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Abstract: The research concerns data collected in independent sets—more specifically, in local deci-
sion tables. A possible approach to managing these data is to build local classifiers based on each
table individually. In the literature, many approaches toward combining the final prediction results
of independent classifiers can be found, but insufficient efforts have been made on the study of tables’
cooperation and coalitions’ formation. The importance of such an approach was expected on two
levels. First, the impact on the quality of classification—the ability to build combined classifiers
for coalitions of tables should allow for the learning of more generalized concepts. In turn, this should
have an impact on the quality of classification of new objects. Second, combining tables into coalitions
will result in reduced computational complexity—a reduced number of classifiers will be built. The
paper proposes a new method for creating coalitions of local tables and generating an aggregated
classifier for each coalition. Coalitions are generated by determining certain characteristics of at-
tribute values occurring in local tables and applying the Pawlak conflict analysis model. In the study,
the classification and regression trees with Gini index are built based on the aggregated table for one
coalition. The system bears a hierarchical structure, as in the next stage the decisions generated by
the classifiers for coalitions are aggregated using majority voting. The classification quality of the pro-
posed system was compared with an approach that does not use local data cooperation and coalition
creation. The structure of the system is parallel and decision trees are built independently for local
tables. In the paper, it was shown that the proposed approach provides a significant improvement
in classification quality and execution time. The Wilcoxon test confirmed that differences in accuracy
rate of the results obtained for the proposed method and results obtained without coalitions are
significant, with a p level = 0.005. The average accuracy rate values obtained for the proposed
approach and the approach without coalitions are, respectively: 0.847 and 0.812; so the difference is
quite large. Moreover, the algorithm implementing the proposed approach performed up to 21-times
faster than the algorithm implementing the approach without using coalitions.

Keywords: Pawlak conflict analysis model; independent data sources; coalitions; decision trees;
dispersed data

1. Introduction

In today’s world, data are often collected in a decentralized and dispersed manner.
There are many examples that illustrate this process: hospitals that separately collect data
on the same issue/disease; banks that store data on their clients; applications on mobile
devices that collect various data. These data are collected independently and in separate
data storage.

It is crucial to use these data sets simultaneously to construct a classification of new
objects. Of course, a very significant consideration is to guarantee high efficiency in the clas-
sification process based on dispersed data.

The issues of dispersed data are mainly considered in distributed learning ap-
proaches [1,2]. The distributed models process all or part of the data at different nodes [3,4].
A solution in which all the data are simultaneously aggregated and stored in a single set is

Entropy 2022, 24, 1604. https://doi.org/10.3390/e24111604 https://www.mdpi.com/journal/entropy

https://doi.org/10.3390/e24111604
https://doi.org/10.3390/e24111604
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/entropy
https://www.mdpi.com
https://orcid.org/0000-0003-0616-9694
https://orcid.org/0000-0002-9970-5339
https://doi.org/10.3390/e24111604
https://www.mdpi.com/journal/entropy
https://www.mdpi.com/article/10.3390/e24111604?type=check_update&version=2


Entropy 2022, 24, 1604 2 of 20

both inefficient and often impossible to apply [5]. Therefore, most research papers have
proposed a collaborative solution without data aggregation. In federated learning [6,7],
nodes perform multiple rounds with local data and send the local model to the central
server for aggregation into new global models. The main idea here is to guarantee data pro-
tection and privacy. Moreover, models are much shorter than raw data, so the exchange of
data is faster and less complex. In the distributed learning approach, methods can be found
in which local models are built independently, and the final decision is simply generated by
applying fusion methods. Various models have been proposed, both parallel [8] and hierar-
chical [9,10]. The concept of agent collaboration is also key here [11]; however, we do not
build aggregated tables as a result of this collaboration. In the literature, examples of classi-
fier ensembles in which feature subsets are considered can be found [12–14]. There are also
ensembles of classifiers built based on subsets of objects [15,16]. In the paper [17], an ap-
proach that considers missing values in the context of ensembles is considered. A crucial
matter that affects the quality of classification is diversity among the base classifiers [18,19].
The method for generating the final decision also has a significant impact on the efficiency
of ensembles [20,21]. Approaches recognizing relations between local data are considered
in the literature. In the paper [22], a hierarchical federated learning approach was proposed.
On the other hand, the paper [23] proposed a hierarchical approach in classifier ensem-
bles. Mainly in the literature, distributed learning is considered in terms of the following
issues [2,24]: data division—horizontal or vertical fragmentation; type of base classifiers—
can be homogeneous or heterogeneous; type and cost of communication—data or models
may be shared; privacy and data security—whether raw data exchange is allowed; fusion
methods—if local models are built (global model is not created) then fusion of predictions
is necessary to generate global decisions; data consistency—it can be assumed that objects
are shared between local tables and are consistent, or data can be independently created
and inconsistent. However, proposed approaches do not analyze the contents of local tables
and the relationships between them. In addition, the aggregation of local tables is seldom
considered in the literature.

Therefore, in this paper we fill this gap and propose a solution that performs a complex
analysis of tables’ content. The proposed approach aims to identify conflicts of local tables.
The term conflict used here refers to significant differences in the values of conditional
attributes occurring in local tables. We analyze relations and create coalitions of local tables
containing similar data. Based on the aggregated tables, a model is built. It is expected
that in this way we achieve better classification accuracy because models created via this
approach have a better ability to generalize concepts compared to approaches that use
a single model created based on a single table.

In the literature, conflict analysis is widely considered and various models are pro-
posed. Group decision-making represents an approach that solves the situation in which
each individual has their own private perspective [24]. In [25], a model is proposed for dis-
tributed group-decision support system that is suitable for use over the Internet. The theory
of negotiation and coalition formation presents an important issue regarding social interac-
tion and is also studied in computer science in the context of distributed systems [26,27].
Pawlak’s conflict analysis model [28,29] is yet another approach to conflict recognition that
provides excellent solutions in a variety of applications [30,31]. Pawlak conflict analysis
model was also considered in the context of dispersed data in the papers [32–34]. This
application shows that the Pawlak model provides excellent results for dispersed data when
tables are aggregated within coalitions. However, the approach discussed in their study
is completely different from the one proposed in this paper. Here, the compatibility of ta-
bles is examined in terms of the information stored in them—the values on the attributes.
In contrast, the papers [32–34] consider compatibility in terms of predictions generated
by the base models created based on the tables. Another difference is that in this paper
we assume that in local tables the same attributes are present, while in the papers [32–34]
there was no such assumption. Furthermore, in this paper, the system is static, whereas
previously it was dynamic. However, the success of the previous model provides the in-
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spiration for proposing a new approach in this paper. The main differences between these
approaches are listed in Table 1.

Table 1. Comparison of the new approach with the approach proposed in the papers [32–34].

New Proposed Approach Approach Proposed
in the Papers [32–34]

System’s Structure Static Dynamic

Changeability of coalitions

Coalitions of local tables
determined only once

regardless of the object that
is being classified.

Coalitions of local tables
determined for each classified

object from scratch.

Basis for coalitions
designation

Information system in Pawlak
model created based

on characteristics of values
stored in local tables. So

coalitions are created based
on conditional attributes’

values occurring
in local tables.

Information system in Pawlak
model created based
on prediction vectors

generated for the
classified object.

Definition of aggregated table
for one coalition

Aggregated table is defined by
a sum of objects.

Aggregated table is defined by
the approximated method

for the aggregation of decision
tables—computationally

complex.

Base classifiers Decision tree, CART k–nearest neighbor classifier

Constraints on local tables The same conditional
attributes in all local tables. None

This paper proposes the use of the Pawlak conflict analysis method to generate coali-
tions of decision tables, in which there are similar values on a set of conditional attributes.
The goal is to achieve a better quality of classification by ensuring that similar units work
together. Formally, this approach requires that data are collected in a set of decision tables
(that were collected independently) in which the names of the conditional attributes are
identical (but the values on the objects may differ). Thus, coalitions of tables containing
similar values will be created. The tables in one coalition are then aggregated and a com-
mon model is determined based on the aggregated table. This approach seems natural,
since in everyday life we also notice that similar entities join forces to form better decisions
or to guarantee better management. This paper describes the process of using characteris-
tics of attribute values stored in decision tables in the Pawlak conflict analysis model. The
paper proposes a static and hierarchical classification model. The model is static because
coalitions—the model’s structure—are determined only once. Hierarchy of the model
results from the fact that tables in coalitions are aggregated and then models are built based
on them and these models perform classification. In this paper, decision trees are used
as base models. Specifically, classification and regression trees with Gini index (CART) [35]
are applied. The final classification of new objects is determined using majority voting
based on the predictions generated by the decision trees.

The paper also considers a parallel approach in which conflict analysis is not consid-
ered. In this approach, the CART trees are also employed as base models, but the coop-
eration of tables is not implemented, and the final decisions are made by majority voting
of decision trees generated independently based on tables.

The main objective in this study is to analyze how building coalitions of tables using
the Pawlak conflict analysis model affects the quality of classification and the running
time of the model. The two research hypotheses are verified in the paper. The first is
that applying the proposed model with Pawlak analysis and coalitions provides better
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classification quality than an approach in which coalitions are not used (in both models
the same base classifiers are used—the CART trees). The second research hypothesis is
that the algorithm implementing the proposed model has a lower time complexity than
the algorithm implementing the approach in which decision trees are built based on each
local table separately.

Herein, it is shown that combining local tables into aggregated tables significantly
improves classification quality. In addition, it reduces the number of generated trees and
thus reduces the time complexity of the method.

The main contributions of the paper are:

• proposing a new classification model using cooperation and coalitions of local tables
(tables contain the same attributes),

• proposing a new method for creating coalitions of tables using the Pawlak conflict
analysis model,

• developing a hierarchical system with CART trees for classification based on dispersed data.

The structure of the paper is organized as follows. Section 2 presents the proposed
model. The method of defining the coalitions and steps in building the model are described
there. Section 3 is dedicated to presenting the experimental results. The data, the measures
used and the methodology of the experiments are described in this section, and the results
obtained are also provided in tables. Section 4 contains the discussion and comparisons
of the obtained results. Section 5 gives conclusions and future research plans.

2. Materials and Methods

This section describes a new proposed hierarchical system for classification based
on dispersed data. In this research, we assume that the sets of attributes appearing in local
tables are equal. Stages of system construction are described in the following subsections.
The first step involves creating the system’s structure—generating coalitions of local tables.
This stage is implemented only once. Our goal here is the cooperation of tables that store
similar conditional attribute values. This concept detailing the cooperation of units that
share similar views with each other—have compatible values in this case—represents
a natural behavior that we can observe in everyday life and nature. For this purpose,
characteristics of conditional attributes’ values are calculated. In the next step, coalitions
are created based on these characteristics using the Pawlak conflict analysis model. The final
step is the aggregation of tables from one coalition. Based on such aggregated coalition’s
data, a classifier is built. In this study, we use a decision tree model. The final classification
model is a set of such decision trees generated for coalitions. The classification of an object
is conducted by the majority voting of these trees. Figure 1 illustrates the workflow
of the proposed model.

2.1. Basic Concepts and Method of Defining Characteristics of Conditional Attributes

We assume that a set of decision tables is given. The tables were collected indepen-
dently by separate units, but it is required that the same attributes are stored in all tables.
We do not impose any restrictions on the objects contained within the tables. We assume
that we do not know which objects are shared between local tables.

Formally, we assume that a set of decision tables Di = (Ui, A, d), i ∈ {1, . . . , n}
from one discipline is available, where Ui is the universe, a set of objects; A is a set
of conditional attributes; d is a decision attribute. As can be seen the sets of objects are
different between local tables. The names of attributes that occur in local tables, both
conditional and decision, are the same. Therefore, the conditional attributes A and decision
attribute d in all local tables are denoted in the same way. Clearly, from a formal point
of view, the attribute a ∈ A in the decision table Di is a function a : Ui → Va, where Va

is the set of values of the attribute a. Thus, the domains of the functions between local
tables are different. However, for the sake of simplicity, the same designations for attributes
were adopted in all local tables, and the domain of the function will be directly derived
from the attribute’s membership in the decision table. Aggregation for these tables is a
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difficult process and can generate inconsistencies. Another aspect that should be taken
into account is data protection and privacy. In addition, the process of aggregating all local
tables is highly complex. Thus, in the literature, rather, methods are proposed for partial
aggregation of tables or even building separate models based on each local tables, and then
aggregating these models or the predictions generated by the models [7,21,36].

Figure 1. The overall workflow of the proposed model.

In this paper, a new approach is proposed in which we aggregate tables that contain
similar values on conditional attributes. For this purpose, for each local table and for each
attribute, some characteristics of the attribute’s values occurring in the table are generated.
Suppose that in each local table we have m attributes card{A} = m (card denotes the num-
ber of elements in the set). Let us assume that we have m1 quantitative attributes and m2
qualitative attributes, so m1 + m2 = m.

For each quantitative attribute aquan ∈ A, we determine the average of all attribute’s

values present in local table Di, for each i ∈ {1, . . . , n}. Let us denote this value as Val
i
aquan .

We also calculate the global average and the global standard deviation. Let us denote
them as Valaquan and SDaquan . These values are determined based on the averages calculated
for the local decision tables according to the following formulas:

Valaquan =
1
n

n

∑
i=1

Val
i
aquan (1)

SDaquan =

√
1
n

n

∑
i=1

(
Valaquan −Val

i
aquan

)2 (2)

These characteristics for quantitative attributes will be used in the coalitions generation process.
For each qualitative attribute aqual ∈ A, we determine a vector over the values of that at-

tribute. Suppose attribute aqual has c values val1, . . . , valc. The vector Vali
aqual

= (ni
1, . . . , ni

c)
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represents the number of occurrences of each of these values in the decision table Di. More
precisely, the coordinate nj represents the number of objects in table Di that have value valj
on attribute aqual . This vector is normalized. This is done to ensure that in further analysis
the percentage of occurrences of a given value in the table matters rather than the number
of objects in the table.

The Pawlak conflict analysis model is employed to determine coalitions of local
tables that store similar attribute values. The next section presents the method to create
an information system with a description of the conflict situation and how coalitions are
generated with the use of the Pawlak model.

2.2. Pawlak Conflict Analysis Model and Creation of Coalitions

The Pawlak conflict analysis model is a very simple yet effective approach for rec-
ognizing coalitions of units involved in a conflicting situation [28,29]. In this model,
an information system is defined in which the views of agents—units involved in a conflict
situation—on the issues that are the matter of the conflict are stored. In the considered ap-
proach, the agents are local tables while the issues are conditional attributes stored in these
tables. Formally, an information system is defined S = (U, A), where U is a set of local
decision tables U = {D1, . . . , Dn} and A is a set of conditional attributes (qualitative and
quantitative) occurring in local tables, which was defined in the previous section. In the
Pawlak model, opinions of agents on issues are expressed by using three values. Value
1 means an agent is in favor of an issue, value 0 means an agent is neutral to an issue,
while value −1 means an agent is against an issue. The original interpretation differs
from that used herein. In this paper, the values refer rather to the differences in values
of a given attribute appearing in the local decision table. Depending on the type of attribute
(qualitative or quantitative), a different method of determining these values is used.

For the quantitative attribute aquan ∈ A a function aquan : U → {−1, 0, 1} is defined

aquan(Di) =


1 if Valaquan + SDaquan < Val

i
aquan

0 if Valaquan − SDaquan ≤ Val
i
aquan ≤ Valaquan + SDaquan

−1 if Val
i
aquan < Valaquan − SDaquan

(3)

The motivation for proposing this function originates from the method of estimating
typical values of normal distribution. It is known that about 68% of the typical values
from the normal distribution fall within the range: average ± standard deviation. Thus,
we assign the value 0 on attribute aquan to decision tables Di when the average of the at-
tribute’s values occurring in the table falls in the SDaquan -neighborhood of the global average
Valaquan .

This means that the values of the attribute occurring in the decision table are typical.
In contrast, the value 1 means that the average of the conditional attribute val-

ues in the decision table is above the global average more than SDaquan value; it devi-
ates more than the value of the standard deviation. Similarly, the value −1 indicates
an atypical—lower—average value of the conditional attribute in the decision table com-
pared to the global average value.

As mentioned above, the vectors that determine the distribution of values occurring
in the decision tables are generated for qualitative attributes. For an attribute aqual ∈ A
we have the vectors Vali

aqual
= (ni

1, . . . , ni
c), i ∈ {1, . . . , n}. In order to define three groups

of decision tables with similar distribution of the attribute’s aqual values, we group these
vectors with the k–means clustering algorithm, fixed number of groups k = 3 and the Eu-
clidean distance. We then place in descending order the centroids obtained for groups.
Ordering with respect to the value of the first centroid coordinate was applied. Let us
denote the groups of decision tables obtained from the k–means algorithm and indexed
in relation to the centroids’ order as G1, G2, G3. For the qualitative attribute aqual ∈ A
a function aqual : U → {−1, 0, 1} is defined
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aqual(Di) =


1 if Di ∈ G1
0 if Di ∈ G2
−1 if Di ∈ G3

(4)

The function above assigns values on a qualitative attribute to local tables that reflect
the consistency of the characteristics of this attribute appearing in the table. Thus, decision
tables that contain similar distribution of values of the qualitative attribute will have
the same value assigned in the information system S.

In this way, the information system S is defined that stores information about the com-
patibility of values of conditional attributes occurring in local tables. Based on this system,
we calculate the general similarity of values of all attributes for each pair of tables. For this
purpose, a conflict function is used that was proposed by Pawlak in their conflict analysis
model [28]. The conflict function ρ : U ×U → [0, 1] is defined as follows

ρ(Di, Dj) =
card{a ∈ A : a(Di) 6= a(Dj)}

card{A} . (5)

A pair of decision tables Di, Dj ∈ U is said to be [28]:

• allied, if ρ(Di, Dj) < 0.5,
• in conflict, if ρ(Di, Dj) > 0.5,
• neutral, if ρ(Di, Dj) = 0.5.

Set X ⊆ U is a coalition if for every Di, Dj ∈ X decision tables are allied ρ(Di, Dj) < 0.5.
By applying the Pawlak conflict analysis model, we obtain coalitions of local tables

that share similar values of conditional attributes. It should be noted that coalitions do not
have to be disjointed—one local table can be included in several coalitions. In fact, this is a
quite common case, as will be shown in the experimental section.

The pseudo-code of the algorithm that generates the coalitions of local tables is given
in Algorithm 1.

Algorithm 1 Pseudo-code of algorithm generating coalitions of local tables
Input: A set of local decision tables Di = (Ui, A, d), i ∈ {1, . . . , n}.
Output: A set of coalitions of local tables X1, . . . , Xk.
Construction of an information system S = (U, A), where U = {D1, . . . , Dn} and A is a set
of conditional attributes
for each a ∈ A:

if a is a quantitative attribute then
Use Equation (3) to define the function a

else
Use Equation (4) to define the function a

Conflict function values
for each pair Di, Dj ∈ U:

Use Equation (5) to calculate the value ρ(Di, Dj)

Creation of coalitions
X1 = U, i = 1, j = 1
while i ≤ j:

Repeat until there is a pair of tables Dl , Dk ∈ Xi so that ρ(Dl , Dk) ≥ 0.5:
j = j + 1
Xj = Xi \ {Dl}, Xi = Xi \ {Dk}

i = i + 1
Return only the largest sets, due to the inclusion relation, from the sets Xi, i = 1, . . . , j
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The computational complexity of the algorithm is exponential due to the number
of local tables. The greatest complexity is noted when there exists no pair of local tables
similar enough to satisfy the conditions of being allied. Subsequently, all subsets of the set
of local tables will eventually be checked. However, in most applications, the number
of local tables is not so large. In the experimental section, the application of the proposed
model is checked for dispersed data containing up to eleven local tables. The obtained
times in the worst cases are expressed in minutes.

2.3. Aggregation of Tables from Coalitions and Final Classification

An aggregated decision table is defined for each coalition of local tables generated
in the previous step. Suppose we have coalitions of tables X1, . . . , Xk. The aggregated deci-
sion table for the coalition Xj is denoted as Daggr

j = (Uaggr
j , A, d), where Uaggr

j =
⋃

Di∈Xj
Ui

and the names of attributes in the aggregated table are the same as those in local tables.
The attribute a from the aggregated table is a function defined on Uaggr

j that takes values
in Va. The attribute a from the aggregated table has the same value, on object x ∈ Ui,
as the corresponding attribute a from the local table Di on that object. Thus, an aggregated
table is defined by summing objects from local tables in the coalition without recogniz-
ing whether there are common objects in the local tables (based on the assumptions, we
do not possess this possibility). In the aggregated table, the values assigned to objects
on the attributes are taken from local tables.

Based on aggregated tables, models are generated. In this paper, the classification and
regression tree algorithm is used with Gini index [35]. It should be noted that prepruning
and postpruning were not used for this tree. An implementation available in Python
language was used for this purpose [37]. Specifically, DecisionTreeClassifier(criterion = “gini”)
function was used. The tree is built independently for each aggregated table, thus we
obtain k models M1, . . . , Mk.

The classification of a new object x is realized by each model separately. The final
decision—the global decision, which we denote as d̂(x)—is made by majority voting. This
means that there may be a tie, which we do not resolve in any way. Thus, d̂(x) is the set
of decisions that were most frequently indicated by models M1, . . . , Mk. In the experimental
part, the relevant measures for evaluating the quality of classification, which takes into
account the possibility of draws, were used.

In the section below, an illustrative example of the proposed approach is provided
for clarification.

2.4. Baseline Model without the Use of Coalitions

The results obtained using the proposed method are compared with the results gener-
ated by an approach without any conflict analysis. In the baseline approach, a model is built
based on each local table. In order to perform a fair comparison of the impact of the pro-
posed novelty on the results obtained, the same classification model was used—for each
local table the CART tree is used. Classification of a new object is realized by applying
the majority voting method to the classification results obtained using these decision trees.
Ties can occur, but as stated before, we do not resolve them in any way. The adequate
measures were used in the experimental part.

2.5. Example of Use of the Proposed Approach

Let us consider an example that uses the proposed approach. Suppose we have
a set of four local tables Di = (Ui, A, d), i ∈ {1, . . . , 4}. Each of them contains a set
of five conditional attributes A = {a1, . . . , a5} and a decision attribute d. We assume that
Vai = {0, 1, 2}, i ∈ {1, . . . , 5}, and Vd = {d1, d2} for each of the tables. For the purposes
of this example, the conditional attributes in the tables are quantitative. The local tables
defined above are given in Table 2.
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Table 2. Local tables used in the example.

U1 a1 a2 a3 a4 a5 d

x1 1 0 2 0 0 d2
x2 2 1 0 1 0 d2
x3 0 0 1 2 2 d1
x4 2 1 1 1 1 d1
x5 1 2 0 1 2 d2

U2 a1 a2 a3 a4 a5 d

x1 0 2 1 0 0 d2
x2 2 1 2 1 2 d1
x3 2 0 0 2 1 d2
x4 1 1 2 0 0 d2
x5 2 0 2 1 1 d1

U3 a1 a2 a3 a4 a5 d

x1 1 1 0 2 2 d1
x2 1 1 2 0 1 d1
x3 2 0 1 2 1 d2
x4 0 2 0 2 0 d2
x5 2 0 2 1 2 d2

U4 a1 a2 a3 a4 a5 d

x1 1 0 0 2 2 d1
x2 2 1 0 1 0 d2
x3 0 2 1 2 2 d2
x4 2 0 2 1 1 d1
x5 1 2 0 1 1 d2

Based on the attribute values in the local tables (Table 2), the information system is
generated as described in Section 2.2. In the first step, the average of all attribute’s values
occurring in the local table for each attribute and each table is calculated. These values

are denoted as Val
i
aj

, i ∈ {1, . . . , 4}, j ∈ {1, . . . , 5} and are given in Table 3. Furthermore,
the global average and the global standard deviation for each attribute are calculated,
the values are also shown in Table 3.

Table 3. Averages Val
i
aj

, i ∈ {1, . . . , 4}, j ∈ {1, . . . , 5}.

Local a1 a2 a3 a4 a5
Table

D1 Val
1
a1
= 1.2 Val

1
a2
= 0.8 Val

1
a3
= 0.8 Val

1
a4
= 1 Val

1
a5
= 1

D2 Val
2
a1
= 1.4 Val

2
a2
= 0.8 Val

2
a3
= 1.4 Val

2
a4
= 0.8 Val

2
a5
= 0.8

D3 Val
3
a1
= 1.2 Val

3
a2
= 0.8 Val

3
a3
= 1 Val

3
a4
= 1.4 Val

3
a5
= 1.2

D4 Val
4
a1
= 1.2 Val

4
a2
= 1 Val

4
a3
= 0.6 Val

4
a4
= 1.4 Val

4
a5
= 1.2

Global Vala1 = 1.25 Vala2 = 0.85 Vala3 = 0.95 Vala4 = 1.15 Vala5 = 1.05
metrics SDa1 = 0.087 SDa2 = 0.087 SDa3 = 0.296 SDa4 = 0.260 SDa5 = 0.166

Thus, according to Equation (3), the values in the information system for attribute a1
are assigned as follows

a1(Di) =


1 if 1.337 < Val

i
a1

0 if 1.163 ≤ Val
i
a1
≤ 1.337

−1 if Val
i
a1
< 1.163

(6)
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which means that a1(D1) = 0, a1(D2) = 1, a1(D3) = 0, a1(D4) = 0, a1(D5) = 0. For other
attributes, the values in the information system are determined similarly. The obtained
information system is shown in Table 4.

Table 4. Information system.

U a1 a2 a3 a4 a5

D1 0 0 0 0 0
D2 1 0 1 −1 −1
D3 0 0 0 0 0
D4 0 1 −1 0 0

In the next step, the values of conflict function for the local tables are determined
according to Equation (5). For example, for the pair (D1, D2) of local tables, the value is
calculated as follows

ρ(D1, D2) =
card{a ∈ A : a(D1) 6= a(D2)}

card{A} =
4
5

. (7)

The values of the conflict function for the above information system are presented
in Table 5.

Table 5. Function values.

D1 D2 D3 D4

D1
D2 0.8
D3 0 0.8
D4 0.4 1.0 0.4

Figure 2 shows a graphical representation of the conflict situation. When agents (local
tables) are allied (ρ(Di, Dj) < 0.5), the circles representing the agents are linked. In order
to find coalitions, all cliques should be identified in the graph. In this example, there are
two coalitions: {D1, D3, D4} and {D2}.

Figure 2. A graphical representation of the conflict situation example.

An aggregated decision table is generated for each coalition. The aggregated tables
are presented in Table 6.

Now, a decision tree is built for each aggregated table. This is done using the function
implemented in the Scikit-learn library tree.DecisionTreeClassifier(criterion = ”gini”). The
built decision trees are presented in Figure 3. Test objects are classified based on these
models using the simple voting method.
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Table 6. Aggregated local tables.

U1
aggr a1 a2 a3 a4 a5 d

xaggr
1 1 0 2 0 0 d2

xaggr
2 2 1 0 1 0 d2

xaggr
3 0 0 1 2 2 d1

xaggr
4 2 1 1 1 1 d1

xaggr
5 1 2 0 1 2 d2

xaggr
6 1 1 0 2 2 d1

xaggr
7 1 1 2 0 1 d1

xaggr
8 2 0 1 2 1 d2

xaggr
9 0 2 0 2 0 d2

xaggr
10 2 0 2 1 2 d2

xaggr
11 1 0 0 2 2 d1

xaggr
12 2 1 0 1 0 d2

xaggr
13 0 2 1 2 2 d2

xaggr
14 2 0 2 1 1 d1

xaggr
15 1 2 0 1 1 d2

U2
aggr a1 a2 a3 a4 a5 d

xaggr
1 0 2 1 0 0 d2

xaggr
2 2 1 2 1 2 d1

xaggr
3 2 0 0 2 1 d2

xaggr
4 1 1 2 0 0 d2

xaggr
5 2 0 2 1 1 d1

Figure 3. Decision trees created for aggregated decision tables. (a) The aggregated table D1
aggr

(b) The aggregated table D2
aggr.
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Since local table D2 is left in a coalition containing only one element, the second
aggregated table is the same as the local table D2, therefore, the trees generated based
on them are also the same. So we should mainly focus on the tree generated based
on the first aggregated table and the three trees generated from local tables D1, D3 and
D4. As we can see, they are quite different. For example, in the tree generated based
on the aggregated table there is a condition a2 ≤ 1.5 the root, which does not correspond
to the conditions occurring in the trees in Figure 4a,c,d. In addition, in the aggregated tree,
there is the attribute a5 in two internal nodes and the attribute a4 in one internal node. These
attributes are not included at all in the trees generated from local tables D1, D3 and D4.

Since tables are combined into coalitions in terms of similarity of conditional attributes’
values, trees generated based on aggregated tables should not be very altered compared
to trees generated from local tables. In general, trees generated from a larger number
of training objects are expected to be more accurate and have better classification quality.

For comparison, let us also consider the baseline model, in which coalitions are not
generated. In this case, the decision trees are generated directly based on local tables.
Thus, we obtain four decision trees generated from the tables given in Table 2, which are
presented in Figure 4.

Figure 4. Decision trees created for local decision tables, (a) for the local table D1, (b) for the local
table D2, (c) for the local table D3, (d) for the local table D4.

3. Results

The experiments were carried out using the data available from the UC Irvine Machine
Learning Repository [38]. A total of three data sets were selected for the analysis—the Vehi-
cle Silhouettes, the Landsat Satellite and the Soybean (Large) data sets. Regarding the Land-
sat Satellite and Soybean data sets, the training and test sets are located in the repository.
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The Vehicle data set was randomly split into two disjoint subsets, the training set (70%
of objects) and the test set (30% of objects). Data characteristics are given in Table 7.

Table 7. Data set characteristics.

Data Set # The Training
Set

# The Test
Set

# Conditional
Attributes

# Decision
Classes

Vehicle Silhouettes 592 254 18 4
Landsat Satellite 4435 2000 36 7

Soybean 307 376 35 19

The training sets of the above data sets were dispersed. A total of 5 different dispersed
versions with 3, 5, 7, 9 and 11 local tables were prepared to check for different degrees
of dispersion for each data set. This was done using a stratified mode. Each local table
contained the full set of attributes, and a subset of the set of objects.

The quality of classification was evaluated based on the test set. The following
measures were used:

• the classification accuracy

acc =
1

card{Utest} ∑
x∈Utest

I(d(x) ∈ d̂(x)),

where I(d(x) ∈ d̂(x)) = 1, when d(xi) ∈ d̂(x) and I(d(x) ∈ d̂(x)) = 0, when
d(x) /∈ d̂(x); d̂(x) is a set of global decisions generated by the system for the test object
x from the test set Utest

• the classification ambiguity accuracy

accONE =
1

card{Utest} ∑
x∈Utest

I(d(x) = d̂(x)),

where I(d(x) = d̂(x)) = 1, when {d(x)} = d̂(x) and I(d(x) = d̂(x)) = 0, when
{d(x)} 6= d̂(x)

• the average size of the global decision sets

d =
1

card{Utest} ∑
x∈Utest

card{d̂(x)}.

The classification accuracy refers to the ratio of correctly classified objects from the test
set to their total number in this set. When the correct decision class of an object is contained
within the generated decision set, the object is considered to be correctly classified. The classifi-
cation ambiguity accuracy also describes the ratio of correctly classified objects from the test set
to their total number in this set. With the difference being that this time when only one correct
decision class is generated, the object is considered to be correctly classified. The third measure
allows us to assess the frequency and number of draws generated by the classification model.

The experiments were conducted according to the following scheme:

• Generating coalitions of local tables using the Pawlak conflict analysis model. Detailed
information on the coalitions that were generated is shown in Table 8. In cases where
no coalitions were generated for a set of local tables then the dispersed set was not
considered for further analysis. The reason for this is that the data in the tables are so
different that they should not be combined and the proposed model does not bring
any changes compared to the baseline approach.

• Defining aggregated tables for coalitions and generating decision tree models based
on them. The classifier is a set of decision trees generated based on the aggregated
tables for coalitions. Evaluating the proposed model using a test set.
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• Analysis of the baseline approach. Generating decision trees based on the local tables
(without any conflict analysis or coalitions). The final decision is made by simple
voting. Evaluating the baseline approach using a test set.

As mentioned above, Table 8 shows the coalitions generated during construction
of the proposed model. As can be seen, in two cases no coalitions were generated—for
the Satellite and Soybean data sets with three local tables. In most cases, coalitions were
created and, as can be seen, they are not disjoint sets. This means that some local tables were
involved in the creation of several aggregated tables. The reason for this is that a given local
table is partially similar to different sets of local tables and provides additional knowledge
to the construction of trees representing different concepts.

Table 8. Coalitions generated using the Pawlak conflict analysis model for dispersed data. LT
denotes local table.

Data Set
No.

of Local
Tables

Coalitions

Vehicle 3 {LT1, LT3}, {LT2}
5 {LT2, LT3, LT4}, {LT4, LT5}, {LT1}
7 {LT1, LT3, LT5, LT6, LT7}, {LT2}, {LT4}
9 {LT1, LT3, LT4, LT9}, {LT3, LT4, LT5, LT6}, {LT3, LT4, LT5, LT9},

{LT2, LT3, LT4, LT9}, {LT7, LT8}
11 {LT2, LT4, LT5, LT8}, {LT2, LT5, LT7, LT8},

{LT2, LT5, LT6, LT8}, {LT1, LT9}, {LT8, LT9}, {LT3, LT10}, {LT11}

Satellite 3 NO COALITIONS
5 {LT1, LT4}, {LT2}, {LT3}, {LT5}
7 {LT1, LT4, LT6, LT7}, {LT3, LT6}, {LT2}, {LT5}
9 {LT1, LT4, LT5, LT6, LT9}, {LT3, LT4, LT5}, {LT2}, {LT7}, {LT8}

11 {LT1, LT2, LT7, LT10}, {LT1, LT2, LT7, LT11}, {LT2, LT6, LT7, LT10},
{LT2, LT3, LT7, LT9}, {LT2, LT4, LT7},
{LT5, LT9}, {LT5, LT11}, {LT8}

Soybean 3 NO COALITIONS
5 {LT2, LT4}, {LT1}, {LT5}, {LT3}
7 {LT2, LT3, LT5}, {LT1, LT3}, {LT5, LT7}, {LT2, LT4}, {LT6}
9 {LT1, LT2, LT4}, {LT1, LT2, LT5}, {LT1, LT5, LT6}, {LT1, LT3, LT5},

{LT1, LT9}, {LT8, LT9}, {LT7}
11 {LT1, LT4, LT6, LT7, LT8, LT9}, {LT1, LT4, LT6, LT7, LT9, LT10},

{LT1, LT4, LT7, LT8, LT9, LT11}, {LT1, LT4, LT7, LT9, LT10, LT11},
{LT4, LT5, LT6, LT7, LT9, LT10}, {LT2}, {LT3}

Table 9 presents the classification accuracy acc values, the classification ambiguity
accuracy accONE values and the average number of generated decisions set d̄ obtained
for all dispersed data sets. The table shows the results obtained for both the proposed
approach and the baseline approach. For each data set, the better result is indicated in bold.
As can be seen, in the vast majority of cases better results are generated by the proposed
model with creation of coalitions and recognition of similarity of data stored in local tables.

To better visualize the differences in the results generated by the models, Figure 5
was prepared with the classification accuracy marked for each data set. As can be seen,
the most significant improvement in classification quality using the proposed approach was
observed for the Soybean data set. Here, the improvement is around 0.1. For the Vehicle
Silhouettes data set, the improvement in most cases is around 0.03 (even greater in certain
scenarios). Furthermore, for the Landsat Satellite data set, the improvement in results was
also noticed, but smaller at around 0.015. However, for all data sets, there is a noticeable
and seemingly significant improvement obtained using the proposed approach compared
to the baseline approach.
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Table 9. Results of classification accuracy acc, classification ambiguity accuracy accONE and the aver-
age number of generated decisions set d̄ for all dispersed data sets.

Data Set No. of Local Tables Baseline Approach
acc/accONE/d̄

Proposed Approach
acc/accONE/d̄

Vehicle 3 0.803/0.673/1.268 0.831/0.496/1.409
5 0.756/0.677/1.094 0.791/0.709/1.173
7 0.752/0.681/1.114 0.780/0.669/1.228
9 0.760/0.693/1.098 0.740/0.685/1.075

11 0.740/0.673/1.087 0.776/0.728/1.051
Satellite 5 0.875/0.839/1.053 0.893/0.820/1.099

7 0.870/0.841/1.040 0.888/0.822/1.093
9 0.874/0.847/1.035 0.873/0.841/1.045

11 0.877/0.850/1.034 0.892/0.857/1.042
Soybean 5 0.858/0.784/1.142 0.868/0.791/1.132

7 0.807/0.716/1.135 0.899/0.834/1.074
9 0.794/0.703/1.152 0.905/0.875/1.037

11 0.787/0.723/1.108 0.878/0.855/1.064

Average 0.812/0.746/1.105 0.847/0.768/1.117

Figure 5. Comparison of classification accuracy (acc) of the baseline approach versus the proposed
approach: (a) the Vehicle data set (b) the Landsat Satellite data set (c) the Soybean data set.

In order to investigate the significance in differences of accuracy rate obtained for the pro-
posed model and the baseline approach, the results from Table 9 were used. Two dependent
samples were created—one containing the results for the proposed model and one containing
the results for the baseline approach. Each sample had a cardinality equal to 13 observations—
results obtained for different data sets and number of local tables. The Wilcoxon test con-
firmed that differences in the accuracy rate between these two groups are significant, with
p = 0.005.

Additionally, a comparative box-plot chart for the accuracy rate values was created
(Figure 6). We can observe an increase in accuracy rate when the proposed model is used.
Both the box alignment and the median itself are significantly higher when the proposed
model is employed.
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Figure 6. Box-plot chart with (median, the first quartile—Q1, the third quartile—Q3) the value
of accuracy rate acc for the proposed model and the baseline approach.

Furthermore, we also analyzed the time needed to generate decision trees in both
approaches. In the baseline method, the time needed to generate trees directly from local
tables was investigated, and in the proposed approach the time required to generate trees
from aggregated tables was considered. Table 10 shows the execution times of the decision
tree generation algorithms in the baseline approach and with coalitions.

Table 10. Execution times of the decision tree generation algorithms in the base approach and
with coalitions.

Data Set No. of Local
Tables

Baseline
Approach Time

[s]

Proposed
Approach Time

[s]
Ratio Baseline

Proposed

Vehicle 3 41.258 3.423 12.05
5 46.694 4.332 10.78
7 52.810 4.294 12.30
9 61.634 6.704 9.19

11 68.064 7.760 8.77
Satellite 5 3044.087 139.973 21.75

7 3228.569 160.59 20.10
9 3497.267 175.614 19.91

11 3658.961 288.654 12.68
Soybean 5 58.542 4.538 12.90

7 63.733 5.610 11.36
9 72.051 7.714 9.34

11 82.072 8.560 9.59

The differences in execution times are notably significant. The proposed model has
significantly lower time complexity. This is due to the fact that with the proposed approach—
coalitions creation—a smaller number of trees is created than when decision trees are gener-
ated based on each local table separately. This results in the significantly reduced execution
time of making a final decision based on dispersed data.

Figure 7 illustrates the ratio of execution times of the baseline approach to the proposed
approach. As can be seen for the Satellite data set, in some cases, the proposed approach
exhibits an execution time more than 20-fold faster than the baseline approach. In general,
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it can be seen that for the largest data set (Satellite) the execution acceleration is the
most significant.

In addition, for a smaller degree of dispersion—smaller number of local tables—
the reduction in execution time using the proposed approach is greater than for data with a
larger degree of dispersion—greater number of local tables. This is due to the fact that for a
larger degree of dispersion, there is also a greater number of coalitions generated using the
Pawlak analysis model (as can be seen in Table 8).

Figure 7. Ratio of execution times of the algorithms implementing the baseline approach and
the approach with coalitions.

All experiments were performed on a portable computer with the following techni-
cal specifications:

• AMD Ryzen 54,600 h CPU,
• 32 GB RAM Memory,
• Microsoft Windows 11 Operating System.

The code used for the analyzed approaches has been implemented in Python and
all data-related calculations have been saved in a text document. Decision trees were built
using the function implemented in the Scikit-learn library tree.DecisionTreeClassifier(criterion
= “gini”). In all cases, the Gini index was used. The postpruning and prepruning methods
were intentionally not applied, since the main goal of this study focused on analyzing how
building coalitions of tables using the Pawlak conflict analysis model affects classification
quality and model running time. Combining local tables into aggregated tables was shown
to significantly improve classification quality. In addition, it also reduces the number
of generated trees and thus reduces the time complexity of the method.

4. Discussion

The paper proposes a new method for classification based on dispersed data.
This method is used when the same set of conditional attributes occurs in all local tables.
It should be noted that the conditional attributes can be of different types—both qualitative
and quantitative. Sets of objects in local tables can be diversified. Indeed, we do not con-
sider the possibility of examining whether identical objects occur in different local tables.
The main idea behind this method is the aggregation of tables that store similar values
on conditional attributes. In order to determine which tables should be aggregated, a new
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method for generating characteristics of values stored in tables and a new method for using
the Pawlak conflict analysis model are proposed. Next, a method for defining aggregated
tables and a method for final decision-making are defined. It was shown that the proposed
method brings a significant improvement in the quality of classification obtained based
on dispersed data compared to the approach when aggregation of tables and formation
of coalitions are not considered.

The main advantages of the proposed approach are:

• The proposed method guarantees higher quality of classification in comparison with
cases where conflict analysis and creation of coalitions are not used.

• The proposed method has less time complexity than methods where coalitions are
not considered.

• Combining several similar tables—aggregation of tables into one—increases readabil-
ity of the model. One decision tree generated based on an aggregated table provides
better readability and possibility to interpret the described concepts than several trees
generated independently from local tables.

The main limitations of the proposed approach are:

• The proposed model in the current stage of development is dedicated only to a set
of local tables with the same sets of conditional attributes.

• Although with the proposed model, the readability of the system is increased by
aggregating local tables, we still have not achieved full interpretability of the results.
The final classifier consists of a set of decision trees.

• In the proposed approach, it is necessary to exchange data and make them available.
The proposed model will not be suitable for dispersed data in which data protection
and privacy is a priority.

There are practically no parameters in the proposed model, since the Pawlak model
has no parameters, and the decision trees were built without prepruning or postpruning
(this will be implemented in the next stage of the future work). The only parameter we can
consider is the degree of data dispersion. The decision tables were dispersed to varying
degrees into 3, 5, 7, 9 and 11 decision tables. The dispersion was performed in relation
to the objects in stratified mode and ensuring the number of objects in the local tables
remains equal. Figure 8 shows the function of classification accuracy values in relation
to the number of local tables.

Figure 8. Classification of accuracy values in relation to the number of local tables: (a) for the baseline
approach (b) for the approach with coalitions.

In the case of the baseline method for both the Soybean and the Vehicle data sets,
an increase in the degree of data dispersion results in a deterioration of classification ac-
curacy. For the Landsat Satellite data set, this relation is not observed. For the proposed
approach, only for the Vehicle set can it be stated that an increase in the degree of disper-
sion affects the deterioration of classification accuracy. For the Soybean data set, the pro-
posed method eliminates the negative effect of high dispersion on classification accuracy.
Thus, it can be concluded that the use of the proposed approach allows improvement in
the quality of classification, especially in the case of high dispersion where many local tables
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occur. In other words, the proposed model generally improves the quality of classification,
but is particularly useful for data dispersed over a large number of local tables.

5. Conclusions

A new classification approach based on dispersed data was proposed in this paper.
The main innovation lies in the proposal of a method that combines local decision tables into
an aggregated table. For this purpose, a method based on the Pawlak conflict analysis model
was proposed. The new approach was shown to improve both the quality of classification
and the running time.

In future work, we plan to:

• use other classification models different from decision tree to build classifiers based
on aggregated tables,

• conduct research on the impact of tree optimization—prepruning and postpruning—
on the classification quality of the model,

• extend the proposed model to cases where only parts of the conditional attributes are
shared between local tables.
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