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Abstract: A simplified linearized lattice Boltzmann method (SLLBM) suitable for the simulation of
acoustic waves propagation in fluids was proposed herein. Through Chapman–Enskog expansion
analysis, the linearized lattice Boltzmann equation (LLBE) was first recovered to linearized macro-
scopic equations. Then, using the fractional-step calculation technique, the solution of these linearized
equations was divided into two steps: a predictor step and corrector step. Next, the evolution of the
perturbation distribution function was transformed into the evolution of the perturbation equilibrium
distribution function using second-order interpolation approximation of the latter at other positions
and times to represent the nonequilibrium part of the former; additionally, the calculation formulas
of SLLBM were deduced. SLLBM inherits the advantages of the linearized lattice Boltzmann method
(LLBM), calculating acoustic disturbance and the mean flow separately so that macroscopic variables
of the mean flow do not affect the calculation of acoustic disturbance. At the same time, it has other
advantages: the calculation process is simpler, and the cost of computing memory is reduced. In
addition, to simulate the acoustic scattering problem caused by the acoustic waves encountering
objects, the immersed boundary method (IBM) and SLLBM were further combined so that the method
can simulate the influence of complex geometries. Several cases were used to validate the feasibility
of SLLBM for simulation of acoustic wave propagation under the mean flow.

Keywords: simplified linearized lattice Boltzmann method; immersed boundary method; computa-
tional aeroacoustics

1. Introduction

The phenomenon of acoustic waves propagating in complex flows such as shear layers
or a vortex often exists in aerospace engineering [1–4]. Studies have shown that such
flow structures will change the characteristics of acoustic wave propagation, leading to
refraction, reflection, and scattering and thus affect the measurement and localization
of sound source [5,6]. Therefore, it is of great significance to carry out research on the
propagation of acoustic waves in the flow.

Numerical simulation is an important means for such research. The main method
used is direct numerical simulation (DNS) [7,8], which combines acoustic disturbance and
the mean flow and then simulates acoustic waves propagation directly by solving the
Navier–Stokes equations. However, DNS requires a very fine grid and a small time step,
making its computational cost extremely high. In addition, because acoustic disturbance
is usually several orders of magnitude smaller than the mean flow, the calculation of
the two parts combined smoothens out the effect of acoustic disturbance, resulting in
large error. To overcome these shortcomings, methods of solving perturbation equations
such as linearized Euler equations (LEE) [9–11] or linearized Navier–Stokes equations
(LNSE) [12,13] have been proposed to simulate acoustic wave propagation. These methods
essentially solve macroscopic equations, which require high-precision schemes to ensure
accuracy. Therefore, the numerical simulation of acoustic wave propagation still needs
further development.
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Over the last few decades, the lattice Boltzmann method (LBM) has become a popular
computational fluid dynamics method [14–18]. LBM is based on molecular dynamics
theory, which abstracts fluid into a large number of microscopic particles that collide
and migrate through discrete grids according to simple motion rules to illustrate the
evolution of the flow field; it reveals macroscopic motion characteristics of a fluid using a
particle-distribution function. LBM does not entail solving complex differential equations
directly; it only requires solving algebraic equations, which make the calculation process
simpler. It has been applied to computational aeroacoustics [19–22]. Studies have shown
that LBM has lower dissipation under the same accuracy, and it is easy to carry out
parallel calculations [23], which makes the method suitable for large-scale aeroacoustics
simulation. However, in acoustic waves propagation simulation, LBM combines the
calculation of acoustic disturbance and the mean flow, which can lead inaccuracies. To
better simulate the propagation of acoustic disturbance, the linearized lattice Boltzmann
method (LLBM) was established [24,25], which divides the distribution function into a
mean component and perturbation parts. Based on the moment relationship between
the perturbation distribution function and the perturbation macroscopic variables, the
linearized lattice Boltzmann equation (LLBE) can be recovered to linearized macroscopic
equations through Chapman–Enskog (C-E) expansion analysis and the evolution of the
perturbation distribution function is realized using the standard LBM. It should be pointed
out that because the standard LBM can only be applied to uniform grids; special methods
are required if it is applied to nonuniform grids. At the same time, it stores the particle
velocities and the distribution function of all lattice velocity directions at each grid point,
which requires a lot of memory. These deficiencies make it difficult for standard LBM
or LLBM to simulate acoustic wave propagation. To solve these deficiencies, Shu et al.
proposed the lattice Boltzmann flux solver (LBFS) employing the finite volume method to
calculate the flux at an interface [26–30]. Zhan et al. further developed a linearized lattice
Boltzmann flux solver (LLBFS) suitable for acoustic propagation simulation [31], wherein
the solution of the interface satisfies the lattice Boltzmann equation; this is more in line
with physical laws, and the calculation load is comparable to the traditional flux scheme.
However, LBFS and LLBFS involve two models, the finite volume method (FVM) and the
LBM, which are inconvenient for researchers. Chen et al. recently proposed a simplified
lattice Boltzmann method (SLBM) [32,33], which approximates the nonequilibrium part
of the distribution function by second-order interpolation of the equilibrium distribution
function at other locations and times, so that the evolution of the distribution function can
be transformed into the evolution of the equilibrium distribution function. SLBM further
simplifies the calculation, and, at the same time, the distribution function in the lattice
velocity direction of each particle at each grid point does not need to be stored, which
makes it less memory-demanding.

In this paper, a simplified linearized lattice Boltzmann method (SLLBM) that combines
the advantages of LLBM and SLBM was proposed and used for acoustic wave propagation
simulation. Through C-E expansion analysis, the LLBE was recovered to linearized macro-
scopic equations; this process was divided into a predictor step and a corrector step using
the fractional-step calculation technique. Using second-order interpolation approximation
of the perturbation equilibrium distribution function at other positions and times to rep-
resent the nonequilibrium part of the perturbation distribution function, the evolution of
the latter was transformed into the evolution of the former, and the calculation formulas of
SLLBM were deduced. SLLBM inherits the advantages of the LLBM, calculating acoustic
disturbance and the mean flow separately so macroscopic variables of the mean flow do
not affect the calculation of acoustic disturbance. At the same time, in the SLLBM, the
perturbation macroscopic variables were directly evolved so that the evolution and storage
of the perturbation distribution function were avoided, which implies only the perturbation
macroscopic variables instead of the values of perturbation distribution functions along all
lattice velocity directions at each grid point needing to be stored and the physical bound-
ary conditions can be directly processed without converting the perturbation distribution
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function and perturbation macroscopic variables to each other according to the moment
relationships. As a result, SLLBM requires less memory and is simpler to operate than the
standard LBM. In addition, to simulate the scattering effect of acoustic waves encountering
objects, the immersed boundary method (IBM) was introduced into the framework of
SLLBM so that the method can simulate the influence of complex geometries.

The remainder of this paper is arranged as follows. In Section 2, theories related
to SLLBM are introduced, including the LLBE and its recovered form, the derivation
process of SLLBM, the IBM under the framework of SLLBM, boundary conditions, and
the computational sequence. In Section 3, several cases are used to validate the feasibility
of SLLBM for acoustic wave propagation simulation. Finally, conclusions are drawn in
Section 4.

2. Methodology
2.1. LLBE and C-E Expansion Analysis

For the lattice Boltzmann equation, the density distribution function f can be divided
into the steady mean component f and the perturbation part f ′, i.e., f = f + f ′. Using
the perturbation distribution function, the LLBE with the Bhatnagar–Gross–Krook (BGK)
approximation is obtained:

∂ f ′α
∂t

+ ξα · ∇ f ′α = − 1
τ

(
f ′α − f ′α

eq) (1)

where τ = υ
c2

s δt
+ 1

2 is the nondimensional relaxation time, which is associated with the kine-

matic viscosity υ of the fluid, ξα and f ′α represent the component of the lattice velocity and
the perturbation distribution function f ′ in direction α, respectively; f ′αeq is the perturbation
equilibrium distribution function, which is given by [25]:

f ′α
eq =

ρ′

ρ
f

eq
α + ρwα

(
ξα · u′

c2
s

+
(ξα · u′)(ξα · u)

c4
s

− u′ · u
c2

s

)
(2)

where cs = 1/
√

3 is the speed of sound, wα is the weight coefficient of the lattice in direction
α; ρ, u, and ρ′, u′ denote the macroscopic variables, which are divided into the mean flow
and acoustic disturbance, respectively; f

eq
α is the steady equilibrium distribution function:

f
eq
α = ρwα

(
1 +

ξα · u
c2

s
+

(ξα · u)2

2c4
s
− |u|

2

2c2
s

)
(3)

The linearized macroscopic variables ρ, u, and ρ′, u′ and mesoscopic variables have
the following moment relationship:

ρ′ = ∑
α

f ′α
eq (4)

ρu′ + ρ′u = ∑
α

ξα f ′α
eq (5)

For two-dimensional problems, the LBM adopts the D2Q9 model; the lattice velocity
ξα and weight coefficient wα are given by:

|ξ0| = 0, |ξ1−4| = 1, |ξ5−8| =
√

2
w0 = 4

9 , w1−4 = 1
9 , w5−8 = 1

36
(6)

C-E expansion analysis is often used to link the kinetic theory of gases and the macro-
scopic equations of motion [24]. It can also be used to link LLBE and LNSE. By C-E
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expansion analysis, the perturbation distribution function, time derivative, and spatial
derivative can be expanded into the following forms, respectively:

f ′α = f ′α
(0) + Kn f ′α

(1) + Kn2 f ′α
(2) (7)

∂

∂t
= Kn

∂

∂t0
+ Kn2 ∂

∂t1
(8)

∇ = Kn · ∇1 (9)

where Kn is the Knudsen number.
By substituting Equations (7)–(9) into the Taylor expansion of LLBE (Equation (1)), the

decomposition forms of different orders can be obtained:

O
(

Kn0
)

: f ′α
(0) = f ′α

eq (10)

O
(

Kn1
)

:
(

∂

∂t0
+ ξα ·

∂

∂r1

)
f ′α

(0) +
1
τ

f ′α
(1) = 0 (11)

O
(

Kn2
)

:
∂ f ′α(0)

∂t1
+

(
1− 1

2τ

)(
∂

∂t0
+ ξα · ∇1

)
f ′α

(1) +
1

τδt
f ′α

(2) = 0 (12)

Sum the zero-order moments and first-order moments of Equations (11) and (12) under
the O

(
Kn1) and O

(
Kn2) orders in all lattice velocity directions and multiply the results

with Kn and Kn2, respectively; by adding the results separately, we obtain the governing
equations of the LLBE recovered by C-E expansion analysis:

∂ρ′

∂t
+∇ ·

(
∑
α

ξα f ′α
eq

)
= 0 (13)

∂(ρ′u + ρu′)
∂t

+∇ ·
(

∑
α

ξi
αξ

j
α f ′α

eq +

(
1− 1

2τ

)
∑
α

ξi
αξ

j
α f ′α

neq

)
= 0 (14)

where f ′αneq = Kn f ′α(1) = −τδtD f ′αeq denotes the perturbation non-equilibrium distribution
function, and it satisfies the following moment relationship:

∑
α

f ′α
neq =0, ∑

α
ξα f ′αneq =0 (15)

In addition, to restore Equations (13) and (14) to LNSE, the mesoscopic and macro-
scopic variables need to satisfy the following moment relationship in addition to
Equations (4) and (5):

∑
α

ξi
αξ

j
α f ′α

eq = ρ′c2
s δi,j + ρu′u + ρ′uu + ρuu′ (16)

∑
α

ξi
αξ

j
α f ′α

neq = −µ
(
∇u′ + (∇u′)T

)
− µ′

(
∇u + (∇u)T

)
(17)

where µ = µ + µ′ = τδt(ρ + ρ′)c2
s is the dynamic viscosity of the fluid.

2.2. SLLBM

According to the fractional-step calculation technique, Equations (13) and (14) can be
decomposed into two steps: a predictor step and a corrector step:

The predictor step is formulated as follows:

∂ρ′

∂t
+∇ ·

(
∑
α

ξα f ′α
eq

)
= 0 (18)
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∂(ρ′u + ρu′)
∂t

+∇ ·
(

∑
α

ξi
αξ

j
α f ′α

eq +
1

2τ ∑
α

ξi
αξ

j
α f ′α

neq

)
= 0 (19)

The corrector step is formulated as follows:

∂ρ′

∂t
= 0 (20)

∂(ρ′u + ρu′)
∂t

+∇ ·
((

1− 1
τ

)
∑
α

ξi
αξ

j
α f ′α

neq

)
= 0 (21)

In the predictor step, the solution can be advanced using the following relations:

ρ′
∗
= ∑

α

f ′α
eq(r− ξαδt, t− δt) (22)

ρu′∗ + ρ′
∗u = ∑

α

ξα f ′α
eq(r− ξαδt, t− δt) (23)

where δt is the time step and ∗ is the intermediate value of the perturbation macroscopic vari-
ables obtained by solving the predictor step. It can be proven that Equations (22) and (23)
can be used to accurately solve Equations (18) and (19).

The Taylor expansion of the perturbation equilibrium distribution function can be
obtained by:

f ′α
neq(r− ξαδt, t− δt) = f ′α

eq(r, t)− δtD f ′α
eq(r, t)− δt

2τ
D f ′α

neq(r, t) + O(δ3
t ) (24)

By substituting Equation (24) into Equations (22) and (23) and combining the outcome
with Equation (15), we obtain:

ρ′∗ = ∑
α

f ′αeq(r, t)− δt

[
∂
∂t ∑

α
f ′αeq(r, t) +∇ ·∑

α
ξα f ′αeq(r, t)

]
− δt

2τ

[
∂
∂t ∑

α
f ′αneq(r, t) +∇ ·∑

α
ξα f ′αneq(r, t)

]
+ O(δ3

t )
(25)

ρu′∗ + ρ′∗u = ∑
α
ξα f ′αeq(r, t)− δt

[
∂
∂t ∑

α
ξα f ′αeq(r, t) +∇ ·∑

α
ξi

αξ
j
α f ′αeq(r, t)

]
− δt

2τ

[
∇ ·∑

α
ξi

αξ
j
α f ′αneq(r, t)

]
+ O(δ3

t )
(26)

According to the moment relationship introduced in Section 1, Equations (25) and (26)
are transformed into the following form:

∂ρ′

∂t
+∇ ·

(
∑
α

ξα f ′α
eq

)
+ O(δ2

t ) = 0 (27)

∂(ρu′ + ρ′u)
∂t

+∇ ·
[
∑
α

ξi
αξ

j
α f ′α

eq(r, t) +
1

2τ ∑
α

ξi
αξ

j
α f ′α

neq

]
+ O(δ2

t ) = 0 (28)

where O(δ2
t ) is a second-order small parameter, which can be ignored. Thus, Equations (27)

and (28) can accurately recover the predictor step Equations (18) and (19).
For the linear continuous equation (Equation (13)), the predictor step can be used

directly to solve without correction, i.e., ρ′n+1 = ρ∗, where the superscript n+1 represents
the perturbation macroscopic variables at the next time step. However, for the linear

momentum equation (Equation (14)), there is still a deviation ∇ ·
[(

1− 1
τ

)
∑
α
ξi

αξ
j
α f ′αneq

]
between Equation (28) and Equation (14), i.e.,:
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ρu′n+1
+ ρ′

n+1u = ρu′∗ + ρ′
∗u−∇ ·

[(
1− 1

τ

)
∑
α

ξi
αξ

j
α f ′α

neq

]
(29)

To calculate Equation (29), similar to the derivation of the predictor step, we can apply
Equation (15) into the Taylor expansion of the perturbation nonequilibrium distribution
function f ′αneq(r− ξαδt, t), and the following relationship can be deduced:

−∇ ·
[(

1− 1
τ

)
∑
α

ξi
αξ

j
α f ′α

neq(r, t)

]
=

(
1− 1

τ

)
1
δt

∑
α

ξα f ′α
neq(r− ξαδt, t) (30)

By using Equation (30), Equation (29) can be written as:

ρu′n+1
+ ρ′

n+1u = ρu′∗ + ρ′
∗u +

(
1− 1

τ

)
∑
α

ξα f ′α
neq(r− ξαδt, t) (31)

We therefore obtained simplified calculation formulas for LLBM, which are summa-
rized as follows:

For the linear continuous equation, the perturbation density at the next time step is
directly calculated by:

ρ′
n+1

= ∑
α

f ′α
eq(r− ξαδt, t− δt) (32)

For the linear momentum equation, the perturbation velocity at the next time step is
obtained through the predictor–corrector process as shown below:

It is obtained in the predictor step as follows:

ρu′∗ + ρ′
∗u = ∑

α

ξα f ′α
eq(r− ξαδt, t− δt) (33)

It is obtained in the corrector step as follows:

u′n+1
=

(
ρu′∗ + ρ′

∗u +

(
1− 1

τ

)
∑
α

ξα f ′α
neq(r− ξαδt, t)− ρ′

n+1u

)
/ρ (34)

The perturbation nonequilibrium distribution function f ′αneq is given by:

f ′α
neq(r, t) = −τδtD f ′α

eq(r, t) = −τ
[

f ′α
eq∗(r, t)− f ′α

eq(r− ξαδt, t− δt)
]

(35)

where f ′αeq∗(r, t) denotes the perturbation equilibrium distribution function calculated by
the intermediate value of the linear macroscopic variables.

2.3. IBM

The idea of the IBM is to imagine immersion of the solid in the fluid [34–39], and the
interaction between the fluid and the solid wall is realized by adding a boundary force
term to the right side of the linear momentum equation. Through this treatment, the linear
momentum equation can be written as:

∂(ρu′+ρ′u)
∂t +∇ · (ρu′u + ρ′uu + ρuu′) =

−∇(ρ′c2
s ) +∇ ·

[
µ
(
∇u′ + (∇u′)T

)
+ µ′

(
∇u + (∇u)T

)]
+ f

(36)

f(r, t) =
∫
Γ

F(s, t)δ(r−R(s, t))ds (37)

where r and R represent the positions of the Euler point and the Lagrangian point, f and F
represent the boundary force terms of the Euler point and the Lagrangian point, δ is the
Dirac delta function, and s is the index of the Lagrangian point.



Entropy 2022, 24, 1622 7 of 21

The key to wall boundary processing is to solve the boundary force term of the
Lagrangian point. In this paper, the method of Chen et al. [37] was used to revise the
perturbation velocity u′n+1. In the following derivation process, the revised result of the
perturbation velocity u′n+1 is recorded as u′I

n+1, which can be evaluated by:

u′I
n+1 = u′n+1

+ ∆u′ (38)

where ∆u′ denotes the revise of u′n+1.
The boundary force term f of the Euler point in Equation (36) can be related to ∆u′

according to the following formula:

f = ρ′
n+1 ∆u′

δt
(39)

The no-slip boundary condition was adopted for perturbation velocity on the wall
boundary, that is, the perturbation velocity of fluid at the Lagrangian point is the same as
the perturbation velocity of the immersed object, which can be written as follows:

U′I
n+1(Rl) = U′B(Rl) (40)

where U′I
n+1 and U′B represent the perturbation velocity of the fluid and boundary, re-

spectively, and the former is obtained by of the perturbation velocity of the Euler point as
follows:

U′I
n+1(Rl) = ∑

e
u′n+1(re)K(re −Rl)δ

2
e

l = 1, 2, . . . , N e = 1, 2, . . . , M
(41)

where N and M represent the number of Lagrangian points and Euler points, respectively;
δe is the grid scale of the Euler grid; and K is the kernel function related to the positions of
Lagrangian points and Euler points, which is defined by:

K(re −Rl) = δ(re1 − Rl1)δ(re2 − Rl2) (42)

where δ is written as:

δ(r) =

{
1 + cos(π|r|/2)

4 |r| ≤ 2
0 |r| > 2

(43)

In Equation (38), the revised perturbation velocity is obtained by interpolating the
perturbation velocity at the Lagrangian point, and the mathematical relationship that
satisfies the no-slip boundary condition is as follows:

∆u′(re) = ∑
l

δu′lK(re −Rl)δl l = 1, 2, . . . , N e = 1, 2, . . . , M (44)

where δl is the scale of the Lagrangian grid.
Combining Equations (38)–(44), a linear system for solving the correction velocity at

Lagrangian points can be obtained:
A · X = B (45)

where

A = δ2
e


K11 K12 · · · K1M
K21 K22 · · · K2M

...
...

. . .
...

KN1 KN2 KN3 KNM

 ·


K11 K12 · · · K1N
K21 K22 · · · K2N

...
...

. . .
...

KM1 KM2 KM3 KMN

 (46)

X =
[
δu′l

1δ1
l , δu′l

2δ2
l , . . . , δu′l

NδN
l

]T
(47)
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B =


U′1B
U′2B

...
U′NB

−


K11 K12 · · · K1M
K21 K22 · · · K2M

...
...

. . .
...

KN1 KN2 KN3 KNM




u
′∗
1

u
′∗
2
...

u
′∗
M

 (48)

2.4. Boundary Conditions
2.4.1. Periodic Boundary Condition

Here, we adopted the periodic boundary condition [40]. Taking the two-dimensional
flow shown in Figure 1 as an example, the fluid flows in from the left and out to the right.
There are two layers of virtual grid points x0 and xN+1 outside the entrance x1 on the left
and the exit xN on the right, respectively; the periodic boundary conditions are:

q′1,5,8(x0, j, t) = q′1,5,8(xN , j, t) (49)

q′3,6,7(xN+1, j, t) = q′3,6,7(x1, j, t) (50)

where q′ represents the perturbation macroscopic variables.
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2.4.2. Nonequilibrium Extrapolation Boundary

To process the perturbation nonequilibrium distribution function at the boundary, this
paper adopts a nonequilibrium extrapolation boundary condition, which is obtained by
interpolating two grid points inside the boundary:

f ′i
neq(x0) = f ′i

neq(x1) +
[

f ′i
neq(x1)− f ′i

neq(x2)
] xi0 − xi1

xi1 − xi2
(51)

where x0, x1, and x2 represent the boundary points and the grid points of the first layer and
the second layer adjacent to the boundary, respectively. Because the calculation adopts a
uniform grid, Equation (51) can be expressed as:

f ′i
neq(x0) = 2 f ′i

neq(x1)− f ′i
neq(x2) (52)

2.5. Computational Sequence

The computational steps of the SLLBM can be summarized as follows:

(1) Determine the mesh size parameters δx and the time step δt and then calculate the
relaxation time τ.

(2) Calculate the predictor step of the linear governing equations by Equation (33) and
obtain the intermediate value of the perturbation macroscopic variables q′∗ of the new
time step.

(3) According to Equation (35), calculate the perturbation nonequilibrium distribution
function f ′αneq, selecting appropriate boundary conditions for f ′αneq.
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(4) Use Equation (34) to calculate the corrector step of the linear momentum equation,
and obtain the perturbation velocity u′n+1 of the next time step.

(5) Implement appropriate boundary conditions for the perturbation macroscopic vari-
ables and repeat the above process until the results convergent.

For the sound propagation problem that needs to calculate the interaction between
the fluid and the solid wall in the fluid, it is necessary to use the IBM derived in Section 1.
In this case, the perturbation velocity needs to be revised after step 5. The specific process
is as follows:

(1) Solve Equation (45) to obtain the perturbation velocity revision term at the La-
grangian point.

(2) According to the perturbation velocity obtained by Equation (34), combined with
Equations (38) and (44), the perturbation velocity of the Euler grid point at the next
moment u′I

n+1 can be obtained.

2.6. Memory Cost

As can be seen from the introduction in Section 2.2, in the SLLBM, the perturbation
macroscopic variables were directly evolved so that the evolution and storage of the
perturbation distribution function were avoided, which implies only the perturbation
macroscopic variables, instead of the values of perturbation distribution functions along all
lattice velocity directions at each grid point, need to be stored. As a result, SLLBM requires
less memory than the standard LBM.

For instance, during the simulation of the acoustic wave propagation in the two-
dimensional imcompressible isothermal flow by the D2Q9 model, only six variables includ-
ing the present values and the intermediate values of perturbation velocity and density
need to be stored at each grid point. Compared with the standard LBM, the number of
variables to be stored at each grid point was reduced from 9 to 6, implying the SLLBM can
theoretically save about 33.3% of memory [32]. In the simulation of the three-dimensional
problem by D3Q19 model, the number of variables to be stored at each grid point was
reduced from 19 to 8, which means the SLLBM can theoretically save about 57.9% of
memory [41].

3. Numerical Examples

In this section, some numerical examples are used to verify the correctness of the
SLLBM for the simulation of acoustic waves propagation in the fluid; we consider the
following scenarios: (1) propagation of a Gaussian pulse, (2) propagation of a time-periodic
sound sources, (3) propagation of plane wave, (4) a Gaussian pulse interacting with a solid
wall, and (5) a Gaussian pulse scattered by a stationary circular cylinder.

Cases (1), (2), and (3) test the feasibility and accuracy of SLLBM through the simulation
of three different sound sources. Case (4) evaluates the feasibility of SLLBM for calculating
the acoustic reflections by a solid wall. Case (5) is used to test the feasibility of introducing
the IBM into the SLLBM framework to study the interaction between acoustic waves and
complex boundaries.

In these examples, the variables are all nondimensionalized, and the nondimensional
parameters of density, velocity, and pressure are ρ∞, c∞, and ρ∞c2

∞, respectively.

3.1. Case 1: Propagation of a Gaussian Pulse

As shown in Figure 2, the computational domain of Gaussian pulse propagation is
[−200, 200]× [−200, 200], the grid points are uniformly arranged, the grid scale δx = 1.0,
the time step δt = 1.0, and the relaxation time τ = 0.5. At the initial moment, a Gaussian
pulse was applied with the following formula:

ρ′(x, y, 0) = ε exp
(
−β
(
x2 + y2)) ρ = ρ0

u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(53)
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where ρ0 = 1.0 represents the density of the uniform mean flow, ε = 0.01 is the density
pulse amplitude; and β is the source shape factor obtained by β = ln 2/b2, where b = 8
representing the half-width Gaussian factor. For this form of Gaussian impulse propagation,
the exact solution for the perturbation density ρ′ is described by [42]:

ρ′(x, y, t) =
ε

2β

∫ ∞

0
exp

(
−ψ2/4β

)
cos(cstψ)J0(ψη)ψdψ (54)

where η =
[
(x− u0t0)

2 + y2
] 1

2 , and J0(·) is the zero-order Bessel function of the first kind.
For both cases of stationary medium u = 0.0 and moving medium u = 0.3, Figure 3
shows the contours of instantaneous perturbation density at t = 80, and Figure 4 shows
a comparison of the instantaneous perturbation density and the exact solution along the
centerline at y = 0. The calculation results of the SLLBM are in good agreement with the
exact solutions regardless of whether there is the convective effect, which shows that SLLBM
can simulate the acoustic waves propagation problems in stationary and moving medium.
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3.2. Case 2: Propagation of a Time-Periodic Acoustic Source

As the second case, we simulate the propagation of a time-periodic acoustic source in
a stationary medium. The acoustic source is given by the following formula:

ρ′(x, y, 0) = ε sin(ωt) ρ = ρ0
u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(55)

where ε = 0.01 is the density pulse amplitude, ω = π/10 represents the frequency of
the time-periodic acoustic source; and (ρ0, u0, v0) = (1.0, 0.0, 0.0) are the variables in the
stationary flow. The computation domain is a [−50, 50]× [−50, 50] square, and a uniform
grid is used, giving the grid spacing and the time step of 1.0.

For the static medium, Figure 5 shows the instantaneous perturbation density contours
of the time-periodic acoustic source in the stationary medium at t = 75 for two relaxation
times τ = 0.6 and 1.0. The SLLBM clearly captures the sound wave generated at the origin
and as it propagates outward, and the attenuation speed of the acoustic waves amplitude is
significantly greater when τ = 1.0. For quantitative analysis, Figure 6 shows a comparison
of the instantaneous perturbation density curve along the centerline at t = 75 with the
exact solution [43]. As can be seen, the results calculated by SLLBM are in good agreement
with the exact solution.
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ary flow obtained by the SLLBM at t = 75. (a) τ = 0.6, (b) τ = 1.0.
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Figure 6. Instantaneous perturbation density distribution along centerline at t = 75 for y = 0.
(a) τ = 0.6, (b) τ = 1.0.

For the moving medium, the Mach number of the uniform flow was set as 0.1 or 0.2,
and relaxation time as τ = 0.6. Figure 7 shows the perturbation density contours at t = 100.
It can be seen that the wavelengths were shorter in the left and longer in the right of the
sound source because of the Doppler effect. The wavelengths of acoustic waves located on
the left and right sides of the sound source should be [43]:

λle f t,right = (cs ∓ u)T (56)
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Figure 7. Instantaneous perturbation density contours of a time-periodic acoustic source in a uniform
flow obtained by the SLLBM at t = 100. (a) u = 0.1, (b) u = 0.2.

Since T = 2π
ω = 20, cs = 0.586, and u = 0.1 or 0.2, the wavelengths of acoustic waves

located on the left sides of the sound source should be 9.72 and 7.72, and the wavelengths
on the right side should be 13.72 and 15.72, respectively. For quantitative analysis, the
instantaneous perturbation density curves along the centerline at t = 100 are shown in
Figure 8, from which the Doppler effect is clear. It can be seen that the wavelengths of
acoustic waves located on the left sides of the sound source λle f t ≈ 9.64 or 7.80, and the
wavelengths on the right side λright ≈ 13.57 or 15.73, which shows that SLLBM can also
well simulate the convection effect of the moving medium.
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3.3. Case 3: Propagation of Plane Wave

In this case, we simulate the propagation of a one-dimensional plane wave. The
calculation model is shown in Figure 9. On the top and bottom boundaries, a periodic
boundary was applied, the right side is a nonequilibrium extrapolation boundary, and the
left side is a sound source, which is given by the following formula:

ρ′(x, y, 0) = ε sin(ωt) ρ = ρ0
u′(x, y, 0) = csε sin(ωt)/ρ u = u0

v′(x, y, 0) = 0 v = v0

(57)

where ε = 0.01, (ρ0, u0, v0) = (1.0, 0.0, 0.0) are the variables in the stationary flow, ω =
2πcs/λ represents the frequency of the sound source, and λ denotes the wavelength.
For this defined one-dimensional plane wave propagation, the exact solution for the
perturbation velocity u′ is given by:

u′(x, t) =
csε

ρ0
e−ϕx sin(ωt− kx) (58)

where ϕ = 4π2υ/csλ2 represents the attenuation coefficient of the acoustic wave. The
calculation domain was set at [0, 20]× [0, 1000], the calculation grid adopts a uniform grid,
the grid scale δx = 1.0, and the time step δt = 1.0.
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Figure 9. Schematic model of the plane wave calculation model.

Figure 10 provides the perturbation density contours for different kinematic viscosities
and different wavelengths at t = 75. The plane wave propagates in the form of a band,
and the larger the wavelength and the smaller the kinematic viscosity, the slower the
acoustic waves decays during the propagation process. To specifically judge the influence of
wavelength and kinematic viscosity on the propagation of the one-dimensional plane wave,
Figure 11 plots the comparison of the instantaneous perturbation velocity u′ distribution
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with the exact solution at the position y = 10. During the propagation of a one-dimensional
plane wave, the wavelength determines the phase of the acoustic wave, and the kinematic
viscosity determines the amplitude. For plane wave propagation with different kinematic
viscosities or wavelengths, the results obtained by SLLBM are in good agreement with the
exact solutions.
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3.4. Case 4: Propagation of a Gaussian Pulse with Wall Reflection

This case simulates the propagation of a Gaussian pulse with wall reflections by
SLLBM. The calculation model is shown in Figure 12 and the sound source is defined by:

ρ′(x, y, 0) = ε exp
(
−β
(
(x− 0)2 + (y + 75)2

))
ρ = ρ0

u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(59)

where ε = 0.01, (ρ0, u0, v0) = (1.0, 0.0, 0.0) are the variables in the stationary flow and
β = ln 2/32. The calculation domain was set at [−100, 100]× [−100, 100], the calculation
adopts a uniform grid, the grid scale δx = 0.5, and the time step δt = 0.5, and the relaxation
time τ = 0.5. The exact solution for the perturbation density ρ′ is defined by:

ρ′(x, y, t) =
ε

β

∫ ∞

0
exp

(
−ψ2/4β

)
cos(cstψ)[J0(ψη1) + J0(ψη2)]ψdψ (60)

where η1 =
[
(x− u0t)2 + (y + 75)2

]0.5
, η2 =

[
(x− u0t)2 + (y + 125)2

]0.5
.
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Figure 12. Computational model of Gaussian pulse propagation with wall reflection.

Figure 13 shows the perturbation density contours at t = 26, 120, and 160 obtained
by the SLLBM. Figure 14 shows the perturbation density distributions along the reflecting
wall y = −100 and x = y + 100 at these three moments calculated by the SLLBM and
compared with the exact solution. There are two peaks along x = y + 100 at t =120, 160,
the inner peak is generated by the reflection of the pulse with the wall, and the outer one is
generated by the propagation of the pulse. The numerical solutions are in good agreement
with the exact solution, which shows that SLLBM can simulate the problem of acoustic
waves encountering wall reflections.
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3.5. Case 5: A Gaussian Pulse Scattered by a Stationary Cylinder

In this problem, a stationary circular cylinder (radius R = 10) is located at the origin.
At the initial moment, the sound source is applied as follows (Figure 15):
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ρ′(x, y, 0) = ε exp

(
−β
(
(x− 400.0)2 + (y− 0.0)2

))
, ρ = ρ0

u′(x, y, 0) = 0 u = u0
v′(x, y, 0) = 0 v = v0

(61)

where ε = 0.01, (ρ0, u0, v0) = (1.0, 0.0, 0.0), and β = ln2. The calculation grid adopts a
uniform grid, the grid scale δx = 1.0, and the time step δt = 1.0. The circular cylinder was
treated using the immersion boundary method, the surface is described by 150 uniform
Lagrangian points, and the far-field was treated using the nonequilibrium extrapolation
method. Three monitoring points A, B, and C are located at (0, 5), (5 cos(3π/4), 5 sin(3π/4)),
(−5, 0) in the computational domain. Figure 16 shows the instantaneous density contours
at tcs = 4, tcs = 6, tcs = 10, and tcs = 12. The propagation of the pulse wave and the
interaction with the circular cylinder are shown. Figure 17 shows a comparison of the
perturbation density at the three monitoring points with the exact solution.The numerical
solution calculated by SLLBM-IBM is in good agreement with the exact solution [44], which
quantitatively verifies the correctness of this method.
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4. Conclusions

SLLBM was proposed and applied to the simulation of acoustic wave propagation in
fluids. This method recovered the LLBE to LNSE by C-E expansion analysis, and adopted
the fractional-step calculation technique; the predictor-corrector formula of SLLBM was
derived. Because the perturbation nonequilibrium distribution function can be approxi-
mated by second-order interpolation of the perturbation equilibrium distribution function
at other positions and times, the evolution of the perturbation distribution function could
be transformed into the evolution of the perturbation equilibrium distribution function.
Compared with standard LBM, SLLBM calculates the acoustic disturbance and the mean
flow separately, so macroscopic variables of the mean flow do not affect the calculation of
acoustic disturbance. At the same time, SLLBM has other advantages: the calculation pro-
cess is simpler, and the cost of computing memory is reduced. In addition, to simulate the
scattering effect of acoustic waves encountering objects, the immersed boundary method
(IBM) is within the framework of SLLBM so that the method can simulate the influence of
complex geometries.

Various numerical cases, including the propagation of a Gaussian pulse and the
interaction with a wall or cylinder, the propagation of a time-periodic acoustic source, and
plane wave, were simulated to validate the accuracy of SLLBM. The results obtained by
SLLBM are in good agreement with the exact solutions, which proves the accuracy and
feasibility of SLLBM in the simulation of acoustic wave propagation.
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cs speed of sound ξ lattice velocity
f density distribution function w weight coefficient of the lattice
f boundary force terms of the Euler point ρ denisity
F boundary force terms of the Lagrangian point υ kinematic viscosity
K kernel function µ dynamic viscosity
Kn Knudsen number τ relaxation time
M number of the Euler points
N number of the Lagrangian point Superscripts
r position of the Euler point ′ perturbation part
s index of the Lagrangian point
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