information in P1

In this section, we will systematically develop a Lyapunov optimization framework
for optimizing an upper bound for the solution of P1. We summarize the notations we use
throughout the rest of the paper in Table 1.

Table 1. Definitions of Variables.

Symbol Description

At Error in Service Center
Qt Error in Terminal
Ht Transmission Frequency Virtual Queue
Gt Sensing Frequency Virtual Queue
nt Number of Time Slots since Last Sense
St Channel Situation

U1(t), U2(t) Transmission/Sensing Decision
πt Set of Decisions

ϕ1, ϕ2 Transmission/Sensing Frequency Constraints
wt Weight of Urgency
∼
w Average Weight of Urgency

V, Z, θ, β Weight of H2
t , G2

t , Q2
t , A2

t in Drift Function
M Weight of A2

t in Target Function
R Weight of Penalty Compared with Drift
Lt Summation of all the Queues
∆t Lyapunov Drift
ft Lyapunov Penalty
Yt Set of Given Parameters in tth Time Slot



Entropy 2021, 24, 1624 6 of 23

3.1. Lyapunov Function Definitions

In order to use the Lyapunov optimization framework, we will first define the Lya-
punov drift function ∆t by using the quadratic sum of system states:

Lt =
1
2

VH2
t +

1
2

ZG2
t +

1
2

θQt
2 +

1
2

βAt
2, (9)

where V, Z, θ and β are the weights for different variables, which represent different impor-
tance levels of the stability of the queues or system states Ht, Gt, Qt and At, respectively.
In our analysis, we use the terms “queue” or “system state” interchangeably. Although
the evolution of At and Qt in (2) and (3) can take negative values, we can redefine them by
lower bounding their evolution by zero and make their definitions suitable as a queue with
arrivals and departures potentially depending on the control actions. However, none of the
analysis steps we take in this paper will be affected by this redefinition, as the Lyapunov
analysis we present essentially optimizes a bound on the system performance. We therefore
continue using the original definitions (2) and (3). The Lyapunov drift function for this
system can be expressed as

∆t = E[Lt+1 − Lt|Qt, nt, Ht, Gt, wt+1], (10)

where nt is the number of time slots since the last time we decide to sense the feedback. It
is obvious that in tth time slot, the terminal has a knowledge of Ht, Gt, Qt. However, the
terminal cannot access the specific value of At because the latest estimation error arrived at
the service center at the end of (t− 1)st time slot. Nevertheless, the terminal is aware of
the number of time slot since the last time it decides to sense nt, which can be expressed as:

nt+1 = (1−U2(t))nt + 1. (11)

As a result, the terminal will decide whether to sense based on the number of time
slot since the last time it decided to sense nt rather than the error in the service center At.

Lemma 1. In each time slot t, given the error in terminal Qt, urgency weight at the next time slot
wt+1, the number of time slots since the last time terminal decides to sense nt, virtual queue length
Ht and Gt, set Yt = {Qt, nt, Ht, Gt, wt+1}, we can obtain an upper bound on the Lyapunov drift
∆t as

∆t ≤
1
2
(V + Z) +

1
2

βσ2 −Vϕ1Ht − Zϕ2Gt + (VHt −
1
2

θpQt
2)E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2)E[U2(t)|Yt]. (12)

Proof. See Appendix A.

Denote the penalty in the tth time slot by ft. Because of causality, U1(t), U2(t) will
affect UoI in (t + 1)st time slot. Therefore, we let ft = Rwt+1(Qt+1

2 + MAt+1
2), where R

is the weight of the UoI compared with system stability and the remaining terms represent
UoI at t + 1.

Lemma 2. If we set the penalty in the tth time slot as ft = Rwt+1(Qt+1
2 + MAt+1

2), and the
average of the weight of the urgency as

∼
w. The Lyapunov drift plus penalty function is upper

bounded as:



Entropy 2021, 24, 1624 7 of 23

∆t + E[ ft|Yt] ≤
1
2
(V + Z) +

1
2

βσ2 + R
∼
w(Q2

t + Mσ2 + Mntσ
2)−Vϕ1Ht − Zϕ2Gt

+ (VHt −
1
2

θpQt
2 − R

∼
wpQ2

t )E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2 + (1−M)R
∼
wntσ

2)E[U2(t)|Yt]. (13)

Proof. See Appendix B.

Lemma 3. If E[L0] < ∞, and ∆t + E[ ft] ≤ C, where C is a constant, then all the queues and
virtual queues in the system are mean rate stable.

Proof. See Appendix C.

3.2. Finding Appropriate Weights for the System

Next, we are going to find the optimal value of the weight parameters θ and β to
minimize the right hand side of (13) to the extent possible. Note that it is feasible to use a
stationary randomized scheme that independently transmits and senses with probability
ϕ1 and ϕ2 at each time slot, which translates to E[U1(t)] = ϕ1 and E[U2(t)] = ϕ2. As a
result, we reorder (13) to get

E[Lt+1 − Lt + ft|Yt] ≤(R
∼
wM +

1
2

β)σ2 +
1
2
(V + Z) + (−1

2
θpϕ1 − R

∼
wpϕ1 + R

∼
w)Qt

2

+ (
1
2
(θ − β)ntσ

2 + R
∼
wM + (1−M)R

∼
wϕ2)ntσ

2. (14)

To make the right hand side of (14) no larger than a constant, we want the coefficients of
Qt

2 and ntσ
2 no larger than 0. For the coefficient of Qt

2,

−1
2

θpϕ1 − R
∼
wpϕ1 + R

∼
w ≤ 0

θ ≥ 2
pϕ1

(1− pϕ1)R
∼
w. (15)

For the coefficient of ntσ
2,

1
2
(θ − β)ntσ

2+R
∼
wM + (1−M)R

∼
wϕ2 ≤ 0

β ≥ θ + 2(
1
ϕ2
− 1)R

∼
wM + 2R

∼
w. (16)

As a result, we take the value of the parameters θ and β as

θ =
2

pϕ1
(1− pϕ1)R

∼
w (17)

β =
2

pϕ1
R
∼
w + 2(

1
ϕ2
− 1)R

∼
wM. (18)

Put the value of the parameters θ and β back to (14), then we can get the upper bound of
E[Lt+1 − Lt + ft|Yt] as

E[Lt+1 − Lt + ft|Yt] ≤ (
1

pϕ1
+

M
ϕ2

)R
∼
wσ2 +

1
2
(V + Z). (19)
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Note that the right hand of (19) is a constant, which means that all the queues and virtual
queues in the system are mean rate stable under above derived conditions.

3.3. Deriving Lyapunov Optimal Decisions

We now minimize the upper bound in the RHS of (13), which is actually in the
following form:

min
πt

(VHt −
1
2

θpQt
2 − Rwt+1 pQ2

t )U1(t)

+ (ZGt +
1
2
(θ − β)ntσ

2 + (1−M)Rwt+1ntσ
2)U2(t). (20)

We next show the scheduling scheme for each time slot. Putting the value of the parameters
θ and β back to (20), we get the following:

min
πt

[VHt − (wt+1 −
∼
w +

∼
w

pϕ1
)RpQt

2]U1(t)

+ [ZGt + ((M− 1)
(∼

w− wt+1

)
−
∼
wM
ϕ2

)Rntσ
2]U2(t). (21)

Set the update index at = VHt − (wt+1 −
∼
w +

∼
w

pϕ1
)RpQt

2 and update index bt = ZGt +

((M− 1)
(∼

w− wt+1

)
−
∼
wM
ϕ2

)Rntσ
2, and then the solution to the scheme (20) can be achieved:

U1(t) =
{

1 , at < 0 (22a)

0 , otherwise (22b)

U2(t) =
{

1 , bt < 0 (23a)

0 , otherwise. (23b)

We summarize below the resulting Lyapunov optimal Algorithm 1.

Algorithm 1 Decisions scheduling scheme based on Lyapunov optimization

Require: A0, Q0, H0, G0, n0, St, Kt, ϕ1, ϕ2, wt,
∼
w, V, Z, M, R

1: for each time slot t do
2: Calculate at = VHt − (wt+1 −

∼
w +

∼
w

pϕ1
)RpQt

2;

3: Calculate bt = ZGt + ((M− 1)
(∼

w− wt+1

)
−
∼
wM
ϕ2

)Rntσ
2;

4: if at < 0 then
5: U1(t) = 1
6: else
7: U1(t) = 0;
8: end if
9: if bt < 0 then

10: U2(t) = 1;
11: else
12: U2(t) = 0;
13: end if
14: Calculate At+1 = (1−U2(t))At + Kt;
15: Calculate Qt+1 = (1− StU1(t))Qt + U2(t)At;
16: Calculate Ht+1 = max{Ht − ϕ1 + U1(t), 0};
17: Calculate Gt+1 = max{Gt − ϕ2 + U2(t), 0};
18: Calculate nt+1 = (1−U2(t))nt + 1;
19: end for
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Based on the algorithm, we can make decisions by scheduling every time slot to
minimize the value of UoI and maintain the virtual queue stability simultaneously. From
the algorithm, it is apparent that we can successfully decouple the joint decisions into two
independent threshold schemes, which makes the implementation desirably simple.

3.4. Solving for the Target Function and Lyapunov Gap

In this section, we will solve for the target function and achieve the expression of the
gap between the optimal solution and the result obtained by the Lyapunov optimization al-
gorithm. We will also prove that the result gained by the Lyapunov optimization algorithm
can be infinitely close to the optimal solution. Now make the summation of the total T-time
slot on both sides of (19), and we can get

E

[
LT − L0 +

T−1

∑
t=0

ft

]
≤ T

[
(

1
pϕ1

+
M
ϕ2

)R
∼
wσ2 +

1
2
(V + Z)

]
. (24)

Note that LT ≥ 0 and L0
T = 0, and then divide T on both sides of (24) to get the

time-averaged result

1
T

E

[
T−1

∑
t=0

ft

]
≤ (

1
pϕ1

+
M
ϕ2

)R
∼
wσ2 +

1
2
(V + Z). (25)

Theorem 1. Set the problem of (20) as P2(πt), and then the solution of P2(πt) will satisfy the
following gap:

1
T

T−1

∑
t=0

E
[
wt(Qt

2 + MAt
2)
]
≤ (

1
pϕ1

+
M
ϕ2

)
∼
wσ2 +

(V + Z)
2R

(26)

That is, the solution of P2(πt) can be approximated by the solution of P1(πt), and the gap between
them is (V+Z)

2R .

Proof. See Appendix D.

To be precise, the proof of this gap result in Appendix D requires At and Qt in (2) and
(3) to be lower bounded by zero. Nevertheless, our numerical results show consistence
with this gap even when they are non-negative. Note that as the value of R is taken as large
as possible, and the result obtained by the Lyapunov optimization algorithm P2(πt) can be
made arbitrarily close to the optimal result P∗1 (πt).

(V+Z)
2R can also seem to be the ratio of

the weight of the energy constraints and UoI, which shows the tradeoff between the UoI
and the energy constraints.

4. Numerical Results

In this section, we present extensive numerical results to explore the behaviour of
the optimal scheme under various constraints and scenarios. At the beginning of each
time slot, the terminal first decides whether to transmit the error packets to the service
center or not. The transmission takes 1 ms and goes through a wireless channel with a
fixed failure transmission rate. At the same time, the service center transmits the estimation
error (feedback) to the terminal, which also takes 1 ms with no failure rate. At the end of
each time slot, the feedback arrives at the terminal, and the terminal will decide whether
to sense this feedback. Meanwhile, the service channel receives the error packets and the
latest estimation of Gaussian noise. The service center will immediately calculate the error
difference between the transmitted status information and the received status information
and add that new error into the error packet.
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4.1. Response to Urgency Levels

To demonstrate the system’s response to a new urgency, for every 5000 time slots, we
set W = 100 in the 50 consecutive time slots and W = 1 in the rest of the time slots. The
transmission/sense energy constraints are set as ϕ1 = 0.25 and ϕ2 = 0.5. The channel
error rate is p = 0.8, the weight of the UoI is set as M = 2.5 and R = 2, and the weight
of the system states is set as V = Z = 1. Additionally, the Gaussian noise variance will
be set to unity. Figures 2–4 show a sample evolution of the squared of errors MA2

t + Q2
t

and two virtual queue length Ht, Gt. Observing Figures 2–4, we understand that when
the urgency level rises, the square of errors will drop significantly, and the virtual queues
will keep increasing because update transmissions are ramped up. However, due to the
energy constraints, the terminal’s probability of transmitting and sensing are affected. This
is the reason why the square of errors will increase, and the transmission virtual queue
will decrease after the urgency. These show that the system can swiftly respond to urgency
levels while keeping the error variance portion of UoI (i.e., Q2

t + MA2
t ) at a reasonable level

at all times.
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Figure 2. UoI sequence obtained by the proposed Lyapunov algorithm under a specific realization of
weights wt.
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Figure 4. Sensing virtual queue under the same realization of weight wt in Figure 2.

4.2. Tradeoff between UoI and System Parameters

In this section, we compare how the relationship between different variables will
affect the UoI in the system. Unless otherwise specified, we set the energy constraint of
transmission/sensing as ϕ1 = ϕ2 = 0.8, the weight of the system stability as V = Z = 1,
the weight of totally UoI and the UoI in service center as R = M = 2, the channel error rate
as p = 0.8, and the weight of urgency at each time slot is i.i.d. with probability 0.99 being 1
and probability 0.01 being 100.

Figures 5 and 6 present the relationship between UoI and transmission/sense energy
constraint. They also show the effect of system stability weights on UoI. In Figure 5, the
energy constraint of transmission ranges from 0.1 to 1.0, and the weight of the queue
stability (i.e., the virtual queue levels) in the transmission part will be set as V = 1, 10, 100,
and 1000. Similarly, in Figure 6, we set the energy constraint of sensing from 0.1 to 1.0 and
Z = 1, 10, 100, and 1000. We observe that when average energy is less constrained, the
UoI decreases. However, the UoI will not change much when the transmission frequency
reaches 0.5. This is due to the fact that the frequency constraint becomes inactive after a
certain level depending on the sensing activity. As sensing and transmission are in tandem,
the higher frequency drives the overall performance. Moreover, when the weight of the
stability V and Z are small, e.g., V = 1 or Z = 1, we pay more attention to the value of
UoI than the frequency of transmission levels, yielding a virtual queue significantly above
the set constraint. On the other hand, if we set the weight of the stability V and Z at a
high level, e.g., V = 1000 or Z = 1000, the virtual queue stability becomes much more
important, which compromises UoI performance.

In Figure 7, the energy constraint of transmission will be set from 0.1 to 1.0, and the
failure probability of transmission will be set as p = 0.2, 0.4, 0.6, 0.8, and 1.0. We observe
that the higher p is, the lower the average UoI is. This is because we need to decide to
transmit more frequently to achieve the optimal average of UoI when the success rate
is lower. In Figure 8, we observe that the average UoI decreases no matter whether ϕ1
or ϕ2 increases because we have more chances to transmit or sense when the energy is
sufficient. Additionally, as ϕ2 gets smaller, the curve will converge earlier because the error
packets in the service center are the input of the terminal. When we have less probability of
sensing the feedback, the transmission frequency will also not be large because of the input
limitation, even if the transmission energy is sufficient.
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Figure 5. Tradeoff between transmission energy constraint, V and UoI.
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In Figure 9, we set the weight of total UoI as R = 1, 8, 16 and 64, and the weight of
two virtual queues as V = Z = 20. As expected, the larger the weight of the total UoI is,
the smaller the average UoI will be. This is because the system will consider the UoI more
important and will take more chances to transmit and sense. Moreover, the Lyapunov gap,
i.e., (V+Z)

2R , will diminish as R increases.
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Figure 9. Tradeoff between transmission energy constraint, R and UoI.

4.3. Tradeoff between UoI and System Stability

The tradeoff between the target function and the system stability is always an exciting
and crucial question in the Lyapunov optimization framework. This section will show ex-
amples of how different weights can affect the system stability and UoI. We set T = 10, 000
and channel error rate as p = 0.8. The urgency weight wt is determined as an i.i.d. random
process with probability 0.99 being 1 and probability 0.01 being 1000. We will observe the
number of update transmissions and senses (i.e. the energies spent for update transmission
and sensing throughout T = 10, 000 slots) to represent system stability.

In Figures 10 and 11, we set the weight of the system stability as V = Z = 10, and
the weight of UoI as R = M = 2. As the energy is sufficient, we can have more chances to
transmit and sense. In addition, the number of transmissions is always smaller or equal to
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the number of senses. This makes sense because the input error in the terminal comes from
the service center and will be sent together in one transmission. In addition, even if there
is no energy constraint for the transmission, e.g., ϕ1 = 1.0, the number of transmissions
will not reach the value of constraints. This is due to the fact that the frequency constraint
becomes inactive after a certain level. However, when ϕ2 ≤ 0.2, the energy spent for
sensing goes above the set energy constraints. The reason is that the weight of UoI is much
larger than the weight of stability. This means that the system will sacrifice stability for
better UoI.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency Constraint of Transmission

0

1

2

3

4

5

6

7

8

9

10

N
u

m
b

er
 o

f 
T

ra
n

si
m

is
si

o
n

 (
1

0
0

0
 u

n
it

s)

2
=0.1

2
=0.2

2
=0.3

2
=0.4

2
=0.5

2
=0.6

2
=0.7

2
=0.8

2
=0.9

2
=1.0

Figure 10. Energy spent for update transmission when V = Z = 10.
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Figure 11. Energy spent for sensing when V = Z = 10.

In Figures 12 and 13, we set the weight of the system stability as V = Z = 80, which is
larger than the weight of UoI. We see that both the transmission and sensing constraints are
not binding. Comparing with the Figures 5 and 6, we observe that the UoI with V, Z = 100
is close to the UoI with V, Z = 1. Hence, by sacrificing a small amount of UoI, a very stable
system can be guaranteed.
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Figure 12. Energy spent for update transmission when V = Z = 80.
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Figure 13. Energy spent for sensing when V = Z = 80.

In Figure 14, we set the weight of the UoI in service center as M ∈ [1, 10], the weights
Z = 8, 16, 32, 64, and 128, and V = 5, ϕ1 = 0.5 and ϕ2 = 0.8. The virtual queue Gt is small
when its weight is large, and the energy constraints are tight. In addition, when the weight
of UoI in the service center M increases, the sensing time will keep increasing because the
UoI in the service center is much more important than the virtual queue stability and the
information in the terminal. This also exemplifies that our framework can accommodate
different cases flexibly by using different weights.
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4.4. Comparison of Lyapunov Optimal Performance with Other Algorithms

The greedy and probabilistic algorithms are also very suitable naive algorithms to
solve this problem. The main idea of the greedy algorithm is that the terminal will decide to
transmit/sense at time t if the instantaneous transmission/sensing frequency at time t has
not reached the corresponding set limits. Moreover, for the probabilistic algorithm, in each
time slot the terminal will transmit/sense with probability equal to the value of frequency
constraints. For Figure 15, we set the weight of system stability as V = Z = 30. Channel
success rate is set as p = 0.6, sense energy constraint is set as ϕ2 = 0.8, and the weight of
urgency at each time slot is the same as before. Because the greedy algorithm takes action
independent of urgency, we will compare the average UoI with wt = 1. From the figure,
the average error portion of UoI (i.e., Q2

t + MA2
t ) obtained by Lyapunov optimization is

always lower than the other two algorithms, especially when the energy is insufficient and
the gap closes with increasing energy availability.
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Figure 15. Lyapunov optimal algorithm and greedy algorithm.
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Recall that UoI can subsume various AoI problems. For instance, if we set the cost
function δ(.) as a linear function with the unit parameter and the urgency weight wt = 1,
then we can express the AoI in terminal Q̃t and the AoI in service center Ãt as

Ãt+1 = (1−U2(t))Ãt + 1 (27)

Q̃t+1 = (1− S(t)U1(t))Q̃t + U2(t)Ãt. (28)

Let us use the same Lyapunov optimization algorithm described earlier along with
the same weights for system state variables and target function for a fair comparison.
In Figure 16, we set the weight of virtual queues as V = Z = 20, the weight of UoI as
R = M = 2, the weight of system states θ, β in AoI optimal will be the same as the value
of UoI optimal and will be calculated each round. Additionally, set the probability of fail
transmission as p = 0.6, sensing frequency limitation as ϕ2 = 0.6. We can deduce that
the average UoI obtained by UoI optimal is much better than the value obtained by AoI
optimal. In addition, the value of average UoI by UoI optimal is smaller than that of the
average weighted AoI by AoI optimal. This is because, in the AoI model, the increment Kt
will always be 1; however, the UoI model yields a lower expectation.
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Figure 16. Lyapunov optimization vs. AoI optimal.

5. Conclusions

This paper focused on urgency of information (UoI) optimization through joint sensing
and transmission. We proposed a new interactive status updating problem over a point-to-
point channel in which transmission and sensing actions are determined to minimize UoI as
a combination of the staleness of sensed data and synchronization between two ends under
resource constraints, and we used a Lyapunov optimization framework for its optimization.
We obtained the gap between the optimal solution and the result gained by the Lyapunov
optimal algorithm, and proved that the gap between them can be made arbitrarily small.
We presented an extensive numerical study that illustrates various features of the model
and resulting algorithm, and potential performance improvements with respect to several
schemes. In our future work, we plan to extend this work in multiple directions such
as the case of multiple terminals in series or parallel, on demand UoI definition and
optimization as well as the cases of computation transmission tradeoffs and dynamical
energy constraints.
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Appendix A

Based on (7) we can get the following sequence of steps:

E
[

H2
t+1 − Ht

2|Yt

]
≤ E

[
(Ht − ϕ1 + U1(t))2 − Ht

2|Yt

]
= E

[
H2

t + ϕ2
1 + U1(t)2 − 2ϕ1Ht + 2HtU1(t)− 2ϕ1U1(t)− H2

t |Yt

]
= E

[
(ϕ1 −U1(t))2 + 2(−ϕ1 + U1(t))Ht|Yt

]
≤ 1 + 2(−ϕ1 + E[U1(t)|Yt])Ht, (A1)

where the first inequality follows from the definition of Ht in (7) used in the identity
that for any X = max{a + b− c, 0}, X2 ≤ (a + b − c)2, the following equalities follow
from rearranging terms and the final inequality follow from ϕ1 −U1(t) ≤ 1. Based on
Equation (8), and using the same method as that for obtaining (A1), we get the following
inequality:

E
[

Gt+1
2 − Gt

2|Yt

]
≤ 1 + 2(−ϕ2 + E[U2(t)|Yt])Gt. (A2)

Based on (2), we have

E
[

At+1
2 − At

2|Yt

]
= E

[
(1−U2(t))2 At

2 + 2AtKt(1−U2(t)) + Kt
2 − At

2|Yt

]
. (A3)

Recall that Kt ∼ (0, σ2) follows i.i.d Gaussian distributions. This is due to the fact that
the queue At is the summation of Kt; it is obvious that the summation of the Gaussian
distribution is still a Gaussian distribution. As a result, the error in the service center
also follows a Gaussian distribution At ∼ (0, nσ2). In addition, as U2(t) ∈ {0, 1}, we can
simplified (A3) by U2(t)2 = U2(t) and (1−U2(t))2 = 1−U2(t). As a result, we have

E
[

At+1
2 − At

2|Yt

]
= −ntσ

2E[U2(t)|Yt] + σ2. (A4)

Based on (3) and the fact that (1−U1(t)St)2 = (1−U1(t)St), we have

E
[

Qt+1
2 −Qt

2|Yt

]
= E

[
(1−U1(t)St)

2Qt
2 + 2Qt AtU2(t)(1−U1(t)St) + At

2U2(t)
2 −Qt

2|Yt

]
= −Qt

2 pE[U1(t)|Yt] + ntσ
2E[U2(t)|Yt]. (A5)

Based on (A1)–(A5), we have



Entropy 2021, 24, 1624 19 of 23

∆t = E[Lt+1 − Lt|Yt]

= E
[

1
2

V(H2
t+1 − Ht

2) +
1
2

Z(G2
t+1 − G2

t ) +
1
2

θ(Q2
t+1 −Q2

t ) +
1
2

β(A2
t+1 − At

2)|Yt

]
≤ 1

2
(V + Z) +

1
2

βσ2 −Vϕ1Ht − Zϕ2Gt + (VHt −
1
2

θpQt
2)E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2)E[U2(t)|Yt]. (A6)

Appendix B

Set the Lyapunov penalty function as ft = Rwt+1(Qt+1
2 + MAt+1

2), where wt ≥ 0.
Based on (A4) and (A5), we can get the Lyapunov penalty function as follows:

E[ ft|Yt] =RE
[
wt+1(−Q2

t StU1(t) + 2Qt AtU2(t)(1− StU1(t)) + A2
t U2(t) + Q2

t )|Yt

]
+ RME

[
wt+1(−A2

t U2(t) + K2
t + A2

t |Yt

]
=R

∼
w(−Q2

t pE[U1(t)|Yt] + Q2
t + Mσ2 + Mntσ

2 + (1−M)ntσ
2E[U2(t)|Yt]). (A7)

Combining (A6) and (A7), the Lyapunov drift plus penalty function satisfies the following
inequality:

∆t + E[ ft|Yt] ≤
1
2
(V + Z) +

1
2

βσ2 + R
∼
w(Q2

t + Mσ2 + Mntσ
2)−Vϕ1Ht − Zϕ2Gt

+ (VHt −
1
2

θpQt
2 − R

∼
wpQ2

t )E[U1(t)|Yt]

+ (ZGt +
1
2

θntσ
2 − 1

2
βntσ

2 + (1−M)R
∼
wntσ

2)E[U2(t)|Yt]. (A8)

Appendix C

We start by assuming that the initial values satisfy E[L0] < ∞. If ∆t + E[ ft] ≤ C, where
C is a constant, then take the summation over T time slots to get

E

[
LT − L0 +

T−1

∑
t=0

ft

]
≤ TC. (A9)

Based on (9) we have

E[LT ] ≥
1
2

VE
[
(H2

t )
]
. (A10)

From the definition of the virtual queue Ht (A1), it is obviously that E
[
(H2

t )
]
≥ (E[(Ht)] )2,

and also because the penalty function ft is always non-negative, we can change (A9) into

1
2

VE[(Ht)])
2 ≤ TC + L0

E[(Ht)] ≤
√

2(TC + L0)

V
E[(Ht)]

T
≤
√

2(TC + L0)

VT
. (A11)

Since T → ∞, the right hand side of (A11) is equal to 0. As a result,

E[(Ht)]

T
→ 0. (A12)
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As a result, the virtual queue Ht is mean rate stable. The other system states Qt, At and the
virtual queue Zt can be proven as mean rate stable with the same method above. Therefore,
the expressions of the queues in the system are appropriate, and the Lyapunov optimization
algorithm is applicable. We also recall that the evolution of Qt, At, although not originally
in a queue form, can be easily redefined to be bounded below by 0, and the analysis in our
paper will be valid without any changes.

Appendix D

First, let us assume that P1 has an optimal solution, which is to take the best decision
for every time slot and get the optimal result of the target function (4). Because this optimal
solution does not use the Lyapunov algorithm, the decision has no relationship with the
queues and virtual queues in the system. Below πt = {U1(t), U2(t)} will be used to repre-
sent the decision policy of the Lyapunov optimization algorithm and π∗t = {U1(t)∗, U∗2 (t)}
is used to represent the decisions of the optimal solution. Based on Equations (A1)–(A5),
we have

Lt+1 − Lt + ft(πt) ≤
1
2
(V + Z) + (−ϕ1 + U1(t))Ht + (−ϕ2 + U2(t))Gt

+
1
2

θ
(
−Qt

2U1(t)St + 2Qt AtU2(t)(1−U1(t)St) + At
2U2(t)

)
+

1
2

β
(
−U2(t)At

2 + 2AtKt(1−U2(t)) + Kt
2
)
+ ft(πt). (A13)

Because the optimal solution is a solution of the problem, it should also obey (A13)

Lt+1 − Lt + ft(πt) ≤
1
2
(V + Z) + (−ϕ1 + U∗1 (t))Ht + (−ϕ2 + U∗2 (t))Gt

+
1
2

θ
(
−Qt

2U∗1 (t)St + 2Qt AtU∗2 (t)(1−U∗1 (t)St) + At
2U∗2 (t)

)
+

1
2

β
(
−U∗2 (t)At

2 + 2AtKt(1−U∗2 (t)) + Kt
2
)
+ ft(π

∗
t ). (A14)

Then take the expectation on both sides of (A14)

E[Lt+1 − Lt + ft(πt)|Yt] ≤
1
2
(V + Z) + E[(−ϕ1 + U∗1 (t))Ht] + E[(−ϕ2 + U∗2 (t))Gt]

+
1
2

θE
[
−Qt

2U∗1 (t)St + 2Qt AtU∗2 (t)(1−U∗1 (t)St) + At
2U∗2 (t)

]
+

1
2

βE
[
−U∗2 (t)At

2 + 2AtKt(1−U∗2 (t)) + Kt
2
]
+ E[ ft(π

∗
t )]. (A15)

As is well known in the literature [7,8], there exists a w-optimal decision rule that makes
decision randomly and independent of the variables in the system. In the analysis below,
we assume such an optimal policy and denote it as (U∗1 (t), U∗2 (t)):

E[Lt+1 − Lt + ft(πt)|Yt] ≤
1
2
(V + Z) + (−ϕ1 + E[U∗1 (t)])E[Ht] + (−ϕ2 + E[U∗2 (t)])E[Gt]

+
1
2

θ(−E
[

Qt
2
]

E[U∗1 (t)]p + 2E[Qt]E[At]E[U∗2 (t)](1− E[U∗1 (t)]p) + E
[

At
2
]

E[U∗2 (t)])

+
1
2

β(−E[U∗2 (t)]E
[

At
2
]
+ 2E[At]E[Kt](1− E[U∗2 (t)]) + E

[
Kt

2
]
) + E[ ft(π

∗
t )]. (A16)

Placing E[Kt] = 0, E
[
Kt

2
]
= σ2, E[At] = 0, as well as ϕ1 into E

[
U∗1 (t)

]
, and ϕ2 into

E[U∗2 (t)], we get the following. It is worth noting that placing the time-average constraint
on E

[
U∗1 (t)

]
and E[U∗2 (t)] with equality in the Lyapunov drift analysis can be justified
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easily by observing that the constraints must be active almost always over the T time
horizon O(T) time instants:

E[Lt+1 − Lt + ft(πt)|Yt] ≤
1
2
(V + Z) +

1
2

θ(−E
[

Qt
2
]

pϕ1 + E[At]ϕ2)

+
1
2

β(−ϕ2E[At] + σ2) + E[ ft(π
∗
t )]. (A17)

Recalling that queues At and Qt are mean rate stable, we have, E
[

Qt
2
]
= E

[
Qt+1

2
]

and

E
[

At
2
]
= E

[
At+1

2
]
. From (A3)–(A5), we can get the expectation of A2

t and Q2
t as

E
[

At
2
]
=

σ2

ϕ2
(A18)

E
[

Qt
2
]
=

σ2

pϕ1
. (A19)

As a result, (A17) can be simplified as follows:

E[Lt+1 − Lt + R ft(πt)|Yt] ≤
1
2
(V + Z) +

1
2

θ(− σ2

pϕ1
pϕ1 +

σ2

ϕ2
ϕ2)

+
1
2

β(−ϕ2
σ2

ϕ2
+ σ2) + E[ ft(π

∗
t )]

=
1
2
(V + Z) + E[ ft(π

∗
t )]. (A20)

Now take the summation of the total T-time slot on both sides of (A20) and we have

E

[
LT − L0 +

T−1

∑
t=0

ft(πt)|Yt

]
≤1

2
(V + Z)T +

T−1

∑
t=0

E[ ft(π
∗
t )]. (A21)

Note that LT ≥ 0 and L0
T = 0; we then divide T on both sides of (A21) to get the time

averaged result

1
T

E

[
T−1

∑
t=0

ft(πt)|Yt

]
≤1

2
(V + Z) +

1
T

T−1

∑
t=0

E[ ft(π
∗
t )]. (A22)

Finally, divide R on both side of (A22) to convert ft into target function

P∗1 (πt) ≤ P2(πt) ≤
V + Z

2R
+ P∗1 (πt). (A23)
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