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Abstract: This paper studies the intelligent reflecting surface (IRS) assisted secure transmission in
unmanned aerial vehicle (UAV) communication systems, where the UAV base station, the legitimate
receiver, and the malicious eavesdropper in the system are all equipped with multiple antennas. By
deploying an IRS on the facade of a building, the UAV base station can be assisted to realize the
secure transmission in this multiple‑input multiple‑output (MIMO) system. In order to maximize
the secrecy rate (SR), the transmit precoding (TPC)matrix, artificial noise (AN)matrix, IRS phase shift
matrix, andUAVposition are jointly optimized subject to the constraints of transmit power limit, unit
modulus of IRS phase shift, andmaximummoving distance ofUAV. Since the problem is non‑convex,
an alternating optimization (AO) algorithm is proposed to solve it. Specifically, the TPC matrix and
AN covariancematrix are derived by the Lagrange dualmethod. The alternating directionmethod of
multipliers (ADMM), majorization‑minimization (MM), and Riemannian manifold gradient (RCG)
algorithms are presented, respectively, to solve the IRS phase shift matrix, and then the performance
of the three algorithms is compared. Based on the proportional integral (PI) control theory, a secrecy
rate gradient (SRG) algorithm is proposed to iteratively search for the UAV position by following
the direction of the secrecy rate gradient. The theoretic analysis and simulation results show that
our proposed AO algorithm has a good convergence performance and can increase the SR by 40.5%
compared with the method without IRS assistance.

Keywords: intelligent reflecting surface (IRS); unmanned aerial vehicle (UAV); alternating optimiza‑
tion (AO); secure communication

1. Introduction
Due to their low cost, high mobility, and easy deployment, unmanned aerial vehicles

(UAVs) have been widely used in logistics transportation, earthquake relief, aerial search
and rescue, etc. In addition, UAVs can act as air base stations, relays or user nodes, and play
important roles in wireless communication. Comparedwith traditional terrestrial commu‑
nication, on the one hand, UAVs can use more sophisticated three‑dimensional (3D) beam‑
forming technology to greatly improve channel capacity; on the other hand, UAVs have a
high probability of forming line‑of‑sight (LoS) links with ground users with good channel
quality. However, these characteristics of UAVs can also pose security challenges to wire‑
less networks, as it is also easier for eavesdroppers to form LoS links with transmitters and
perform passive eavesdropping or active attacks. Therefore, the security problem in UAV
communication systems is a research content worthy of attention. However, traditional en‑
cryption techniques require high computational complexity and consume large amounts
of energy, which are not suitable for energy‑constrained UAV platforms.
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As apowerful supplement to the upper layer encryption techniques, the physical layer
security (PLS) technology uses the physical layer characteristics of the channel itself to im‑
prove the secrecy performance. While ensuring the secure and reliable communication of
the legitimate receiver, it tries to avoid the effective eavesdropping of eavesdroppers [1–4].
PLS technology in UAV communication networks can achieve secure transmission with
low energy consumption through the differentiated design of wireless channels. It does
not require key management and distribution, and omits the encoding and decoding pro‑
cess, making it suitable for resource‑constrained UAV communication platforms. There‑
fore, it has a high application prospect and research value.

The PLS of UAV communication networks has beenwidely investigated. Mamaghani
and Hong considered the power allocation optimization problem between the confiden‑
tial signal and the artificial noise (AN) signal transmitted by the UAV base station [5]. Ji
et al. regarded the cache‑enabled UAV as a reliable relay and proposed an optimization
problem of maximizing the minimum SR among users [6]. For the case where the eaves‑
dropper location obeys the Poisson point process, Sun et al. derived a closed expression
for the lower bound on the average secrecy rate (ASR) and maximized it [7]. When only
the statistical illegitimate channel state information (CSI) was known, Bao et al. derived
a closed expression for the secrecy outage probability (SOP) and the ergodic SR [8], and
Yuan et al. optimized the UAV trajectory and beamforming vector [9]. Dong et al. con‑
sidered the coordinate multiple points technology to form a UAV swarm relay, by jointly
optimizing the transmit power of the base station and UAV relay, power allocation coef‑
ficient and beamforming on UAV relays, and the trajectory to maximize the ASR [10]. Ye
et al. considered that the UAV base station serves the legitimate UAV users under the
eavesdropping of illegal UAVs, and derived the closed expressions of SOP and average
secrecy capacity [11]. Wang et al. investigated the cooperation of high‑altitude platform
and UAVs to provide services for ground users, and jointly optimized channel allocation,
users’ power, and UAVs’ three‑dimensional (3D) position in the NOMA‑enabled network
to counter an eavesdropping UAV [12].

1.1. Related Work
Although the above PLS technologies have been studied in‑depth, when the legal

channel quality is further deteriorated or the energy consumption of the communication
node is limited, the above techniques may not meet the needs of secure communication.
Therefore, the emerging intelligent reflecting surface (IRS) technology is introduced into
the design of the secure UAV communication system. By integrating a large number of
low‑cost passive reflection components and controlling each amplitude and phase to re‑
flect the incident signal independently, IRS can achieve a passive 3D beamforming, which
can modify the wireless propagation environment and bring a higher degree of design
freedom to secure wireless communications [13,14]. Wang et al. deployed an IRS on the
UAV as a trusted relay tomaximize the ASR by jointly optimizing the beamforming vector,
IRS phase shift matrix, and UAV’s trajectory [15]. Sun et al. optimized the positions and
beamforming of a UAV base station and IRS deployed on building walls to maximize the
SR [16], and Pang et al. further optimized the trajectory of UAVs [17]. In addition, Fang
et al. optimized the transmission power of the base station [18]. In contrast, Li et al. con‑
sidered a time division multiple access communication system [19], and Li et al. extended
this problem to a multi‑user scenario [20]. In addition to the convex optimization methods
used in the above research, Guo et al. used the deep deterministic policy gradient (DDPG)
framework and proposed a twin‑DDPG deep reinforcement learning algorithm to solve
the SR optimization problem [21].

Although the aboveworks have carried out a certain degree of research on IRS‑assisted
UAV secure communication, they are all based on themultiple‑input single‑output (MISO)
channel or single‑input single‑output (SISO) channel and do not involve the problems of
UAV‑assisted multiple‑input multiple‑output (MIMO) scenarios. In a MIMO system, mul‑
tiple parallel data streams can be transmitted at the same time to increase channel capac‑
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ity, and the spatial multiplexing gain and spatial diversity gain can be used to overcome
the channel fading, which has obvious advantages compared with MISO and SISO sys‑
tems. However, due to the difference of channel models, the optimization problems in
MIMO system are much more complicated than that in MISO systems. Firstly, the beam‑
forming vector optimization in MISO systems needs to be transformed into covariance
matrix optimization in MIMO systems. Secondly, the expression of the achievable rate is
in the form of the logarithm of scalars in MISO communication systems, while in MIMO
communication systems, the achievable rate expression takes the form of the logarithm
of matrices determinant. This means that the optimization objectives, constraints, and op‑
timization techniques are different from those in MISO systems, which is more challeng‑
ing to deal with. Especially in the optimization of deployment position of the UAV, the
strong non‑convexity of the optimization problem makes it difficult to apply similar algo‑
rithms such as the successive convex approximation (SCA) and the semi‑definite program‑
ming (SDP) to MIMO scenarios, and therefore difficult to solve using traditional convex
optimization methods.

Therefore, current works have conducted in‑depth research on the PLS communica‑
tion of UAV‑MISO systems, but only a few of them involve MIMO scenarios: considering
the impact of multi‑antenna eavesdroppers on UAV communication, Maeng et al. pro‑
posed a new linear precoder design scheme for data and AN transmission and derived
a closed expression for the ASR for cellular connected UAVs networks [22], but they did
not address the optimal design of deployment position of the UAV. Yuan et al. studied
the secure beamforming and UAV trajectory planning problems in MIMO transceiver and
multi‑antenna eavesdropper (MIMOME) scenarios [9], but this research used the exhaus‑
tive searchmethod of discrete processing, which has a large amount of calculation and low
accuracy and thus makes it easy to lose the optimal solution. Mamaghani et al. proposed
a full‑duplex UAV relay scheme based on AN to maximize the ASR, but the reinforce‑
ment learning method requires high hardware cost and is not suitable for environmental
changes [23]. However, the above research does not involve the booming IRS technology
and does not fully exploit the secure communication capabilities of UAV‑MIMO systems.

1.2. Main Contributions
As mentioned above, the current various research works mainly focus on the secure

transmission of UAV‑MISO systems. The related research on the PLS of UAV‑MIMO com‑
munication is still in its infancy currently. In particular, there is still a research gap in the
effect of IRS on the PLS of UAV‑MIMO systems, and the corresponding design of the opti‑
mization algorithm is not reported in the literature yet, which motivates this work. In this
paper, we jointly optimize the UAV position, transmit precoding (TPC) matrix and AN
matrix, and IRS phase shift matrix to maximize the SR of an IRS assisted UAV‑MIMOME
communication system. The formulated problem is non‑convex, and it is quite difficult to
convert it into a convex problem for an approximate solution using commonmethods such
as the successive convex approximation (SCA) or fractional programming. Therefore, we
propose an alternating optimization (AO) algorithm to deal with this problem and obtain
the suboptimal solution through multiple iterations. The main contributions of this paper
are summarized as follows.

(1) Different from the above literatures which focusedMISO communication [15–21], we
utilize the IRS to enhance the security of the UAV‑MIMOMEwireless communication
system. Specifically, the system is composed of a UAV base station, an IRS, a ground
legal receiver, and a ground eavesdropper. Each node is equipped with multiple an‑
tennas. The SR of theUAV communication system ismaximized by jointly optimizing
the TPC matrix and AN matrix, the IRS phase shift matrix, and the UAV placement
subjected to transmit power constraint, unit modulus constraint, andmaximummov‑
ing distance constraint within each iteration interval.

(2) Since the optimization problem is non‑convex, an AO algorithm is designed to solve
it. Specifically, using theweightedminimummean square error (WMMSE) algorithm
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to convert the original problem into a tractable equivalent form. For the optimization
of the TPCmatrix and ANmatrix, we introduce auxiliary matrices and solve their ex‑
pressions by the Lagrange dual method. For the optimization of the IRS phase shift
matrix, after the problem is transformed into a constrained quadratically constrained
quadratic program (QCQP) problem, three methods of alternating direction method
ofmultipliers (ADMM),majorization‑minimization (MM), andRiemannianmanifold
gradient (RCG) are used to solve it. For the optimization of the UAV placement, ex‑
isting research based on MISO channels [24,25] and traditional convex optimization
methods for other parameters [26–28]–such as UAV coverage or outage probability–
cannot be directly applied to MIMO scenarios with more complex channel models.
Therefore, we propose a secrecy rate gradient (SRG) method, which combines the
change of the SR with the UAV’s proportional integral (PI) control theory, so that the
UAV moves towards the position with greater SR until it reaches the point with the
maximum SR.

(3) The simulation results verify the advantages of the proposed algorithm compared
with the benchmark schemes. It can be seen that the proposed AO algorithm can
guide the UAV to move closer to the IRS, which proves that the IRS can effectively
improve the security of the UAV communication system. In addition, increasing the
transmission power and the number of antennas at legitimate nodes are beneficial
to improve the secrecy performance. Moreover, the channel fading coefficients also
play an important role in secure UAV‑MIMO communications.

The rest parts of this paper are organized as follows. In Section 2, the system model
and the optimization problem are formulated. In Section 3, we propose an AO algorithm
to solve the optimization problem, which alternately solves the three sub‑problems of the
UAV position, TPC matrix, and AN matrix, and IRS phase shift matrix. In Section 4, we
present the simulation results to verify the effectiveness of the proposed algorithms. We
conclude this paper in Section 5.

Notations: In this paper, matrices and column vectors are denoted by bold uppercase
letters and bold lowercase letters, Tr(·) and det(·) represent trace and determinant. (·)T ,
(·)H, (·)∗, and (·)† denote the transpose, Hermitian, conjugate, and pseudo‑inverse opera‑
tors, respectively. CM×1 denotes the space of M‑dimensional complex‑valued
column vector.

2. SystemModel and Problem Formulation
2.1. System Model

As shown in Figure 1, we consider a MIMOME air‑to‑ground communication sys‑
tem, where the UAV base station equipped with a linear array transmits the information
to the ground legitimate user Bob. Simultaneously, a ground eavesdropper Eve tries to
eavesdrop on confidential information. To get close to Bob and stay away from Eve, the
UAV can actively move to find the best location for secure communication. All nodes are
equipped with multiple antennas. The number of transmit antennas at the UAV is NT ,
and the numbers of receive antennas at the Bob and Eve are NB and NE, respectively. In
order to enhance the secrecy capacity, an IRS is deployed on the facade of a building to
assist the communication between the UAV and Bob, which reflects the transmit signal
of the UAV to increase the legitimate channel gain and damage the wiretap channel. The
IRS consists of M = MX × MY reflecting elements. Define the IRS phase shift matrix as
Θ = diag{θ1, . . . , θm, . . . , θM}, ∀m ∈ M, where θm = ejϕm , ϕm ∈ [0, 2π]. Assuming that the
element spacing of each antenna array is half wavelength, namely, d = λc/2.

Without loss of generality, we consider a 3D Cartesian coordinate communication
system. The UAV’s location is denoted as pA = [xA, yA, zA]

T , and the coordinates of Bob,
IRS, and Eve are pB = [xB, yB, zB]

T , pR = [xR, yR, zR]
T , and pE = [xE, yE, zE]

T , respectively.
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Figure 1. An IRS‑assisted secure ground‑to‑air communication system.

The channel gains between the UAV and ground receivers consist of LoS and non‑
LoS (NLoS) components. Therefore, we assume that the air‑to‑ground channel adopts the
Rician fading channel model, and its channel gain depends on the Rician factor. In this
paper, we assume that the transmitter can obtain the perfect CSI of all communication
nodes, including the eavesdropper’s CSI. This assumption is possible, for example, when
eavesdroppers are also legitimate users of the network, but they are not supposed to re‑
ceive certain information, and they should be considered passive eavesdroppers. In this
case, these undesired users can feed back perfect CSI to the transmitter. Based on existing
IRS‑aided communication channel estimation methods [29], we can directly focus on the
final optimization task [15–18]. Therefore, this paper assumes that all CSI is available. The
channel gain between the UAV and terrestrial nodes, denoted by HAi, is given by

HT
Ai =

√
β0d−cAi

Ai · H̃T
Ai =

√
β0d−cAi

Ai

(√
kAi

kAi + 1
HLoS

Ai +

√
1

kAi + 1
HNLoS

Ai

)
, i ∈ B, E, (1)

where β0 is the reference channel gain at distance 1 m, dab denotes the distance, kab is the
Rician factor between node a and b, cab is the path loss exponent for a to b link. HLoS

Ai repre‑
sents the deterministic LoS component, and HNLoS

Ai represents the random scattering com‑
ponent. Let ϕi and φi denote the azimuth angle‑of‑arrival (AOA) and angle‑of‑departure
(AOD), and let ϑi and θi denote the elevation AOA and AOD, respectively. The adjacent
antenna distance on the transmitter and IRS array is d, then HLoS

Ai can be expressed as

HLoS
Ai = hLoS(A)Ai · hLoS(D)Ai , (2)

where
hLoS(A)Ai =

[
1, e−j 2π

λc d sin ϑAi cos ϕAi , . . . , e−j 2π
λc (Ni−1)d sin ϑAi cos ϕAi

]T
, (3)

hLoS(D)Ai =
[
1, e−j 2π

λc d sin θAi cos φAi , . . . , e−j 2π
λc (NT−1)d sin θAi cos φAi

]
. (4)

The random scattering component HNLoS
Ai is the NLoS component, which is modeled

by the circularly symmetric complex Gaussian (CSCG) distribution with zero mean and
unit variance.

Similarly, we assume that the channel between the UAV and IRS contains LoS and
NLoS components, so the Rician fading channel model is adopted, which can be
expressed as

HAR =
√

β0d−cAR
AR · H̃AR =

√
β0d−cAR

AR hLoS(A)AR hLoS(D)AR , (5)

where hLoS(A)AR and hLoS(D)AR are given by
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hLoS(A)AR =
[
1, e−j 2π

λc d sin ϑAR cos ϕAR , . . . , e−j 2π
λc d sin ϑAR((MX−1) cos ϕAR), . . . , e−j 2π

λc d sin ϑAR((MX−1) cos ϕAR+(MY−1) sin ϕAR)
]T

, (6)

hLoS(D)AR =
[
1, e−j 2π

λc d sin θAR cos φAR , . . . , e−j 2π
λc (NT−1)d sin θAR cos φAR

]
. (7)

In addition, the channel gains between IRS and terrestrial nodes can be expressed as

HT
Ri =

√
β0d−cRi

Ri · H̃T
Ri =

√
β0d−cRi

Ri · √ kRi
kRi + 1

hLoS(A)Ri · hLoS(D)Ri +

√
1

kRi + 1
HNLoS

Ri , i ∈ {B, E}, (8)

where HNLoS
Ri follows CSCG distribution, and

hLoS(A)Ri =
[
1, e−j 2π

λc d sin θRi cos φRi , . . . , e−j 2π
λc (Ni−1)d sin θRi cos φRi

]T
, (9)

hLoS(D)Ri =
[
1, e−j 2π

λc d sin θRi cos φRi , . . . , e−j 2π
λc d sin θRi((MX−1) cos φRi), . . . , e−j 2π

λc d sin θRi((MX−1) cos φRi+(MY−1) sin φRi)
]
. (10)

In order to achieve the secure transmission of confidential information, with the help
of multiple antennas, the UAV focuses the confidential signal to Bob by generating a TPC
matrix, while sending AN signal to Eve to damage its eavesdropping quality. The trans‑
mitted signal can be written as

x = Vs+ z, (11)

where V ∈ CNT×Nd represents the precoding matrix, Nd ≤ min(NT , NB) denotes the num‑
ber of data streams, s ∼ CN (0, INd) represents the transmitted signal, and z ∼ CN (0,Z)
denotes the AN vector with zero mean and covariance matrix Z. Therefore, the received
signals of the legitimate user and eavesdropper can be expressed as

yi =
(
HH

RiΘHAR +HH
Ai

)
x+ ni, i ∈ {B, E}, (12)

where ni ∼ CN (0, σ2
i INi ), i ∈ {B, E}.

2.2. Quadcopter UAV Model
Define c(n) and u(n) as the state vector and input vector of the quadrotor UAV control

system at a given iteration time n, respectively, and A and B respectively represent the
influence of the state vector and the input vector on the derivative of each element in the
state vector. The control system of quadcopter UAV is modeled as the following matrix
differential equation,

Σ :

{ .c(n) = Ac(n) + Bu(n)
.c(0) = c0

, (13)

We take the square of the speed of the four rotors of the quadrotor UAV as the input
vector u(n), and the state vector contains four parts: the UAV position, the orientation, and
the derivative of the two–namely, c = (pT

A,oT
A,

.
pT

A,
.
oT

A). The direction vector is expressed
as oA = (−θA, ϕA, ψA)

T , where θA, ϕA and ψA represent pitch angle, roll angle, and yaw
angle, respectively. We adopt the linear model in [30] to express this UAV system as

.
s(n) =


06×3 06×1 06×1 06×1 I6×6
01×3 g 0 0 01×6
01×3 0 g 0 01×6
04×3 04×1 04×1 04×1 04×6

s(n)
+

(
08×4
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 
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2.3. Problem Formulation 

Based on the above analysis and to facilitate the solution, we further define the AN 

matrix Z V VH

E E
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 , and set ( )H H ΘH H1 H H
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u(n) +
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)
s(0) = s0
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where g is the gravity constant and
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0
0
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c(n)A,γ =


p(n)A,γ
.
p(n)A,γ

o(n)A,γ
.
o(n)A,γ

. (16)

2.3. Problem Formulation
Based on the above analysis and to facilitate the solution, we further define theANma‑

trix Z = VEVH
E , VE ∈ CNT×NT , and set HB = σ−1

B

(
HH

RBΘHAR +HH
AB

)
, and

HE = σ−1
E

(
HH

REΘHAR +HH
AE

)
, the achievable rates of the legitimate user and eavesdrop‑

per can be expressed, respectively, as

RB = log2

∣∣∣INB +HBVVHHH
B J

−1
B

∣∣∣, (17)

RE = log2

∣∣∣INE +HEVVHHH
E J

−1
E

∣∣∣, (18)

where JB = HBVEVH
E H

H
B + INB , and JE = HEVEVH

E H
H
E + INE . Then, the SR Rsec is the

difference between the two achievable rates. We aim to maximize the SR by jointly opti‑
mizing the precoding matrixV, ANmatrix Z, IRS phase shift matrix Θ, and UAV position
pA. Therefore, the SR maximization problem of the UAV communication system can be
formulated as

max
V,VE ,Θ,pA

Rsec = [RB − RE]
+

s.t. Tr
(
VVH +VEVH

E

)
≤ Pmax

|θm| = 1, ∀m ∈ M
∥pA(n)− pA(n − 1)∥ ≤ δ, ∀n ∈ N ,

(19)

where Pmax is the maximum transmit power. The first constraint is the transmit power
limit, the second constraint is the phase shift matrix unit modulus constraint, and the last
constraint is the UAV moving distance limit between iterations.

3. Proposed Solution for Joint Optimization
In this section, we propose an AO algorithm to solve the Equation (19). The prob‑

lem is decomposed into three subproblems; the precoding matrix V and ANmatrix Z, the
IRS phase shift matrix Θ, and the UAV position pA are solved alternately. Since this op‑
timization problem is non‑convex and thus difficult to solve, we need to transform it into
an easy‑to‑solve form. Following the work of Hong et al. on IRS aided secure MIMO
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communication [31], we convert the objective function of Equation (19) into the following
form:

Rsec = log2

∣∣∣INB +HBVVHHH
B J

−1
B

∣∣∣− log2

∣∣∣INE +HEVVHHH
E J

−1
E

∣∣∣
= log2

∣∣∣∣INB +HBVVHHH
B

(
INB +HBVEVH

E H
H
B

)−1
∣∣∣∣︸ ︷︷ ︸

f1

+ log
∣∣∣INE +HEVEVH

E H
H
E

∣∣∣︸ ︷︷ ︸
f2

− log
∣∣∣INE +HE

(
VVH +VEVH

E

)
HH

E

∣∣∣︸ ︷︷ ︸ ·

f3

(20)

The problem is still an intractable non‑convex problem that requires further reformu‑
lation. As for f1, we transmit the SR maximation problem to another equivalent problem
by introducing the weighted minimum mean square error (WMMSE) method [32]. By in‑
troducing the linear decoding matrix Z1 ∈ CNT×d, the MSE matrix of f1 is

E1(Z1,V,VE) ≜ Es,z,nB

[
(ŝ− s)(ŝ− s)H

]
=
(
Id − ZH

1 HBV
)(

Id − ZH
1 HBV

)H
+ ZH

1

(
INB +HBVEVH

E H
H
B

)
Z1.

(21)

Introducing the slack variable X1 ∈ Cd×d, and using Lemma 4.1 in [33], f1 can be
reformulated as

f1 = max
Z1,X1≽0

h1(Z1,V,VE,X1) = max
Z1,X1≽0

log|X1| − Tr(X1E1(Z1,V,VE)) + Nd. (22)

Then the optimal Z1 and X1 can be expressed as:

Z∗
1 = argmax

Z1
h1(Z1,V,VE,X1) = argmin

ZB
Tr(X1E1(Z1,V,VE))

=
(
INB +HBVEVH

E H
H
B +HBVVHHH

B

)−1
HBV,

(23)

X∗
1 = argmax

X1≽0
h1(Z1,V,VE,X1) = [E1(Z∗

1 ,V,VE)]
−1

=
[(
INd − Z∗

1
HHBV

)(
INd − Z∗

1
HHBV

)
+Z∗

1
H
(
INB +HBVEVH

E H
H
B

)
Z∗

1

]−1
.

(24)

Similarly, by introducing the linear decoding matrix Z2 ∈ CNE×NT and the slack vari‑
able X2 ∈ CNT×NT , we can get the MSE matrix of f2, and f2 can be reformulated as

E2(Z2,VE) ≜
(
INT − ZH

2 HEVE

)(
INT − ZH

2 HEVE

)H
+ ZH

2 Z2, (25)

f2 = max
Z2,X2≽0

h2(Z2,VE,X2) = max
Z2,X2≽0

log|X2| − Tr(X2E2(E2,VE)) + NT . (26)

Then the optimal Z2 and X2 can be expressed as

Z∗
2 = argmax

Z2
h2(Z2,VE,X2) =

(
INE +HEVEVH

E H
H
E

)−1
HEVE, (27)

X∗
2 = argmax

X2≽0
h2(Z2,VE,X2) = [E2(Z∗

2 ,VE)]
−1

=
[(
INT − Z∗

2
HHEVE

)(
INT − Z∗

2
HHEVE

)H
+ Z∗

2
HZ∗

2

]−1
.

(28)

As for f3, we need to introduce Lemma 1 in [34] for reformulation,

f3 = max
X3≽0

h2(V,VE,X3) = max
X3≽0

log|X3| − Tr(X2E3(V,VE)) + NE. (29)
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By introducing the slack variable X3 ∈ CNE×NE , the MSE matrix of f3 is

E3(V,VE) = INE +HE

(
VVH +VEVH

E

)
HH

E , (30)

Then the optimal X3 can be expressed as

X∗
3 = argmax

X3≽0
h3(V,VE,X3) = [E3(V,VE)]

−1 =
[
INE +HE

(
VVH +VEVH

E

)
HH

E

]−1
. (31)

Therefore, the optimization problem can be expressed as

(P1) : max
Z1,X1≽0,Z2,X2≽0,X3≽0

Rsec

= h1(Z1,V,VE,X1) + h2(Z2,VE,X2) + h3(V,VE,X3)

s.t. Tr
(
VVH +VEVH

E

)
≤ Pmax

|θm| = 1, ∀m ∈ M
∥pA(n)− pA(n − 1)∥ ≤ δ, ∀n ∈ N .

(32)

We can solve this problem by applying the AO method. Firstly, in the following sub‑
problem (P2), fix the value of Θ,pA to optimize the linear decoding matrices Z1,Z2, slack
variablesX1,X2, TPCmatrixV, andANmatrixVE. Secondly, in the following sub‑problem
(P3), fix the value of Z1,X1,Z2,X2,X3,V,VE, and pA to optimize the phase shift matrix Θ.
And finally, in the following sub‑problem (P4), given Z1,X1,Z2,X2,X3,V,VE, and Θ, the
position of the UAV base station can be solved by the SRG method.

3.1. Optimizing Z1,X1,Z2,X2,X3,V, and VE

Simplifying Formula (32), the sub‑optimization problem (P2) can be abbreviated as

(P2) : min
V≽0,VE≽0

Tr
(
X1ZH

1 HBVVHHH
B Z1

)
+ Tr

(
X1ZH

1 HBVEVH
E H

H
B Z1

)
−Tr

(
X1ZH

1 HBV
)
− Tr

(
X1VHHH

B Z1

)
− Tr

(
X2ZH

2 HEVE

)
− Tr

(
X2VH

E H
H
E Z2

)
+Tr

(
X2ZH

2 HEVEVH
E H

H
E Z2

)
+ Tr

(
X3HEVVHHH

E

)
+ Tr

(
X3HEVEVH

E H
H
E

)
s.t.Tr

(
VVH

)
+ Tr

(
VEVH

E

)
≤ PT .

(33)

The sub‑problem is a convex QCQP problem for V and VE, but the computational
complexity is high if solved directly using CVX. Therefore, the Lagrange dual method is
used to solve it. The Lagrangian function of (P2) is

L1(V,VE, µ)

= Tr
(
X1ZH

1 HBVVHHH
B Z1

)
+ Tr

(
X1ZH

1 HBVEVH
E H

H
B Z1

)
− Tr

(
X1ZH

1 HBV
)

−Tr
(
X1VHHH

B Z1

)
− Tr

(
X2ZH

2 HEVE

)
− Tr

(
X2VH

E H
H
E Z2

)
+ Tr

(
X2ZH

2 HEVEVH
E H

H
E Z2

)
+Tr

(
X3HEVVHHH

E

)
+ Tr

(
X3HEVEVH

E H
H
E

)
+ µ

[
Tr
(
VVH

)
+ Tr

(
VEVH

E

)
− pT

]
.

(34)

And its dual problem is

max
µ≥0

min
V≽0,VE≽0

L1(V,VE, µ). (35)

By taking the first‑order derivative, the optimal solutions ofV andVE are obtained as

V∗ =
(
µINT +HV

)†HH
B Z1XH

1 ,
V∗

E =
(
µINT +HVE

)†HH
E Z2XH

2 .
(36)

where HVE = HH
B Z1X1ZH

1 HB +HH
E Z2X2ZH

2 HE +HH
E X3HE and HV = HH

B Z1X1ZH
1 HB +

HH
E X3HE.
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Further, the eigenvalue decomposition is performed, and the optimal solution are
written as

V∗ = Q†(µINT + Λ
)†Q†HHH

B Z1XH
1 ,

V∗
E = QE

†(µINT + ΛE
)†Q†

E
HHH

E Z2XH
2 .

(37)

In addition, the optimal dual variable µ should satisfy

µ
[
Tr
(
V∗V∗H

)
+ Tr

(
V∗

EV
∗H

E

)
− PT

]
= 0. (38)

Define the monotone non‑increasing function f (µ) = Tr
(
VVH

)
+ Tr

(
VEVH

E

)
, we

first check whether f (0) ≤ Pmax is satisfied when µ = 0, if this condition is met, then µ∗ =
0. Otherwise, the optimal value of the dual variable µ∗ can be obtained by the bisection
search method.

3.2. Optimizing Phase Shift Matrix
In this part, by fixing the value ofZ1,X1,Z2,X2,X3,V,VE, andpA, the sub‑optimization

problem (P3) can be abbreviated as

(P3) : min
V≽0,VE≽0

Tr
(
X1ZH

1 HBVVHHH
B Z1

)
+ Tr

(
X1ZH

1 HBVEVH
E H

H
B Z1

)
− Tr

(
X1ZH

1 HBV
)

−Tr(X1VHBZ1)− Tr
(
X2ZH

2 HEVE

)
− Tr

(
X2VH

E H
H
E Z2

)
+Tr

(
X2ZH

2 HEVEVH
E H

H
E Z2

)
+ Tr

(
X3HEVVHHH

E

)
+ Tr

(
X3HEVEVH

E H
H
E

)
s.t. |θm| = 1, ∀m ∈ M.

(39)

Extracting Θ and ΘH in the trace operation, the objective function of (P3) can be for‑
mulated as

Tr
(

ΘHDH
)
+ Tr(ΘD) + Tr

(
ΘF2ΘHG2

)
+ Tr

(
ΘHF1ΘG1

)
+ ct, (40)

where ct is a constant term, which can be ignored in optimization, and

VS = VVH +VEVH
E , (41)

C1 = Z1X1ZH
1 , (42)

C2 = Z2X2ZH
2 , (43)

D = HARVSHABC1HH
RB +HARVSHAEX3HH

RE +HARVEVH
E HAEC2HH

RE
−HARVX1ZH

1 H
H
RB −HARVEX2ZH

2 H
H
RE,

(44)

G1 = HARVVHHH
AR, (45)

G2 = HARVEVH
E H

H
AR, (46)

F1 = HRBC1HH
RB +HREX3HH

RE, (47)

F2 = F1 +HREC2HH
RE. (48)

By the Equation (1.9.5) in [35], remove the trace operation in the third and fourth terms
of (40), namely:

Tr
(

ΘHF1ΘG1

)
= θH

(
F1 ⊙GT

1

)
θ, (49)

Tr
(

ΘHF2ΘG2

)
= θH

(
F2 ⊙GT

2

)
θ, (50)

where θ = [θ1, θ2, . . . , θM], similarly, the trace operation in the first and second terms of
(40) can be removed as

Tr
(

ΘHDH
)
= dH(θ∗)ΘTr(ΘD) = θTd, (51)
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where θ∗ is the conjugate vector of θ and d is the vector composed of elements on the
diagonal of D. Thus, the phase shift matrix optimization problem can be rewritten as

min
ϕ

f (θ) = θHΞθ+ θTd+ dHθ∗

s.t.|θm| = 1, ∀m ∈ M,
(52)

where Ξ = F2 ⊙GT
2 + F1 ⊙GT

1 . The right side of the equation is positive semi‑definite
matrices, so Ξ is also a positive semi‑definite matrix. Then, the optimization problem sim‑
plifies to

min
ϕ

f (θ) = θHΞθ+ 2ℜ
{

θHd∗
}

s.t.|θm| = 1, ∀m ∈ M.
(53)

For the form of the optimization problem in (53), we solve it using three low complex‑
ity methods: ADMM [36], MM [37], and RCG [38].

3.2.1. Alternating Direction Method of Multipliers
Introducing an auxiliary variable q for θ, then the optimization problem can be refor‑

mulated as
max

θ,q
f̂1(θ) = −θHΞθ− 2ℜ

{
θHd∗

}
− ξ

2∥q− θ∥2
2

s.t.q = θ

|θm| = 1, ∀m ∈ M,

(54)

where ξ > 0 is the penalty parameter. Defining g2(θm) = 0 if |θm| = 1 and
g2(θm) = ∞, if |θm| ̸= 1, ρR = [ρR,1, . . . , ρR,1]

T and ρI = [ρI,1, . . . , ρI,1]
T are Lagrange

variables corresponding to the real and imaginary parts of q− θ = 0, respectively. Let
ρ = ρR + ρI , then its Lagrange function can be written as

L2(q, θ,λR,λI) = −qHΞq−
M

∑
m=1

g1(θm)−
ξ

2
∥q− θ∥2

2 +ℜ
{
−2qHd∗ + (ρR + jρI)

H(q− θ)
}

. (55)

Its dual function is

min
ρR ,ρI

G(ρR, ρI) = max
q,θ

L2(q, θ, ρR, ρI). (56)

Therefore, the iterative form of ADMM solution for the dual problem is

θ(n+1) = argmax
θ

L2

(
q(n), θ, ρ(n)

)
, (57)

q(n+1) = argmax
q

L2

(
q, θ(n+1), ρ(n)

)
, (58)

ρ(n+1) = ρ(n) − ξ
(
q(n+1) − θ(n+1)

)
. (59)

For the iteration of q(n+1), it is necessary to derive the objective function, and if the
derivative is zero, the specific closed expression can be obtained as

q(n+1) = (2Ξ + ξIM)−1
(
−2d∗ + ρ(n) + ξθ(n+1)

)
. (60)

For the iteration of θ(n+1), taking out the terms related to θ in L2, the optimization
problem can be written as

max
θ

− ξ

2

∥∥∥q(n) − θ
∥∥∥2

2
+ℜ

{(
ρ
(n)
R + jρ(n)

I

)H(
q(n) − θ

)}
−

M

∑
m=1

g1(θm). (61)
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Since the constant term does not affect the solution of the optimization problem, we
continue to add the constant term and express the objective function as

max
θ

− ξ

2

∥∥∥∥q(n) − 1
ξ

ρ(n) − θ

∥∥∥∥2

2
−

M

∑
m=1

g1(θm). (62)

If we want to obtain the maximum value of the objective function, θ(n+1) needs to
satisfy

θ(n+1) = Pj
(
q(n) − 1

ξ
ρ(n)

)
. (63)

Let θ = q(n) − ρ(n)/ξ, then the projection operation can be expressed as

∠θ
(n+1)
m = ∠θm. (64)

According to Lemma 3 in [36], we choose ξ = ι∥Ξ∥2, where ι ≥ 1 is the minimum
integer which satisfies (ξ/2)IM − Ξ≻0.

3.2.2. Majorization‑Minimization
The core idea of the MM algorithm is to design a series of approximate optimization

functions to control the upper limit of the original function, and to converge to the optimal
solution of the original objective by minimizing the sequence.

We use f̂1(θ) to represent the upper bound of the objective function. According to
Lemma 1 in [37], we reformulate the problem and rewritten as

min f̂2(θ) = g2(θ) + 2ℜ
{

θHd∗
}

s.t.|θm| = 1, ∀m ∈ M.
(65)

Since θHθ = M, θHλmaxIMθ = Mλmax is constant, after removing the constant term,
the sub‑problem becomes

min− 2ℜ
{

θH
(
(λmaxIM − Ξ)θ(n) − d∗

)}
s.t.|θm| = 1, ∀m ∈ M.

(66)

Therefore, its optimal solution is given by

θ(n+1) = exp
(

jarg
[
(λmaxIM − Ξ)θ(n) − d∗

])
, (67)

where λmax is the maximum eigenvalue of Ξ.

3.2.3. Riemannian Conjugate Gradient
The RCGmethod has been widely used in IRS‑assistedMISO andMU‑MISO commu‑

nications, so this problem can also be solved using the RCGmethod. The specific steps are
as follows.
1. Compute Riemannian Gradient: Based on the manifold space constrained by the IRS

phase shift matrix, we first calculate the Riemann gradient as the orthogonal projec‑
tion of the Euclidean gradient on the tangent space,

grad f
(

θ(n)
)
= ∇ f

(
θ(n)

)
−ℜ

{
∇ f
(

θ(n)
)
⊙ θ(n)∗

}
⊙ θ(n), (68)

where ∇ f̂
(

θ(n)
)
= 2Ξθ(n) + 2d∗.

2. Search Direction: The conjugate search direction on the tangent space is

r(n+1) = −grad f
(

θ(n)
)
+ ζ1Z

(
r(n)
)

, (69)
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where Z(·) is the vector transport function, and it can be expressed as

Z
(
r(n)
)
= r(n) −ℜ

{
r(n) ⊙ θ(n)∗

}
⊙ θ(n), (70)

where ζ1 is the Polak‑Ribière parameter [39].
3. Retraction: Project the tangent vector back to the circular manifold,

θ(n+1) = Pj θ(n) + ζ2r(n+1)∣∣θ(n) + ζ2r(n+1)
∣∣ , (71)

where ζ2 denotes the Armijo backtracking line step size [39].

3.3. Optimizing UAV Placement
Aiming at the influence of UAV on the spectral efficiency of centralized radio access

network, Roth et al. proposed a UAV location optimization method to maximize the data
rate [40], but this method does not consider the influence of IRS and eavesdroppers. Based
on this work, in this part, we propose a secure position searching method for IRS‑assisted
UAV‑MIMO systems–namely the SRG method. The details are as follows.

Fixing other variables except pA, the sub‑optimization problem of UAV placement
(P4) can be expressed as

(P4) : max
pA

Rsec = log2

∣∣∣INB +HBVVHHH
B J

−1
B

∣∣∣− log2

∣∣∣INE +HEVVHHH
E J

−1
E

∣∣∣
s.t.∥pA(n)− pA(n − 1)∥ ≤ δ, ∀n ∈ N .

(72)

The SRG method requires the derivative of the SR Rsec with respect to the UAV coor‑
dinate, according to [41]

∂Rsec
∂pA,γ

= 1
ln 2 · Tr

{(
INB +HBVVHHH

B J
−1
B

)−1
· ∂HBVVHHH

B J
−1
B

∂pA,γ

}
− 1

ln 2 · Tr
{(

INB +HEVVHHH
E J

−1
E

)−1
· ∂HEVVHHH

E J
−1
E

∂pA,γ

}
,

(73)

where the derivative of HB with respect to pA,γ can be expressed as

∂HB
∂pA,γ

=

√
β0

σB

∂
∂pA,γ

1
d

cAR/2
AR

HT
RBΘH̃AR +

√
β0

σB

∂
∂pA,γ

1
d

cAB/2
AB

H̃T
AB

=

√
β0

σB
· cAR

2

(
pR,γ−pA,γ

)
∥pR−pA∥

cAR/2 +2HT
RBΘH̃AR +

√
β0

σB∥pR−pA∥
cAR/2 HT

RBΘ ∂H̃AR
∂pA,γ

+

√
β0

σB
· cAB

2

(
pB,γ−pA,γ

)
∥pB−pA∥

cAB/2 +2 H̃
T
AB +

√
β0

σB∥pB−pA∥
cAB/2

∂H̃T
AB

∂pA,γ
.

(74)

Similarly, the derivative of HE with respect to pA,γ can be expressed as

∂HE
∂pγ

≈
√

β0
σE

∂
∂pA,γ

1
d

cAR/2
AR

HT
REΘH̃AR +

√
β0

σE

∂
∂pA,γ

1
d

cAE/2
AE

H̃T
AE

=

√
β0

σE

cAR
2

(
pR,γ−pA,γ

)
∥pR−pA∥

cAR/2 +2HT
REΘH̃AR +

√
β0

σE∥pR−pA∥
cAR/2 HT

REΘ ∂H̃AR
∂pA,γ

+

√
β0

σE

cAE
2

(
pE,γ−pA,γ

)
∥pE−pA∥

cAE/2 +2 H̃
T
AE +

√
β0

σE∥pE−pA∥
cAE/2

∂H̃T
AE

∂pA,γ
.

(75)

In the previous research on position optimization and trajectory planning of UAV
communication, it was often assumed that the influence of the phase part on the channel
was negligible and focused on the influence of distance change on the channel. In this case,
we also assume that the phase only has some random and subtle influence on the channel.
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Therefore, the influence of this part on the position change can be ignored. The derivative
part in (73) can be expressed as

∂HBVVHHH
B J

−1
B

∂pA,γ
=

∂HBVVHHH
B J

−1
B

∂HB
· ∂HB

∂pA,γ

≈  cAR
2σB

(
pR,γ−pA,γ

)
∥pR−pA∥

2 HT
RBΘHAR + cAB

2σB

(
pB,γ−pA,γ

)
∥pB−pA∥

2 HT
ABVVHHH

B J
−1
B

+HBVV
H cAR

2σB

(
pR,γ−pA,γ

)
∥pR−pA∥

2 HT
RBΘHAR + cAB

2σB

(
pB,γ−pA,γ

)
∥pB−pA∥

2 HT
ABHJ−1

B ,

(76)

∂HEVVHHH
E J

−1
E

∂pA,γ
=

∂HEVVHHH
I J

−1
E

∂HE
· ∂HE

∂pA,γ

≈  cAR
2σE

(
pR,γ−pA,γ

)
∥pR−pA∥

2 HT
REΘHAR + cAE

2σE

(
pE,γ−pA,γ

)
∥pE−pA∥

2 HT
AEVVHHH

E J
−1
E

+HEVV
H cAR

2σE

(
pR,γ−pA,γ

)
∥pR−pA∥

2 HT
REΘHAR + cAE

2σE

(
pE,γ−pA,γ

)
∥pE−pA∥

2 HT
AEHJ−1

E .

(77)

We can obtain the gradient of SR as

(∇Rsec)γ =
∂Rsec

∂pA,γ
. (78)

Next, the state of the UAV is adjusted and controlled by the secrecy rate gradient.
When theUAV achieves themaximumSR at a certain point, the position of theUAV should
remain unchanged; when the secrecy rate gradient is not zero, the UAV shouldmove along
the gradient direction.

In order to meet the above requirements, the static end value of
.
pA should match the

derivative ∇Rsec of constant SR. So, with the PI‑controller, the input signal is designed as

uγ = p(∇Rsec)γ − kT
.
p(n)A,γ

o(n)A,γ
.
o(n)A,γ

, ∀γ ∈ {1, 2}, (79)

where k = (k1 k2 k3)
T is the controller gain, p is the prefilter coefficient, and the sys‑

tem feedback control flow based on the PI‑controller is shown in Figure 2, where the
⊕ represents the superposition of signals, which are calculated by the process indicated
by arrows.
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Figure 2. The feedback control process of UAV systems based on PI‑controller.

In the control system, the controller matrices are determined by a linear quadratic reg‑
ulator (LQR). Then, the parameters of the whole control system can be deduced as follows:

A = 
0 1 0 0
0 0 1 0
0 0 0 1
0 −k1 −k2 −k3

,b = 
0
0
0
p

. (80)
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Therefore, the state equation can be evaluated by

 .c1.c2
 = (I2 ⊗A)c1

c2
+ 1 0 0

0 1 0
⊗ b∇Rsec. (81)

By superimposing the results obtained in the (81) with the state vector of the previous
moment, the optimized position of the UAV can be finally obtained.

3.4. Overall Algorithm and Complexity Discussion
With the proposed optimization method of the three sub‑problems, the overall algo‑

rithm for solving the problem (P1) is summarized in Algorithm 1. Specifically, we iter‑
atively solve three sub‑problems–(P2), (P3), and (P4)–using the alternating optimization
method. For these three blocks, we fix the other two blocks to optimize a certain block.
The solution of other sub‑problems obtained in this iteration are used as input to solve
the next sub‑problem. When the change of SR obtained by two consecutive iterations is
less than the convergence accuracy χ or the number of iterations exceeds jmax, the iterative
solution can be stopped. The TPC matrix V0 and AN matrix VE

0 are initialized as matri‑
ces whose internal elements are all 1/

√
Nd and 1/

√
NT , respectively. And the phase shift

matrix Q0 is initialized to the identity matrix.

Algorithm 1 Iteration Algorithm for Optimizing Problem (P1)

  Input: V0, VE
0, Θ0, pA

0, χ.
  Output: the TPC matrix and AN matrix, the IRS phase shift matrices, the UAV position, and
the SR.
 Initialize: the iterative number j = 0.
 Repeat
 1: update

{
Z1

j+1,X1
j+1,Z2

j+1,X2
j+1,X3

j+1
}
, and solve problem (P2) to obtain optimal{

Vj+1,VE
j+1
}
for given

{
Θj,pA

j
}
.

 2: Solve problem (P3) to obtain the optimal
{

Θj+1
}
for given{

Z1
j+1,X1

j+1,Z2
j+1,X2

j+1, X3
j+1,Vj+1,VE

j+1,pA
j
}
. When choosing to use the ADMM

algorithm, iteratively solve by Equations (57)–(59); when choosing to use the MM algorithm,
iteratively solve by Equation (67); when choosing to use the RCG algorithm, iteratively solve by
Equations (69)–(71) until the SR increment or the maximum iteration number is reached to end
the loop of this sub‑problem.
 3: Solve problem (P4) to obtain the

{
pA

j+1
}
for given{

Z1
j+1,X1

j+1,Z2
j+1,X2

j+1,X3
j+1, Vj+1,VE

j+1, Θj+1
}
. Using the SRG algorithm, iteratively

solves Equation (81) until the SR increment or the maximum iteration number is reached to end
the loop of this sub‑problem.
4: Set j = j + 1.
until

∣∣∣(Rsec,j − Rsec,j−1)/Rsec,j

∣∣∣ ≤ χ or j > jmax.

For the solution of the IRS phase shift matrix, the iterative process in the ADMM,
MM, and RCG sub‑algorithms can guarantee the monotonic descent of the sub‑problem
(P3). Similarly, for the solution of the UAV position, the iterative process in the SRG sub‑
algorithm also ensures the monotonic decline of the sub‑problem (P4). For the solution
process of the whole algorithm, the AO algorithm can guarantee the monotonic decrease
of the objective function value in each iteration, and the existence of the transmit power
constraint ensures the convergence of Algorithm 1.

The complexity of algorithm 1 is analyzed below. In step 1, the computational com‑
plexity of {HV ,HVE} isO(N3

T)+O(2N2
T Nd)+O(2N2

T NE), the complexity of binary search
to find the optimal µ is O(N2

T NB) + O(2N3
T), then the computational complexity C2 of

sub‑problem (P2) is O(max
{

2N3
T , 2N2

T NE
}
). In step 2, the computational complexity C3

of ADMM, MM, and RCG algorithm are O(M3 + TADMM M3), O(M3 + TMM M2), and
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O(M3 + TRCG M2), respectively, where TADMM, TMM, and TRCG represent the iteration
number of three IRS shift optimization sub‑algorithms. In step 3, the computational com‑
plexity C4 of the SRG algorithm isO(TSRG N2

T), where TSRG represent the iteration number
of the SRG algorithm. Therefore, the complexity of the whole problem can be
presented by

C1 = O(max{C2, C3, C4}). (82)

4. Simulation Results
In this section, we show the simulation results to verify the effectiveness of Algorithm

1 and the advantage of the proposed secure transmission strategy. The parameter settings
we used in the simulation are set as follows unless otherwise specified [31,40]. The coor‑
dinates of initial UAV point pA

0, IRS, Bob, and Eve are set as [−120, 1.5]T , [0, 0]T , [10, 15]T ,
and [−10, 15]T , respectively. The height of UAV is 60 m and the height of IRS is 25 m. The
transmit power limit is PT = 15 dBm. The antennas number of UAV, Bob, Eve, and IRS
are NT = 4, NB = 2, NE = 2, and M = 48, respectively. The number of data streams is
set to Nd = 2. Rician factor is set to kab = 4. Path loss exponent cAR = 2.2; cRB and cRE
are set to 2.5; cAB and cAE are set to 3.5; and the path loss at the reference distance 1 m
is set to −30 dB. The Bob’s noise power and the Eve’s noise power are σ2

B = −75 dBm
and σ2

E = −75 dBm. The maximum UAV moving distance between two iterations is set
to δ = 0.6. The controller gain k = (0.5477 23.9683 6.9308)T . The prefilter coefficient
p = 0.0175. The initial UAV states vectors are set to cγ,0 = (p0

A,γ 0 0 0)
T , ∀γ ∈ {1, 2}.

The convergence accuracy χ = 10−5 and the maximum number of iterations jmax = 103.
The convergence performance of our proposed Algorithm 1 is described in Figure 3,

where the ADMM, MM, and RCG algorithms are used to optimize the IRS phase shift
matrix, respectively. It can be seen from Figure 3 that for the communication scenario
in this paper, with the increase of the number of iterations, the SR gradually increases
and converges at about 3.58 after 20~30 iterations, and the convergence speed and secrecy
performance of the AO‑ADMMalgorithm has a little advantage over other two algorithms.
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In each iteration of Algorithm 1, ADMM,MM, and RCG are used to solve the problem
(P3), the phase shift matrix of IRS. Figure 4 shows the convergence performance of the
three algorithms in the first iteration of our proposed AO algorithm. As can be seen from
Figure 4, the convergence speed of the three algorithms is slightly different, but not by
much. Based on the analysis in Section 3, the computational complexity of MM and RCG
algorithms is similar, and the computational complexity of the ADMMalgorithm is higher
than the other two algorithms. Although the computational complexity of the AO‑ADMM
algorithm is higher, its convergence performance and SR are slightly better than the other
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two algorithms. Therefore, we use the AO‑ADMM algorithm to compare the performance
with other benchmark schemes in the following simulation experiments.
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Figure 5 shows the UAV position change process of the AO algorithms based on three
different phase shift matrix optimization methods. As a comparison, we also introduce
an AO algorithm with a randomly generated IRS phase shift matrix. It can be seen from
Figure 5 that for the case of randomly setting the IRS phase shift, the UAV will move to‑
wards the nearby position of the receiver and the eavesdropper. The UAVwill not be com‑
pletely close to Eve and Bob and will finally stop at the [−19.34, 14.17]T . This is because
although the phase shift matrix is not optimal in this case, the IRS can still play a positive
role in improving the secrecy performance. For the case of adopting ADMM, MM, and
RCG algorithms, the UAV will continue to turn to the nearby position where the IRS is
located, and finally stopped at [−22.23, 2.95]T , [−18.81, 2.94]T , and [−21.79, 2.04]T , respec‑
tively. This is because the optimized IRS can give a full play to its secrecy ability, and the
UAV can obtain a higher SR in the direction close to the IRS, so the UAV will move closer
to the IRS. That is to say, the proposed SRG position optimization algorithm and three IRS
phase shift matrix optimization methods are important means to effectively improve the
secrecy ability.
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Next, we consider different benchmark schemes to verify the advantages of our pro‑
posed method. The different schemes are shown as follows.
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Scheme 1: the TPCmatrix, ANmatrix, phase shift matrix, and position are optimized
via the proposed AO‑ADMM algorithm.

Scheme 2: The same as Scheme 1 except that the phase shift matrix is set randomly.
Scheme 3: The same as Scheme 1 except that the TPC matrix is set randomly.
Scheme 4: The same as Scheme 1 except that the AN matrix is set randomly.
Scheme 5: The same as Scheme 1 except that the IRS phase shift matrix is optimized

by the one‑by‑one (OBO) algorithm in paper [42].
It can be seen fromFigure 6 that as theUAVbase station transmission power increases,

the achievable SR of all five schemes will increase. Moreover, scheme 1 using the ADMM
algorithm is always better than scheme 5 using the OBO algorithm for IRS optimization.
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As can be seen from Figure 7, with the increase in the number of transmission anten‑
nas, the achievable SR of all five schemes also increases. In Figure 7, in the whole region,
our proposed scheme 1 has the highest achievable rate. When the number of transmission
array is small, compared with scheme 4 and scheme 2, scheme 3 has better confidentiality
ability. In addition, when the number of array elements is large, the SR of scheme 4 and
scheme 2 is better than that of scheme 3. This is because the number of transmit antennas
has a great influence on the performance of TPC matrices.
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The effect of the number of eavesdropper antenna on the secrecy performance is de‑
scribed in Figure 8. As the number of eavesdropper antennas increases, the SR of all
schemes will decline, and our proposed optimization method is always better than sev‑
eral other schemes.
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Figure 9 shows the impact of the IRS elements number on the secrecy performance
of the UAV system. It is observed from Figure 9 that with the increase in the number of
reflection elements, the SR of all schemes will increase. However, due to the lack of opti‑
mization of the phase shift matrix in scheme 2, the SR increases very slowly, which shows
the importance of IRS in our proposed joint optimization algorithm. With the preset pa‑
rameter settings, the SR of our proposed scheme 1 can be about 40.5% higher than that
of scheme 2 without IRS. Compared with Scheme 5 using the OBO algorithm, the perfor‑
mance advantage of our proposed Scheme 1 becomes more obvious as the number of IRS
elements increases. It proves the effectiveness of Algorithm 1 and the significance of IRS
in secure UAV communication.
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Figures 10 and 11 show the effect of IRS‑Bob and IRS‑Eve channel path loss expo‑
nents on SR. With the increase of cRB, the IRS’s signal reflection strength at Bob gradually
decreases, resulting in a decrease in the SR.With the increase of cRE, Eve will receive fewer
signals from the IRS, which increases the SR. Therefore, when the quality of the reflected
legal channel is good, the IRS can promote the secrecy performance of the communication
system, but if the quality of the reflected eavesdropping channel is better than that of the
reflected legal channel, the deployment of the IRS may be counterproductive. Our pro‑
posed scheme 1 is slightly better than scheme 5, and consistently perform better than the
other three benchmark schemes.
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5. Conclusions
In this paper, we investigated the secure communication of an IRS‑assisted UAV‑

MIMOME wireless system. The TPC matrix, AN matrix, IRS phase shift matrix, and UAV
position were jointly designed to maximize the achievable SR under the transmit power,
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the IRS phase shift unit modulus, and the maximum UAV moving distance constraints.
Since the problem was non‑convex, we proposed an AO algorithm to optimize these vari‑
ables alternately. The optimal TPC matrix and AN matrix were solved by the Lagrange
dualmethod. The optimal IRSphase shiftmatrixwas solved by three algorithms ofADMM,
MM, and RCG. An SRG method was proposed to iteratively optimize the UAV position.
Finally, simulations proved the effectiveness of our proposed algorithm and the impor‑
tant role of IRS in UAV‑MIMO secure communication. Additionally, our work can be
extended to more general multicast scenarios. In our future work, we will investigate
the robust and secure design of IRS‑assisted UAV MIMO networks considering imperfect
eavesdropping CSI.
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