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Abstract: Due to the rise in awareness of global warming, many attempts to increase efficiency
in the automotive industry are becoming prevalent. Design optimization can be used to increase
the efficiency of electric vehicles by reducing aerodynamic drag and lift. The main focus of this
paper is to analyse and optimise the aerodynamic characteristics of an electric vehicle to improve
efficiency of using computational fluid dynamics modelling. Multiple part modifications were
used to improve the drag and lift of the electric hatchback, testing various designs and dimensions.
The numerical model of the study was validated using previous experimental results obtained
from the literature. Simulation results are analysed in detail, including velocity magnitude, drag
coefficient, drag force and lift coefficient. The modifications achieved in this research succeeded
in reducing drag and were validated through some appropriate sources. The final model has been
assembled with all modifications and is represented in this research. The results show that the
base model attained an aerodynamic drag coefficient of 0.464, while the final design achieved a
reasonably better overall performance by recording a 10% reduction in the drag coefficient. Moreover,
within individual comparison with the final model, the second model with front spitter had an
insignificant improvement, limited to 1.17%, compared with 11.18% when the rear diffuser was
involved separately. In addition, the lift coefficient was significantly reduced to 73%, providing better
stabilities and accounting for the safety measurements, especially at high velocity. The prediction
of the airflow improvement was visualised, including the pathline contours consistent with the
solutions. These research results provide a considerable transformation in the transportation field
and help reduce fuel expenses and global emissions.

Keywords: electric vehicle; electric hatchback; fuel efficiency; design; optimization; aerodynamics;
computational fluid dynamics

1. Introduction

The sign of global warming is becoming an increasingly serious problem as a large
proportion of carbon dioxide is emitted by vehicles every day [1–6]. This significant issue
calls the researchers to focus on reducing vehicle emissions [7–9]. However, the use of
fossil fuels is starting to be banned with sales of new internal combustion engine (ICE)
cars banned by 2030 in the UK [10]. Currently, most hatchbacks are powered by an ICE,
as such, existing vehicles will be gradually replaced by electric vehicles and consequently
increase the weight from the added batteries, reinforced framework, suspensions and
battery housing [11–13]. All these components should be addressed, since any extra weight
spoils the range and efficiency of the running cars [14]. It was reported that at highway
speeds, aerodynamic instabilities from drag forces are responsible for up to 50% of total
fuel consumption, representing the necessity of design optimization [15].
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Since the turn of the 20th century, researchers started to study the airflow around
automobiles using wind tunnels, which were first introduced in 1871 and built by Wenham
and Browning [16]. In 1923, the Conrad car achieved the drag force coefficient (CD) of
0.30 for automotive design, compared with 0.60 for other cars at that time and similar to
road cars nowadays [17]. Due to the land and resource constraints, wind tunnels are often
built for scale models of the actual cars. However, the comparison has found large amounts
of the discrepancy between full-scale and scaled-down models. This can be seen in the
results of the 1956 Porsche Spyder which achieved a CD value of 0.29 using a 1/5 scale
model, whilst the full form obtained 0.45 CD [18]. Modern wind tunnels, such as the Volvo
cars in slotted wind tunnels, can simulate 250 km/h winds with an enclosure size of 6.6
m wide and 4.1 m tall. The wind tunnel also has three configurations to simulate ground
effects, scoop and both at the same time [19].

As wind tunnel tests can be very costly, the utilization of CFD software allows changes
made to be tested faster and cheaper, as opposed to manufacturing and wind tunnel testing
multiple prototypes with minute changes. Many studies were carried out using CFD
simulations. For example, Volvo’s CFD simulations are done by creating a large rectangular
box, surrounding the geometry of the car. Symmetrical wall and roof conditions are
applied, with an equal velocity in the inlet and zero pressure at the outlet [19]. Another
study conducted a similar simulation, the boundary conditions applied replicates real-
world driving conditions with inlet speeds ranging from 70 km/h to 160 km/h [20]. A
study [21] placed other boundary conditions in the inlet, such as temperature and viscosity,
based on real-world locations, with a simulation for a sports car set at 300 K to simulate
Croatian summer temperatures.

In 2006, research conducted on Formula Mazda race car wings found that 40% of the
drag force around a car is located at the rear [22], numerous research has been done in
improving the rear geometry of cars to reduce drag. A CFD research conducted in 2012
placed an arc-design diffuser under the rear bumper and extended the length of the rear
whilst increasing the angle between the bumper and the ground; the design aimed to
reduce drag by increasing the base pressure around the rear bumper [20]. Results found a
strong correlation between increasing the diffuser length and CD reduction, with a 45 cm
length, resulting in a 4.12% reduction in drag averaged across a driving speed between
70 km/h and 160 km/h in 15 km/h increments. A CFD research conducted in 2014 utilized
a similar tail-plate design diffuser and found a drag reduction of 3.87% upon the use of the
diffuser, with a reduction in lift coefficient of 16.62%, highlighting the effectiveness of the
design [23].

The use of a diffuser can be maximized further with the application of a front lip
splitter, used to decrease and guide the amount of air flowing underneath the car the
splitter reduces CD and lift whilst guiding the air from the front to the diffuser in the
rear [24]. The design had been implemented in 2019 research, which implemented a
35◦ splitter resulting in a 2.64% reduction in CD [25].

Spoilers are used as an accessory in aerodynamic adjustments placed in the rear of
vehicles, used throughout motorsport, as well as production cars. Production car spoilers
are placed in the trunk or roof and are designed to elongate and decrease the slope at the
rear of the vehicle; this helps in delaying flow separation whilst increasing pressure in front
of the spoiler and decreasing drag and lift for better stability. A 2012 CFD piece of research
comparing the CD of a vehicle before and after utilizing the spoiler design found a 6.46%
reduction in drag with a 17.2% reduction in the lift [24].

Further aerodynamic adjustments can be applied through the use of finlets, and
vertical spoilers attached to regular spoilers designed for better flow separation at the rear
and to minimize vortices. A 2019 study on a city car found that only finlets with lengths
exceeding 40 mm had an impact on the aerodynamic properties of a vehicle, where the use
of finlets has reduced CD by 0.76% in CFD and 1.21% in wind tunnel testing [25].

The reduction in drag coefficient can be directly correlated with the amount of fuel the
car uses; with less drag, less energy is consumed when the car is cruising on a motorway
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maximizing fuel savings. A 1981 study researched the effect of CD reduction and fuel
efficiency, with design modifications validated through a full-scale MIRA wind tunnel
testing [26]. An air-bearing is placed under each wheel with adjustable tie bars connected
to the truck chassis to the aerodynamic balance under the measuring platform to obtain the
horizontal aerodynamic forces experienced by the vehicle. Testing was done as the vehicle
travelled 365 km through the motorway at an average speed of 80 km/h and found that
a 10% CD reduction had resulted in a 5.4% reduction in fuel economy. Similarly, research
in 1978 highlighted the reduction in CD with fuel efficiency on a compact hatchback. The
vehicle underwent full-scale wind tunnel testing at the Volkswagen climactic wind tunnel
in Germany, with a similar impact area to the simulation model in this project of 2.15 m2.
The test vehicle went through city and highway driving; results showed a 10% CD reduction
had reduced the fuel consumption by 3% [27].

This paper aims to optimize and improve the efficiency of an electric hatchback
using computational fluid dynamics modelling. The research will study the flow field
around the vehicle body and probe the physical insight, consistent with accurate solutions.
Furthermore, the effect of the different components on the flow characteristics of the vehicle
is visualized, indicating the quantitative analysis of the drag coefficient, drag force and
lift coefficient of the vehicle. A final enhanced model will be illustrated to facilitate future
practical industrial applications and contribute to energy and emissions saving.

2. Numerical Domain and Simulation Method
2.1. Numerical Domain

Figure 1 shows the simulation model used in this paper. The model is based on the
design of the Honda Civic, with basic design elements, including bumpers, a small spoiler
and splitter and wheels to simulate basic aerodynamic properties. The dimensions of
the car are 4.88 m in length, 1.85 m in width and 1.5 m in height, as shown in Table 1.
The model is placed in the computational domain. The dimensions of the computational
domain are 7.5 m in length, 3 m in width and 1.8 m in height. Given the importance of
wake characteristics above and behind the car, the length of the wind tunnel behind the
car should be much longer than in front. In this study, the car model was placed 1.5 m in
length from the wind tunnel inlet.

Table 1. Model dimensions for the CFD modelling.

Car Dimensions Value (m)

Length 4.88
Width 1.85
Height 1.5

2.2. Governing Equations and Assumptions

The majority of production car industry calculations for velocity of flow are limited to
250 km/h, as such the flow is considered incompressible [19]. The continuity equation can
be expressed as [21]:

∇u = 0 (1)

Momentum equations are [21]:

ρ
Du
Dt

= −∂p
∂x

+∇ · (µ · ∇u) + SMx (2)

ρ
Dv
Dt

= −∂p
∂y

+∇ · (µ · ∇v) + SMy (3)

ρ
Dw
Dt

= −∂p
∂z

+∇ · (µ · ∇w) + SMz (4)
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The Realizable k-ε turbulence model’s inherent stability, economy and relatively high
computational accuracy make it one of the most widely used and best-known turbulence
models [21].

∂

∂t
(ρk) +

∂

∂x
(
ρkuj

)
=

∂

∂xj

[(
µ +

µt

σk

)
∂k
∂xj

]
+ Gk + Gb − ρε−YM + Sk (5)

∂

∂t
(ρε) +

∂

∂x
(
ρεuj

)
=

∂

∂xj

[(
µ +

µt

σε

)
∂ε

∂xj

]
+ ρC1Sε− ρC2

ε2

k +
√

vε
+ C1ε

ε

k
C3εGb + Sε (6)

The drag and lift equations are the fundamentals for the entire simulation and analysis.
From the equation, it can be seen that the force a car experiences will be exponentially
increased as the car accelerates. With the drag force being proportional to the drag coeffi-
cient, aerodynamic modifications towards the car in reducing CD will be critical towards
reducing the force experienced by the car. Drag force and lift force are [24]:

FD =
1
2

CDρAv2 (7)

FL =
1
2

CLρAv2 (8)
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2.3. Boundary Conditions and Simulation Methods

Boundary conditions are placed to mimic conditions in the UK, such as temperature,
national speed limit, turbulence, etc. The impact area will be adjusted according to the
size of the model, as such it will vary based on modifications applied. The velocity inlet is
70 km/h and the pressure is constant at 1 bar.

The coupled scheme was selected as the pressure-velocity coupling method, due
to several advantages. Given the steady-state flow used in the simulation, the coupled
scheme can achieve robust and efficient single-phase execution, in comparison to segregated
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solution methods, which solve the momentum and pressure equations separately. The
coupled scheme allows the solving of momentum and pressure equations together; the
fully implicit coupling is done through implicitly discretizing pressure gradient terms in
the momentum equations, face mass flux, and the Rhie-Chow pressure dissipation terms.

2.4. Model Validation

Accuracy of the simulation is essential in producing the best result. For example, the
mesh convergence study on the original model is conducted to see the impact of cell count
on results. It can be seen from Figure 2 that the solution increases in accuracy as more cells
are applied, with a difference of 2.9% in CD from 300,000 to 500,000 cells. As the accuracy
of the simulation is the priority of the CFD modelling, all models have meshed with a cell
count between 500,000 and 512,000.
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Figure 2. Grid independences study.

Additionally, the numerical method is validated against experimental data [28,29].
Figure 3 shows the details of the geometry used in the previous experimental measurements
and we employed the rear slant angle of 20◦ for this validation. All the geometries and
operating conditions in numerical simulations are the same with experimental studies. As
can be seen, the rear area of this car model generates significant drag force due to the angular
design of the rear area. In particular, the comparison of the drag force coefficient between
experimental measurements and numerical results is shown in Table 2. We can see that the
experimental test gave a value of 0.298 for the drag force coefficient, CD, while the numerical
simulation predicts the drag force coefficient of approximately 0.311 [29]. The relative error
between the numerical simulations and experiments is 4.36%. This demonstrates that our
developed CFD modelling can accurately predict the flow behaviour around a vehicle and,
therefore, will be used for the design and adjustments of electric vehicles.

Table 2. Comparison of the drag force coefficient between experimental and numerical results.

Experimental Value, CD Simulation, CD Error (%)

0.298 0.311 4.36%
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3. Modification of Design
3.1. Base Model

The original design is simulated first as a benchmark for aerodynamic improvements,
analysing all aerodynamic properties of the car. From the velocity pathline results in
Figure 4a, it can be seen that flow separation occurred early at the top of the car, with
the large and turbulent flow coming from under the car, resulting in a large and long
recirculation zone at the rear, producing higher amounts of drag and vortex creation.
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The front end of the car with its sharp edge is subjected to high amounts of turbulent
air, resulting in the air flowing underneath the body of the car seen in Figure 4b. Lastly,
from Figure 4c we can find that there is a presence of high deflection from airflow leaving
the roof and through the car sides.

3.2. Optimisation of Adding a Front Splitter

Tasked with improving aerodynamic properties at the front of the car, a front splitter
will be designed to reduce drag and lift by redirecting the air over the car, with the small
amounts of cleaner air flowing under the car guided towards the rear [24]. The splitter
will utilize a rounded edge to reduce flow detachment, with the splitter reducing the angle
between the front bumper and the undertray of the car based on the 35◦ splitter design,
which saw a drag reduction of 2.64%. The splitters’ extension will slowly return in line
with the body of the car to minimize turbulent flow under the car. The structure of the front
splitter is shown in Figure 5.
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As the air begins flowing around the car, significant turbulence can be seen underneath
the front bumper in Figure 6a, with a large flow separation region causing drag, inconsis-
tency and large distributions of velocity in the flow. The splitter’s effect can immediately
be seen in Figure 6b as the flow separation region is reduced in size. In addition, the result
shows that maximum turbulent kinetic energy values were reduced by 26.5%. The splitter
model has a consistent flow with a smaller boundary layer and smaller velocity variance.
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3.3. Optimisation of Adding a Rear Diffuser

A rear diffuser can reduce drag by increasing base pressure around the rear bumper.
As air flows underneath the car, the air will be lower in pressure, compared to the air at
the rear of the car, and the pressure difference creates a vacuum and sucks air from the car,
which increases downforce (negative lift) and reduces drag. The design is based on the
arc-shaped [20] design, proven in reducing the drag of the car; research on the design also
shows the correlation between the diffuser’s length and increase in CD reduction, with a
length between 15 and 45 cm obtaining the best results. The design is supported further by
another tail-plate design [23], which shows a reduction in CD of 3.87% and CL of 16.62%.
The structure of the rear diffuser is shown in Figure 7.
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From Figure 8a, the impact of the diffuser can be seen as the air increases in velocity
with a smoother flow from under the car. The diffuser utilizes Bernoulli’s principle guiding
the air through the low-pressure area seen in Figure 8b, increasing the velocity; once the air
pressure increases past the diffuser, the velocity reduces significantly, decreasing the lift
and producing downforce. The diffuser also blocks the airflow from re-circulating in the
rear, reducing the drag by decreasing the size of the re-circulation zone.
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3.4. Optimisation of Adding a Rear Spoiler

The spoiler is attached at the rear of the roof to elongate and decrease the slope at
the rear of the vehicle, designed to delay flow separation and increase pressure in front
of the spoiler. As the air reaches the spoiler, the high-pressure area reduces the airspeed
reaching the air-circulation zone, reducing drag and lift. The spoiler design is based on a
2014 piece of research, correlating spoiler angle and reduction in the drag coefficient. The
results show that the optimum spoiler angle between 10◦–15◦ from horizontal produces
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the highest reduction in the lift whilst reducing drag at a good value [30]. The structure of
the rear spoiler is shown in Figure 9.
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From Figure 10, the delay in flow separation can be seen with higher velocity airflow,
flowing over the circulation zone, with lower velocity air pushed towards the rear of the
car. As a result, the size of recirculation is reduced with a reduction in drag seen in Table 3;
similarly, turbulence is decreased as the size and flow of the wake over the car is improved.

Table 3. Aerodynamic improvements on models.

Model# Model Modifications Drag Coefficient Drag Force Lift Coefficient

- - - (N) -

1 base model 0.4642 381.5 0.003681
2 front splitter 0.4224 347.1 0.0009733
3 rear diffuser 0.4640 381.3 −0.003848
4 rear spoiler 0.4501 369.9 0.003911
5 rear fins 0.4496 369.4 0.0007050
6 overall 0.4175 343.0 −0.003455

3.5. Optimisation of Adding Rear Fins

The rear fins are attached to the spoiler vertically, designed to reduce vortices from
the side of the car and avoid deflection. The design of the fin is based on a study on
fin application towards drag reduction, with 40 mm of length necessary for effective fin
application. The structure of the rear fins is shown in Figure 11.
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As the air reaches the rear of the car as shown in Figure 12, the rear fins allow for
reducing the drag. Therefore, the size of the upper recirculation zone is minimized and
improved with reduced turbulence values. Once the wake has formed, the flow separation
between high airspeed flow and low airspeed flow can be seen, with turbulence and the
size of the wake improved over the original model. Although turbulent intensity values
in the circulation zone are higher, it is smaller in size and much more contained, and the
turbulence behind the car has been improved significantly in the upper region with more
dense and uniform flow.

3.6. Optimised Model

As the individual modifications have been tested, the adjusted model with all modifi-
cations attached is analysed. The structure of the adjusted model is shown in Figure 13. The
impact of the fins and spoiler can be seen in Figure 14, with flow separation commencing
at the edge of the spoiler and the creation of side vortices limited by the fins. As a result,
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the upper half of the circulation zone is greatly reduced, minimizing rear drag. As the air
reaches the diffuser, it reaches a high-pressure area, slowing the airspeed; this transition cre-
ates a negative lift, pushing the car onto the ground and creating downforce. Air is pushed
away from the rear of the car, to minimize drag and air flowing towards the circulation
zone. The turbulence from the bottom of the car is reduced through the use of a diffuser
and splitter allowing smoother air to flow from the bottom; similarly, turbulence from the
top and sides is minimized due to the spoiler and fins. As a result, the circulation zone in
the rear is smaller in size and less turbulent, contributing less drag to the car.
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3.7. Aerodynamic Improvement Analyses

Aerodynamic results are shown in Table 3. After adding the front splitter, a 9%
reduction in drag with a 73% reduction in lift can be observed. The bottom wake of model
2 is much smaller with less turbulence, which can reduce the size of the recirculation zone
at the rear and improve drag. In model 3, from the aerodynamic results improvements in
drag reductions are minimal; however, coefficient of lift is greatly reduced, and high values
of lift can be dangerous, as air creates an upward force separating the car from the ground.
Instead, improvement in downforce causes the air to push the car towards the ground,
improving safety and stability at higher speeds and making the car easier to handle. In
model 4, the spoiler’s objective in reducing air speed can be seen, although the car’s lift has
increased. In model 5, the drag coefficient, drag force and lift coefficient decreased by 3.16%,
3.16% and 80.8%, respectively. Model 6 has improved all aerodynamic properties from the
base model, whilst obtaining the lowest drag coefficient value and reducing lift. As the
model produces negative lift (downforce) the car’s stability is improved at higher speeds,
as vertical air pushes the car onto the ground providing more grip; however, downforce
value must be monitored, as a value too large can provide too much force for the car to
accelerate spoiling fuel consumption. The reduction in drag will reduce the air resistance
towards the car, minimizing the amount of power needed to move the car and increasing
its efficiency. Finally, Model 6 has obtained a 10% reduction in the drag coefficient.
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3.8. Discussion

According to the achieved results, the proposed adjustments reduce the overall drag
at the surface. According to Nixon’s study [31], the drag force is proportional to entropy
generation. The author used an extended form of Crocco’s equation, which relate aero-
dynamic loads to entropy production. Consequently, by solving Crocco’s equation at the
airfoil surface, the entropy production can be estimated as a function of additive terms.
These terms include the effects of vorticity flux, viscosity and energy losses on entropy
production. Based on their studies, we can conclude that the common factor between
these terms is the Mach number, which is proportionally related to the entropy production.
For our study, the performed enhancements reduced the stream velocity. As a result, the
Mach number and the total entropy production were reduced. In addition, the entropy
production increases with the tangential part of the drag force, which decreases with the
stream velocity reduction for the electric vehicles in our studies.
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4. Conclusions

The development of electric vehicles plays a significant role in carbon mitigation in
transport sectors worldwide. Due to the limit of battery technologies, it is essential to
understand the aerodynamic performance of electric vehicles. The present study developed
an advanced computational fluid dynamics modelling to optimize the design of an electric
hatchback and improve the range of electric vehicles. The experimental data were used to
validate the numerical modelling. The simulation predicted the experimental result within
4.36% error, representing a reasonable agreement. The study has highlighted various
modifications in reducing drag coefficient, compared to the base design of the electric
hatchback. The most relevant findings of the research can be stated as follows:

- The optimized design by adding the front splitter, rear diffuser, rear spoiler and rear
fins decreases the hatchback’s drag coefficient and improves safety and stability at
higher speeds, making the car easier to handle.

- The optimization contributed to a 10% reduction in the drag coefficient of the electric
hatchback and improved the aerodynamic performance and the range of electric vehicles.

- The second model with front spitter has an insignificant improvement limited to 1.17%,
compared with 11.18% when the rear diffuser was involved separately. In addition,
the lift coefficient was significantly reduced to 73%, providing better stabilities and
accounting for the safety measurements, especially at high velocity.
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Nomenclature

A Surface area [m2] v fluid velocity in y direction [m/s]
C1, C2, C1ε, C3ε Model constant w fluid velocity in z direction [m/s]
CD Drag coefficient YM fluctuating dilatation [J]
CL Lift coefficient Greek symbols
Gb Buoyancy turbulence ε turbulent dissipation rate

kinetic energy [J]
Gk Mean velocity gradients ν kinematic viscosity [m2/s]

turbulence kinetic energy [J]
k Turbulent kinetic energy [J] ρ density [kg/m3]
p Pressure [Pa] σk, σε Model constant
S,SMx,SMy,SMzSk,Sε Source items µ dynamic viscosity [Pa·s]
t time [s] Subscripts
u fluid velocity in x ICE Internal Combustion Engine

direction [m/s]
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