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Abstract: The main goal of group testing is to identify a small number of specific items among a
large population of items. In this paper, we consider specific items as positives and inhibitors and
non-specific items as negatives. In particular, we consider a novel model called group testing with
blocks of positives and inhibitors. A test on a subset of items is positive if the subset contains at least one
positive and does not contain any inhibitors, and it is negative otherwise. In this model, the input
items are linearly ordered, and the positives and inhibitors are subsets of small blocks (at unknown
locations) of consecutive items over that order. We also consider two specific instantiations of this
model. The first instantiation is that model that contains a single block of consecutive items consisting
of exactly known numbers of positives and inhibitors. The second instantiation is the model that
contains a single block of consecutive items containing known numbers of positives and inhibitors.
Our contribution is to propose efficient encoding and decoding schemes such that the numbers of
tests used to identify only positives or both positives and inhibitors are less than the ones in the
state-of-the-art schemes. Moreover, the decoding times mostly scale to the numbers of tests that are
significantly smaller than the state-of-the-art ones, which scale to both the number of tests and the
number of items.

Keywords: non-adaptive group testing; inhibitors; combinatorics; sub-linear algorithms; sparse recovery

1. Introduction

Group testing [1] was first introduced to reduce time and cost of testing draftees who
were possibly positive for syphilis. In this problem, the number of syphilitic draftees is
outnumbered by the number of non-syphilitic draftees. The main idea of group testing
is instead of testing draftees individually, sets of draftees are pooled and tested. If the
test outcome of a pool is positive, then there exists at least one draftee in that pool that is
syphilitic and none of the draftees in the pool are syphilitic otherwise. Since this seminal
work, group testing has been usually treated as a problem of identifying a small number
of specific items in a large population of items. The specific items depend on context and
affect how a test on a subset of items is positive or negative.

There are two general strategies for designing tests [2]. The first is adaptive group test-
ing in which the design of a test depends on the designs of the previous tests. This approach
usually attains an information-theoretic bound for the number of tests but consumes a
substantial amount of time for implementation because of several design stages. To remedy
its time-consuming nature while achieving a relatively low number of tests, non-adaptive
group testing (NAGT) is used. In this strategy, all tests are designed independently and
can be performed in parallel. Because of its advantage, NAGT has been used in a wide
range of applications, such as computational and molecular biology [2,3], networking [4],
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COVID-19 [5,6], and neuroscience [7]. In this work, our focus is on the non-adaptive
testing strategy.

NAGT can be represented by a t× n binary matrix T = (tij), where n is the number
of items and t is the number of tests. An entry tij = 1 means that item (column) j belongs
to test (row) i, and tij = 0 means otherwise. The jth item is represented by the jth column
of the matrix. The procedure to produce the measurement matrix is called construction,
the procedure to obtain the outcomes of tests using the measurement matrix is called
encoding, and the procedure to recover specific items from the outcomes is called decoding.
A measurement matrix is random if some tests are generated by a probabilistic scheme,
whereas it is deterministic if every test is deterministic. A measurement matrix is strongly
explicit (explicit) if it takes the time and space polynomial of the number rows (respectively,
the number rows and the number of columns) to generate a column in it.

Some distribution settings may apply on specific items. There are two common
settings: (i) the probabilistic setting, in which there is some probability distribution used on
specific items, and the identification error probability is allowed; and (ii) the combinatorial
setting, which is our focus here, and no probability distribution is used on specific items.

Consider standard group testing in which specific items are only positives. Suppose a
test on a subset of items is positive if the subset contains at least one positive and is negative
otherwise. Throughout the paper, log refers to base 2 logarithms. If we give a population
of n items up to d positives,then there are a number of works for attaining a low number of
tests, say t = O(d2 log1+o(1) n), and/or a fast decoding time, say poly(d, ln n) [8–14] in the
combinatorial setting. In probabilistic settings, Bondorf [15] et al. show that the number
of tests can be reduced to O(d log n) with a decoding time of O(d2 log d · log n). Price and
Scarlett [16] later improved the decoding time to O(d log n).

1.1. New Model and Problem Definition

Because of the natural phenomenon in biology, a new type of item called inhibitor was
introduced in group testing [3] and studied [17–20]. An inhibitor item causes a negative
outcome for any test it is involved in. On the other hand, a test on a subset of items is
positive if the subset does not contain any inhibitor and contains at least one positive.

Group testing with blocks of positives has been recently presented by Bui et al. [21],
which is a generalization of group testing with consecutive positives [22–27]. In this model,
input n items are linearly ordered, and all positives belong to at most k blocks of consecutive
items and each block has up to d consecutive items.

Combining the two models above, we consider a novel model called group testing with
blocks of positives and inhibitors. The input n items are linearly ordered. We sub-categorize
the model into three models and illustrate them in Figure 1. The first model contains one
block of d + h consecutive items and that block contains exactly d positives and h inhibitors.
The second model, which is a general model of the first one, contains one block of D ≥ d+ h
consecutive items and that block contains up to d positives and h inhibitors. The third
model, which is the most general one, contains multiple blocks, says k, of consecutive items
in which each block of size up to D ≥ d + h contains up to d positives and h inhibitors.
Note that the assumption on the known upper bounds for k, h, and d are obtained from
previous statistics.

We formulate the three models above as follows. Sets of the form C = {c1, . . . , ck} used
in this work are equipped with linear order ci ≺ ci+1 for 1 ≤ i < k. We index the population
of n items from 1 to n, namely N = {1, 2, . . . , n}. Let x = (x1, . . . , xn)T ∈ {−1, 0, 1}n be the
binary representation vector of n items, where xj = 1 indicates that item j is positive, xj = 0
indicates that item j is negative, and xj = −1 indicates that item j is inhibitory. A test on a
subset of items is positive if the subset contains at least one positive and does not contain
any inhibitors. Otherwise, the test outcome is negative.

The test notation is denoted as �. Let p = (p1, . . . , pn) ∈ {0, 1}n be the test repre-
sentation vector. Then, the outcome vector of the test p with the input vector x, namely
p� x, is positive (1) if there does not exist a j such that pj = 1 and xj = −1, and there
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exists a j′ such that pj′ = 1 and xj′ = 1. The test outcome is negative (0) otherwise. Given a
measurement matrixM of size t× n and an input vector x, the corresponding outcome
vector isM� x = [y1, . . . , yn]T , where yi =M(i, :)� x.

There are two common decoding types based on classification strategy. The first is
to only identify the positives while the second is to identify both positives and inhibitors.
Our objective is to find an efficient encoding and decoding scheme to satisfy two decoding
types, i.e., minimizing the number of tests and the decoding time.

1

2

3

𝐷 = 𝑑 + ℎ

𝐷 ≥ 𝑑 + ℎ

𝐷 𝐷

Single block of consecutive
positives and inhibitors

Single block of
positives and inhibitors

Blocks of
positives and inhibitors

Figure 1. Three models for blocks of positives and inhibitors. Red, purple, and black dots represent
positives, inhibitors, and negative items, respectively. A double arrow line stands for a block of D
consecutive items. The first, second, and third models are a single block of consecutive positives and
inhibitors, single block of positives and inhibitors, and blocks of positives and inhibitors. The second
model is a generalization of the first model, and the third model is a generalization of the first
two models.

1.2. Contributions

Overview: We study group testing with blocks of positives and inhibitors and provide
efficient encoding and decoding schemes to tackle it. By leveraging the knowledge of
positives and inhibitors belonging to a small interval of size D, our objective is to identify
the position of some positive, say j∗; then, one could claim that the indices of all positives
and inhibitors must belong to the range from max{1, j∗ − D + 1} to min{j∗ + D − 1, n}.
To precisely identify positives and inhibitors, appropriate tests are designed to accomplish
this task.

Our proposed scheme includes two procedures, which are the filtering and scrutinizing
procedures. The tests in the filtering procedure remove most negative items and leave
a subset(s) of size up to 2D that contains all positives, inhibitors, and probably some
negatives. The tests in the scrutinizing procedure remove all negatives and then identify
positives and inhibitors. The details of the two procedures are specified in accordance to
each specific problem.

The contributions for a single block of (consecutive) positives and inhibitors is summa-
rized in Theorem 1. The proofs for the results of the first and second model are described
in Sections 3 and 4.

Theorem 1. Let 1 ≤ d, h, d + h ≤ n be integers. Suppose that a population of n linearly ordered
items includes exactly d positives and h inhibitors in a block of D ≥ d + h items that are consecutive
that order. When D = d + h (respectively, D ≥ d + h), there exists a deterministic and strongly
explicit measurement matrix of size O

(
h log hn

d+h + d
)
× n (respectively, O(D log n)× n) that can

be used to identify all positives in O
(

h log hn
d+h + d

)
(respectively, O(D log n)) time. Moreover,

it requires O
(
(d + h)3 log n

d+h

)
(respectively, O

(
D log n + D3 log(n/D)

)
) tests to identify all

positives and inhibitors in O
(
(d + h)4 log n

d+h

)
(respectively, O

(
D log n + D4 log(n/D)

)
) time.

The contribution for blocks of positives and inhibitors is summarized in the following
theorem, which is proved later in Section 5.



Entropy 2022, 24, 1562 4 of 12

Theorem 2. Let 1 ≤ d, h, d + h ≤ D ≤ n be integers. Suppose that a population of n items is
linearly ordered and the positives and inhibitors belong to blocks of consecutive items in which each
block has a size of up to D and contains up to d positives and h inhibitors. Then, there exists a
deterministic and strongly explicit measurement matrix of size O(Dk2(D + log n

D ) log n
D )× n

that can be used to identify all positives in O(Dk2(D + log n
D ) log n

D ) time. Moreover, it requires
O(D2k2(D + log n

D ) log n
D ) tests to identify all positives and inhibitors in time.

O
(

Dk2 log
n

kD
(D + log

n
D
) + k4D4 log

n
kD

)
.

2. Preliminaries

Disjunct matrices were first introduced by Kautz and Singleton [28] as superimposed
codes and then generalized by Stinson and Wei [29] and D’yachkov et al. [30]. We later
use them for identifying both positives and inhibitors. Let the support set for vector
v = (v1, . . . , vw) be supp(v) = {j | vj 6= 0} and |v| = |{j | vj 6= 0}|. We denoteM(i, :) and
M(:, j) as the ith row and the jth column of matrixM. The formal definition of a disjunct
matrix is as follows.

Definition 1. An m × n binary matrix M is called an (n, v, u)-disjunct matrix if, for any
two disjoint subsets S1, S2 ⊂ [n] such that |S1| = v and |S2| = u, there exists at least one
row in which there are all 1s among the columns in S2 while all the columns in S1 have 0s,
i.e.,

∣∣∣⋂j∈S2
supp(M(:, j))

∖⋃
j∈S1

supp(M(:, j))
∣∣∣ ≥ 1.

Chen et al. [31] gave an upper bound on the number of rows for (n, v, u)-disjunct
matrices as follows.

Theorem 3 ([31] Theorem 3.2). For any positive integers v, u, and n with x = v + u ≤ n, there
exists a t× n (n, v, u)-disjunct matrix with the following.

t(n, v, u) = O
(( x

u

)u( x
v

)v
x log

n
x

)
. (1)

Once u = 1, (n, v, 1)-disjunct matrices become v-disjunct matrices. The following
theorem states the construction and decoding time for a d-disjunct matrix.

Theorem 4 ([11] Theorem 16). Let 1 ≤ d ≤ n. Then, there exists a deterministic and explicit
t× n d-disjunct matrix with t = O(d2 log n) that can be decoded in the polynomial time of t.

3. Single Block of Consecutive Positives and Inhibitors

In this section, we consider the case when the positives and inhibitors are consecutive
and the numbers of positives and inhibitors are known in advance. Set D = d + h.

3.1. Encoding Procedure

Set a = bD/(h + 1)c and κ = dn/ae. A super item, denoted as ·̄, is a set of consecutive
items. The n items are distributed into κ super items indexed from 1 to κ and each super
item contains exactly a items, except that the last one may contain less than a items. Let
Ē = {1̄, 2̄, . . . , κ} be the set of super items generated from N , where set( j̄) = {(j− 1)a +
1, . . . , ja} for j = 1, . . . , κ − 1 and set(κ) = {(κ − 1)a + 1, . . . , n}. We then denote that
χĒ = (χ1, . . . , χκ) be the characteristic vector of Ē , where χj = 1 if the test on j̄ is positive
and χj = 0 otherwise.

3.1.1. Filtering Matrices

We create h + 2 filtering matrices in the filtering procedure as follows. Let F =
[f1, · · · , fκ ] be an f × κ (indexing) binary matrix for which its jth column is the f -bit binary
representation of integer j, where f = dlog (κ + 1)e. It is obvious that the index j is
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uniquely identified by fj. We then generate h + 2 binary matrices F (u) = [F (u)
1 , . . . ,F (u)

κ ]

for u = 1, . . . , h + 2, such that column F (u)(:, j) is a zero vector if j 6≡ u mod (h + 2) while
F (u)(:, j) = fj if j ≡ u mod (h + 2). For example, let n = 12, d = 4, and h = 2. We
obtain a = d(d + h)/(h + 1)e = 2 and κ = dn/ae = 6. Since F = [f1, f2, f3, f4, f5, f6], we
imply F (1) = [f1, 0, 0, 0, f5, 0], F (2) = [0, f2, 0, 0, 0, f6] , F (3) = [0, 0, f3, 0, 0, 0], and F (4) =
[0, 0, 0, f4, 0, 0]. For every h + 2 consecutive column in F (u), there exists only one non-zero
column. Therefore, it is used to “isolate” each super item in the h + 1 super items generated
from the set of D positives and inhibitors.

Let yF (u) = [yF (u)(1), . . . , yF (u)( f )]T be the outcome vector by using the testing matrix
F (u) with the set of super items Ē . In particular, ifF (u)(i, j) = 1 (respectively, F (u)(i, j) = 0)
then all items in the super item j̄ (respectively, do not) belong to test i. Therefore, we obtain
the following.

yF (u) = F (u) � χĒ . (2)

3.1.2. Sanitizing Matrices

In the sanitizing procedure, the measurement matrix depends on whether the objective
is to identify positives only or to identify both positives and inhibitors. For the first objective,
we design an s× n matrix S such that S(i, j) = 1 if i ≡ j mod s and S(i, j) = 0 or, otherwise,
where s = 2D− 1. In other words, each test contains items spaced 2D− 1 apart in a linear
order. For example, when n = 12, d = 4, and h = 2, we obtain the following.

S =



1 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 1 0



.

It is straightforward that every column in S (respectively, F (u)) is deterministic and
strongly explicit because each column in it can be generated in time and space of O(2D) =
O(d + h) (respectively, O(log κ)).

For the second objective, i.e., the objective of identifying both positives and inhibitors,
we design an additional matrix R along with matrix S . Let R be a r × n (n, 2D − 3, 2)-
disjunct matrix as defined in Definition 1. Therefore, we have r = O(D3 log(n/D)) =
O((d + h)3 log(n/(d + h))) as in Theorem 3.

Let yS = [yS (1), . . . , yS (s)]T (respectively, yR = [yR(1), . . . , yR(r)]T) be the outcome
vector by using the testing matrix S (respectively, R) with input set N. In particular, we
have the following.

yS = S � x and yR = R� x. (3)

3.2. Decoding Procedure and Correctness

We first approximately locate some positive items by using outcome vectors
yF (1) , . . . , yF (h+1) . Then, we can locate a set of up to 2D− 1 items that contains all positives
and inhibitors. We call this set the set of interest. By using yS , we can exactly identify
all positives in that set. Meanwhile, if yR is also used, all inhibitors are also identified.
The details of the decoding procedure are as follows.

Let λ be an index such that yF (λ) is not a zero vector. There always exists a λ. Indeed,
because there are h inhibitors, D consecutive positives and inhibitors, and each super item
contains up to bD/(h + 1)c items, the total number of items contained in super items
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having inhibitors is up to hbD/(h + 1)c < D. Therefore, there must exist a super item ᾱ
that does not contain any inhibitor but all positives for 1 ≤ α ≤ κ. Let λ be the index such
that F (λ)(:, α) 6= 0. Since two consecutive non-zero column in F (u) are space by h + 2,
yF (λ) = F (λ) � χĒ = F (λ)(:, α). Therefore, to identify α, we convert a non-zero vector
yF (λ) into a decimal number. The indices of all positives and inhibitors, thus, must belong
to the range from max{1, j∗ − D + 1} to min{j∗ + D− 1, n}. The decoding complexity of
identifying λ is therefore O(h f ).

Because of the construction of S , a matrix composed of 2D− 1 consecutive columns
in it is a permutation of a (2D− 1)× (2D− 1) identity matrix. Therefore, given the indices
from max{1, α−D + 1} to min{α+ D− 1, n}, one can identify which item is positive based
on the corresponding outcome vector yS . The decoding complexity of yS is, therefore,
O(D) = O(d + h).

After identifying d positives, the set of interest contains up to 2D− 1− d = d + 2h− 1
potential inhibitors. Because of the construction ofR, for any two items and other 2D− 3
items, there exists a test that contains the two items and does not contain the other 2D− 3
items. Therefore, one could identify whether a potential inhibitor is truly an inhibitor by
checking the row that contains it and whether it is a positive, in addition to checking that it
does not contain the remaining items in the set of interest. Since there are up to 2D− 1− d
potential positives and the number of rows inR is r, this procedure to identify inhibitors
takes O(r(2D− 1− d)) = O(r(d + h)).

3.3. Decoding Complexity and Number of Tests

As analyzed in the previous section, to identify the positives only, the number of
required tests and the decoding complexity are as follows.

O((h + 2) f+s) = O
(

h log
hn

d + h

)
+ O(d + h) = O

(
h log

hn
d + h

+ d
)

.

To identify both the positives and inhibitors, i.e., classify all items, the required number
of tests is as follows.

(h + 2) f + s + r = O
(

h log
hn

d + h

)
+ O(d + h) + O

(
(d + h)3 log

n
d + h

)
= O

(
(d + h)3 log

n
d + h

)
.

The corresponding decoding complexity is as follows.

O(h f ) + O(d + h) + O(r(d + h)) = O
(
(d + h)4 log

n
d + h

)
.

4. Single Block of Positives and Inhibitors

In this section, we consider the case when the positives and inhibitors are not nec-
essarily consecutive but belong to a small block (set) of consecutive items of size up to
D ≥ d + h, where d and h are the maximum numbers of positives and inhibitors in the
population of n items.

In the encoding procedure, we use the same techniques in Section 3.1 but adjust some
parameters. In the filtering procedure, we set a = 1, i.e., every super item reduces to an
item. Therefore, κ is equal to n. Moreover, we create D filtering matrices, i.e., h + 1 is
replaced by D. In the sanitizing procedure, the parameter s in the s× n matrix S is set
to be 2D− 1. MatrixR is a r× n (n, 2D− 3, 2)-disjunct matrix as defined in Definition 1.
Therefore, we have r = O(D3 log(n/D)) as in Theorem 3.

Since the decoding procedure and the proofs of correctness are as the same as in
Section 3.2, we only pay attention for the required numbers of tests and the decoding
complexities. Each matrix F (u) has a size of f × n, where f = dlog ne , for u = 1, . . . , D.
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The numbers of tests in matrices S and R are s = 2D − 1 and r = O(D3 log(n/D)),
respectively.

To identify the positives only, the number of required tests and the decoding complex-
ity are as follows.

D f + s = O(D log n) + O(D) = O(D log n).

To identify both the positives and inhibitors, the required number of tests is described
as follows.

D f + s + r = O(D log n) + O(D) + O(D3 log(n/D))

= O
(

D log n + D3 log(n/D)
)

.

The corresponding decoding complexity is as follows.

O(D f ) + O(d + h) + O(rD) = O
(

D log n + D4 log(n/D)
)

.

5. Blocks of Positives and Inhibitors

In this section, we consider a model consisting of multiple blocks of positives and
inhibitors, in which all positives and inhibitors belong to at most k special blocks of
consecutive items and each block has up to D consecutive items.Moreover, each special
block contains up to dpositives and up to h inhibitors.

5.1. Encoding Procedure

We generate D sets from the set of n items N as follows. Set N(u) = {u, D + u, 2D +
u, . . . , nu} and x(u) = (xu, xD+u, x2D+u, . . . , xnu)

T , where nu is the largest number smaller
than n and nu ≡ u mod D, for u = 1, . . . , D. It is obvious that nu = |N(u)| ≤ dn/De. Since
each special block has up to D items and there are up to k special blocks, each set N(u) must
contain up to k positives and inhibitors in total. Moreover, for each special block τ, there
exists an index uτ such that some positive item in that block belongs to N(uτ) because two
consecutive items in N(u) are spaced apart by D and each special block has up to D items.

Let M(u) be an mu × nu k-disjunct matrix. We then obtained mu = O(k2 log nu)
= O(k2 log (n/D)) as in Theorem 4. Let B(u) be a b× nu index matrix:

B(u) :=
[

b1 b2 . . . bnu

b1 b2 . . . bnu

]
=
[
B(u)1 . . . B(u)nu

]
, (4)

where b = 2dlog nue, bj is the dlog nue-bit binary representation of integer j− 1, bj is the

complement of bj, and B(u)j :=
[

bj
bj

]
for j = 1, 2, . . . , nu. Item j is characterized by column

Bj and that the weight of every column in B is b/2 = dlog nue. Furthermore, the index j is
uniquely identified by bj. For example, if we set nu = 8, b = 2dlog nue = 6, and the matrix
in (4) becomes the following.

B(u) =



0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 0 0 0 0
1 1 0 0 1 1 0 0
1 0 1 0 1 0 1 0

. (5)

Finally, matrices S andR are defined as in Section 3.1.2. Note that D is not set to be
d + h here.
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We are now ready to generate a filtering matrix and a scrutinizing matrix. The filtering
matrix corresponding to matrixM(u) is as follows:

F (u) =


M(u)(1, :)

B(u) × diag(M(u)(1, :))
...

M(u)(mu, :)
B(u) × diag(M(u)(mu, :))

, (6)

where diag(·) is a diagonal matrix generated by the input vector.
The vector observed after performing the tests given by the measurement matrix

F (u) is described as follows:

y(u) = F (u) � x(u) =



M(u)(1, :)� x(u)

B(u) � x(u)1
...

M(u)(mu, :)� x(u)

B(u) � x(u)mu

 =



y(u)1

y(u)
1
...

y(u)mu

y(u)
mu


(7)

where x(u)i = diag(M(u)(i, :))× x(u), yi =M(u)(i, :)� x(u), and y(u)
i = B(u) � x(u)i , for i =

1, 2, . . . , mu. Entry yi indicates whether there exist only negatives and positives in that test.
If the answer is yes, vector y(u)

i tells us whether there exists only one positive or more than
one positive.

Let expand(M(u)(i, :)) beM(u)(i, :). Then, for any j ∈ N(u) andM(u)(i, j) = 1, every
entry in expand(M(u)(i, :)) indexed from max{j− D + 1, 1} to min{j + D− 1, n} is set to
be 1. This vector is used to identify a block of 2D− 1 consecutive items that contains at
least one positive item. In particular, to identify positives only, the scrutinizing matrix
corresponding to matrixM(u) isdefined as follows:

S (u) =

 S × diag(expand(M(u)(1, :)))
...

S × diag(expand(M(u)(mu, :)))

, (8)

where S is defined in Section 3.1.2, and the outcome vector obtained by using this matrix is
as follows:

s(u) = S (u) � x =

 S � (diag(expand(M(u)(1, :)))× x)
...

S � (diag(expand(M(u)(mu, :)))× x),

 =


s(u)1

...
s(u)mu

, (9)

where s(u)i = S � (diag(expand(M(u)(i, :)))× x), for i = 1, 2, . . . , mu.
To identify both positives and inhibitors, an additional scrutinizing (n, kD − 2, 2)-

disjunct matrixR is used. Let r be the outcome vector by using this matrix.

5.2. Decoding Procedure and Correctness

For each u ∈ {1, D}, we first scan each y(u) to locate some positive item in some
block. The decoding procedure is as follows. First, find 1 ≤ i ≤ mu such that y(u)i = 1 and

|y(u)
i | = dlog nue. Second, let α be the corresponding decimal number of the first half of

y(u)
i , where y(u)i = 1 and |y(u)

i | = dlog nue. Then, similarly to the arguments in Section 3.2,
since any matrix composed of 2D − 1 consecutive columns in S is a permutation of a
(2D− 1)× (2D− 1) identity matrix, one can identify which item is positive based on the
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corresponding outcome vector s(u)i . Finally, all inhibitors in a block can be identified by

using r(u)i .
Such i always exists in the first step. Indeed, as proved in Section 5.1 that for each

special block τ, there exists an index uτ such that some positive item in that block belongs
to N(uτ). Since each set N(uτ) contains up to k positives and inhibitors and M(uτ) is a
k-disjunct matrix, there must exist row i such thatM(uτ)(i, :) contains only that positive.
Therefore, y(uτ)

i = 1 and |y(uτ)
i | = dlog nuτe. Conversely, if y(u)i = 1, there must exist at least

one positive item in N(u) in testM(u)(i, :). Moreover, since B(u) � (diag(M(u)(i, :))× x(u))
and every column in B(u) has weight of dlog nue, there must exist only one positive item in
N(u) in that test. Otherwise, |y(u)

i | > dlog nue.
In the second step, the indices of positives and inhibitors then ranged from max{1, α−

D + 1} to min{α + D − 1, n}. Because of the construction of vector
expand(M(u)(1, :)), every item indexed from max{1, α − D + 1} to min{α + D − 1, n}
presents in the characteristic vector diag(expand(M(u)(1, :)))× x. Therefore, s(u)i is the
union of up to D columns in S , which out of them corresponds to all positives and in-
hibitors in a specific block. The positives are thus identified. The decoding complexity of
s(u)i is therefore O(D).

In the last step, since R is an (n, kD − 2, 2)-disjunct matrix, for any block of pos-
itives and inhibitors, there exists a row such that it contains only a positive and an
inhibitor. That inhibitor is thus identified. This procedure takes O(k × r(2D − 1)) =
O(k4D4 log (n/(kD))).

5.3. Decoding Complexity and Number of Tests

There are D F (u) deterministic and strongly explicit matrices in the filtering procedure.
Since each has mu(1 + b) = O(k2 log nu × log nu) = O(k2 log2 (n/D)) tests, the total
number of tests in the filtering procedure is O(Dk2 log2 (n/D)). The decoding complexity
by using these tests is also O(Dk2 log2 (n/D)).

There are also D S (u) matrices and D R(u) matrices. The total number of tests for
D S (u) matrices and D R(u) matrices include muD(2D − 1) = O(muD2) and muDr =
O(murD), respectively. Therefore, the number of tests for identifying positives only (both
positives and inhibitors) is O(Dmu(1 + b + s)) = O(Dk2 log (n/D)(D + log (n/D))) (re-
spectively, O(Dmu(1 + b + s) + r) = O(k2D2 log (n/D)(log (n/D) + kD))).

For each u, the running time to decode all s(u)i s is O(mus) = O(Dk2 log (n/D)). Since
u ranges from 1 to D, the running time to find all positives is O(Dk2 log2 (n/D)) + D×
O(mus) = O(Dk2 log (n/D)(D + log (n/D))). On the other hand, the running time to find
all positives and inhibitors is as follows.

O
(

Dk2log
n

kD
(D + log

n
D
)
)
+ O

(
k4D4log

n
kD

)
= O

(
Dk2 log

n
kD

(D + log
n
D
)+k4D4 log

n
kD

)
.

6. Discussion
6.1. Comparison

We compare our proposed schemes with existing schemes, namely Ganesan et al. [32],
Chang et al. [33], and Bui et al. [20] in Table 1. There are eight criteria to consider here.
The first four criteria are about the structure of the population of n items. They are
the number of blocks, the number of items in a block, the number of positives (in a
block if applicable), and the number of inhibitors (in a block if applicable). The fifth
criterion is the decoding type. The sixth is the construction type, which describes how
measurement matrices can be achieved. The seventh and the last are the number of tests
and the decoding time.

Consider the decoding type as “positives only.” The construction type in our proposed
schemes for the first and the second model, i.e., the number of blocks is one, is deterministic
and strongly explicit. They are better than the schemes proposed by Chang et al. and Gane-
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san et al., whose schemes are random and explicit. The numbers of tests in our proposed
schemes are almost less than a factor of d + h compared to the ones in Chang et al.’s and
Bui et al.’s schemes and less than the one in Ganesan et al.’s scheme. More importantly,
our decoding times scale to the number of tests while the ones in Chang et al.’s and Gane-
san et al.’s schemes scale to the number of tests and the number of items. For the third
model, the same arguments are applied by replacing d by dk and h by hk.

We now consider the decoding type as “positives and inhibitors.” For the first and
second models, the number of tests in our proposed schemes is relatively the same as the
one in Chang et al.’s scheme, smaller than the one in Bui et al.’s scheme, and less than the
one in Ganesan et al.’s scheme. Meanwhile, the decoding times are smaller than the ones
in the three existing schemes. For the third model, the number of tests in our proposed
schemes is relatively similar to the one in Chang et al.’s scheme, smaller than the one in
Bui et al.’s scheme, and larger than the one in Ganesan et al.’s scheme. However, our
decoding time is smaller than the ones in the three existing works.

Table 1. Comparison with previous work. “Det.” and ”Rnd.” stand for “Deterministic” and

“Random.” We set λ = (d+h) ln n
W((d+h) log n) , α = max

{
λ

(d+h)2 , 1
}

, and β = O(Dk2(D + log n
D ) log n

D +

k4D4 log n
kD ), where W(x)eW(x) = x and W(x) ∼ Θ(log x− log log x).

No. of
Blocks

No. of
Items

in a Block

No. of
Positives

(in a Block)

No. of
Inhibitors

(in a Block)

Decoding
Type Scheme Construction

Type
No. of Tests

t Decoding Complexity

Not applicable

d h

Positives only

Ganesan et al. [32]
Rnd., Explicit

O((d + h) log n) O(tn)

≤ d ≤ h Chang et al. [33] O((d + h)2 log n) O(tn)

Bui et al. [20]
Det.,

Strongly explicit

O(λ2 log n) O
(

λ5

(d+h)2

)
1

d + h d h Theorem 1 O
(

h log hn
d+h + d

)
O(t)

D ≤ d ≤ h Theorem 1 O(D log n) O(t)

k ≤ D ≤ d ≤ h Theorem 2 Rnd., Explicit O(Dk2(D + log n
D ) log n

D ) O(t)

Not applicable

d d

Positives
and

inhibitors

Ganesan et al. [32] Rnd., Explicit O((d + h2) log n) O(tn)

≤ d ≤ h Chang et al. [33] Rnd., Explicit O((d + h)3 log n) O(tn)

Bui et al. [20] Det.,
Strongly explicit O(λ3 log n) O(dλ6α)

1 d + h d h Theorem 1 Rnd.,
Explicit

O
(
(d + h)3 log n

d+h

)
O
(
(d + h)4 log n

d+h

)
D ≤ d ≤ h Theorem 1 O

(
D log n + D3 log n

D
)

O
(

D log n + D4 log n
D
)

k ≤ D ≤ d ≤ h Theorem 2 Rnd., Explicit O(D2k2(D + log n
D ) log n

D ) β

6.2. Potential Applications

Bruno et al. [34] addressed a group testing-based solution in genetic mapping and
sequencing. In this application, the authors consider linear DNA, which consists of consec-
utive segments of the DNA. Each segment is placed in a pool, called clones, in an order
consistently to the order of their appearance in the linear DNA. A collection of such clones
is called a linear DNA library. From this point, we can ask where segments (clones) of
interest are in the linear DNA library [35]. The segments of interest here can be considered
as positives and other segments can be considered as negatives. A pool that contains at
least one segment of interest returns a positive outcome when performing testing and
returns a negative outcome otherwise.

We extend the application above to a potential application as follows. Given a linear
DNA library, we would like to find segments of DNA that express a certain biological
property and segments of DNA that inhibit the segments expressing a certain biological
property. The first and second types of segments of interest are considered as positives
and inhibitors, respectively, while the remaining segments are considered as negatives.
Because of the nature of DNA, an inhibitor is usually close to positives. Therefore, the blocks
of positives and inhibitors model can be used to identify both positives and inhibitors.
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7. Conclusions

In this paper, we presented efficient encoding and decoding procedures to identify
positives and/or inhibitors in a single block of (consecutive) positives and inhibitors or
in blocks of positives and inhibitors. The number of tests and the decoding times in our
proposed schemes is usually smaller than the ones in existing works. An extension of this
work to other settings in group testing such as threshold group testing or complex group
testing is still an open problem.
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