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Abstract: Consensus about the universality of the power law feature in complex networks is experi-
encing widespread challenges. In this paper, we propose a generic theoretical framework in order to
examine the power law property. First, we study a class of birth-and-death networks that are more
common than BA networks in the real world, and then we calculate their degree distributions; the
results show that the tails of their degree distributions exhibit a distinct power law feature. Second,
we suggest that in the real world two important factors—network size and node disappearance
probability—will affect the analysis of power law characteristics in observation networks. Finally,
we suggest that an effective way of detecting the power law property is to observe the asymptotic
(limiting) behavior of the degree distribution within its effective intervals.

Keywords: power law; preferential attachment; random addition and deletion; complex networks

1. Introduction

In 1999, Barabási and Albert published the seminal article “Emergence of scaling in
random networks” in Science [1], in which they suggested that growth and preferential
attachment are two key characteristics for real-world networks, and further suggested that
networks with the power law feature widely exist in the real world. Over the last 20 years,
their contribution has exerted a significant impact on network science research [2–5].

Generally, a network with the power law feature means that the tail of its degree
distribution follows a power law [6–11]. In other words, there is a positive integer k′, and
when k > k′, the probability of a node with degree k is:

P(k) ∝ kα

where α is the exponent of the power law.
For a long time now, researchers and practitioners have believed that the power law

feature is common in real-world networks, such as the Internet, scientific co-authoring
networks, metabolic networks, and biological networks [12–21], and numerous results are
based on this property (with more than 35,000 citations by Google Scholar). However,
more recently, some have begun to question its universality [11,22–26]. For example,
Tanaka [22] argues that the metabolite degree distributions at the module level follow an
exponential distribution. Similarly, Lima-Mendez and Helden [25] found that the degree
distributions in many biological networks are not subject to a power law. More broadly,
Stumpf and Porter [11] argue that “most reported power laws lack statistical support and
mechanistic backing”. In addition, Broido and Clauset [26], employing statistical tools,
analyzed nearly 1000 networks in the social, biological, technological, and informational
domains, concluding that scale-free networks are empirically rare. These contradictory
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and critical studies have shaken the cornerstone of complex network theory, provoking
widespread controversy.

Such empirical challenges have spurred researchers to employ alternative or additional
criteria to describe the degree distribution, such as low degree saturation, high degree
cutoffs, and improved goodness of fit [7,8,21,27,28]. These refinements are thought to
provide a better understanding of deviation from the pure power law. Still, some continue
to doubt the reliability or validity of empirical data [9,29,30].

Clearly, real-world networks are dynamic—a feature that must be captured in any attempt
to explain power law behavior. We suggest that a critical method for informing this debate
is to first establish a generic, theoretical, and realistic evolutionary mechanism [11,21,26] in
order to examine the power law feature. This theoretical mechanism should include four
steps: theoretical model building, degree distribution solving, power law feature judgment,
and interpretation of empirical results.

In this paper, we first study a class of birth-and-death networks that are more common
than BA networks in the real world, and then we calculate their degree distributions. Our
results show that the tails of their degree distributions exhibit a distinct power law feature,
providing robust theoretical support for the ubiquity of the power law feature. Second, we
suggest that in the real world two important factors—network size and node disappearance
probability—point to the existence of the power law feature in the observed networks. As
network size reduces, or as the probability of node disappearance increases, the power law
feature becomes increasingly difficult to observe. Finally, we suggest that an effective way
of detecting the power law property is to observe the asymptotic (limiting) behavior of the
degree distribution within its effective intervals.

2. The Power Law Feature Analysis of Complex Networks
2.1. Model

For any network, there are two basic elements: nodes, and edges connecting different
nodes. In numerous real-world networks (e.g., social, ecological, business, and biological
networks), nodes are agents with life cycles and may possess intelligence. During the
evolving processes of these networks, nodes may enter or exit randomly, reflecting the birth
and death of network nodes [31–34]. Meanwhile, these agents (nodes) may exhibit differing
capabilities, making them unequal in terms of resources and positions in their networks.
Those with scarce resources or occupying critical positions will be more attractive, and
new entrants will prefer to establish linkages with nodes that provide what they need.
These behaviors make preferential attachment [35–39] widespread in real-world networks,
such as the “rich-get-richer” phenomenon [40–43]. Accordingly, we suggest that random
addition/deletion of nodes and preferential attachment are two universal behaviors in the
evolution of real-world networks.

Based on the above, we established a network model characterized by random addition
and deletion of nodes as well as preferential attachment. The evolving rules are as follows:

(1) The initial network is a complete graph with m + 1 (m ≥ 1) nodes;
(2) At each unit of time, randomly delete a node from the network with probability

q (0 ≤ q < 1/2), or add a new node to the network with probability p = 1− q and
connect it with m old nodes of the network by preferential connection. That is, the
probability that the new node connects with an old node i depends on the degree ki of
node i, i.e., πi =

mki
∑
j

kj
.

Note:

(a) Considering the real world, any network size has its lower bound n0. Here, we assume
that n0 = 1. This assumption will not affect the power law feature of the model.

(b) If at time t, a node is deleted, then all the edges incident to the removed node are also
removed from the network; thus, the degree of its neighbors decreases by one.

(c) If at time t, a new node is added to the network and the network size is less than m,
then the new node is connected with all old nodes.
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In the case of q = 0, this model equates to the BA model. Thus, the BA model is a
special case of our model.

2.2. Steady-State Degree Distribution

Employing the stochastic process rules (SPR) method [44], we obtained the equation
of (steady-state) degree distribution K for differing k (see Appendix A for details).

(
p +

k
2
+ kq

)
P(k) =


qP(1) k = 0
(m + 1)qP(m + 1) + m − 1

2 P(m− 1) + p k = m
(k + 1)qP(k + 1) + k − 1

2 P(k− 1) 1 ≤ k, k 6= m
(1)

where P(k) = P{K = k}. When q = 0, the equations of steady-state degree distribution K
are as follows: {

(m + 2)P(m) = 2
(r + 2)P(r) = (r− 1)P(r− 1) r ≥ m + 1

(2)

Equation (2) also represents the BA model.
By using the probability-generating function, the solutions to the above equations can

be obtained First, we need to normalize Equation (1) and then calculate the normalized
equations using the probability-generating function. Here, let

Π(k) = P(k) + βk k = 0, 1, 2, · · ·

where βk = 0 (k ≥ m), and for 0 ≤ k < m, βk satisfies the following linear equations:

Aβ = η

where:

A =



−a0 b1 0
c1 −a2 b3

c2 −a3 b4
. . . . . . . . .

cm−3 −am−2 bm−1
cm−2 −am−1

cm−1


, β =



β0
β1
β2
...

βm−3
βm−2
βm−1


, η =



0
0
0
...
0
0
p


m×1

ai = p +
i
2
+ iq, bi = iq, ci =

i
2

i = 0, 1, 2, 3, · · ·

so:
β=A−1η

Then, Equation (1) can be written as follows:

pΠ(0) = qΠ(1)
3
2 Π(1) = 2qΠ(2) + p̂
[2 + q]Π(2) = 3qΠ(3) + 1

2 Π(1)
...(

p + r
2 + rq

)
Π(r) = (r + 1)qΠ(r + 1) + r−1

2 Π(r− 1)
...

(3)

where p̂ = 3
2 β1 − 2qβ2.

To solve Equation (3), we can use the probability-generating function. Let

G(x) =
∞

∑
k=0

Π(k)xk (4)
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Multiplying xk to both sides of the (k + 1)th equation in Equation (3), and adding all of
them together, we can get

2pG(x) = G′(x)
(

x2 − (1− 2q)x + 2q
)
+ 2p̂x (5)

Solving Equation (5), we can get

G(x) =
(

1− x
2q− x

) 2p
1−2q ∫ 2q

x

2p̂t
(1− t)(2q− t)

(
2q− t
1− t

) 2p
1−2q

dt (6)

and we may have

G(x) = 2p̂q
p − 2p̂

∞
∑

i=0

1
2p

1−2q +i+1

(
2q−x
1−x

)i+1

= 2p̂q
p − 2p̂

∞
∑

i=0

1
2p

1−2q +i+1

(
1 + 2q−1

1−x

)i+1 (7)

Employing Taylor expansion for Equation (7), we can get

G(x) = 2p̂q
p − 2p̂

+∞
∑

i=0

(2q)i+1

2p
1−2q +i+1

+

2p̂
+∞
∑

r=1

[
+∞
∑

i=1

1
2p

1−2q +i

i
∑

j=1
(−1)j+1(1− 2q)jCj

i C
r
j+r−1

]
xr

(8)

Comparing with Equation (4), Π(k) can be obtained as follows:

Π(k) =


2p̂q

p − 2p̂
+∞
∑

i=0

(2q)i+1

2p
1−2q +i+1

k = 0

2p̂
+∞
∑

i=1

1
2p

1−2q +i

i
∑

j=1
(−1)j+1(1− 2q)jCj

i C
k
j+k−1 k ≥ 1

(9)

Then, the solution of Equation (1) is as follows:

P(k) =



2p̂q
p − 2p̂

+∞
∑

i=0

(2q)i+1

2p
1−2q +i+1

− β0 k = 0

2p̂

[
+∞
∑

i=1

1
2p

1−2q +i

i
∑

j=1
(−1)j+1(1− 2q)jCj

i C
k
j+k−1

]
− βr 1 ≤ k ≤ m− 1

2p̂

[
+∞
∑

i=1

1
2p

1−2q +i

i
∑

j=1
(−1)j+1(1− 2q)jCj

i C
k
j+k−1

]
k ≥ m

(10)

In order to closely observe the property of its tails, Figure 1 illustrates the solution for
m = 4 with different values of q.

It is easy to observe that when k > 200 (Figure 1A) and k > 3000 (Figure 1B), the
tails approximate to straight lines, implying that the degree distributions of the networks
exhibit distinct power law tails. Similar results can be observed with other values of m
and q. Therefore, the proposed birth-and-death network model shows the power law
feature, providing theoretically robust support for the ubiquity of the power law feature in
real-world networks.
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Figure 1. The steady-state degree distribution for m = 4. (A) 0 ≤ q ≤ 0.4; (B) 0.4 < q < 0.5.

2.3. Power Exponent

Meanwhile, this study can also improve our understanding of the power exponent
α. According to our model, for sufficiently large k, we have P(k) ∝ kα, where α can be
obtained directly as follows: From Equation (1), for sufficiently large k, we can get

(2p + k + 2kq)P(k) = 2(k + 1)qP(k + 1) + (k− 1)P(k− 1) (11)

Noticing that P(k) 6= 0, then

2q[kP(k)− (k + 1)P(k + 1)]
P(k)

=
(k− 1)P(k− 1)− kP(k)

P(k)
− 2p (12)

Let
P(k) ∝ λkα (13)

Taking Equation (13) into Equation (12), and when k→ +∞ , we can obtain

lim
k→+∞

2q
[
kα+1 − (k + 1)α+1

]
kα

= lim
k→+∞

(k− 1)α+1 − kα+1

kα
− 2p (14)

That is:
2q(α + 1) = α + 1 + 2p (15)
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Hence:
α = −3− 4q

1− 2q
(16)

Since α is monotonically decreasing with q, it is easy to see that α ≤ −3 for all
0 ≤ q < 1

2 . In particular, if and only if q = 0, we have α = −3.
As illustrated in Figure 2, α will change with the node disappearance probability q,

explaining why various power law networks have different exponents in the real world. In
particular, when q = 0, our evolving model degenerates into the BA model with α = −3.
Moreover, we may find that α changes very slowly from −3 to −7 as q increases from 0 to
0.4, but drops sharply once q > 0.4. In contrast with studies that highlight differing values
of α resulting from linkage changes or aging [7,8], our findings emphasize the significant
impact of q on α and highlight their monotonic (decreasing) relationship.
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3. The Analysis of Realistic Results

As we know, the power law describes the statistical characteristics of nodes with large
degrees. In general, since the probability of these nodes appearing in a complex network
is relatively very small, a tiny sampling error may significantly affect their sampling
frequencies, leading to a misjudgment of the power law feature. Our theoretical results
further show that as the network size n decreases or the node disappearance probability q
increases, the power law property becomes increasingly difficult to observe in real-world
networks.

For any empirical study, network data are critical for observing the power law feature
of a network. Generally speaking, there are two types of data: whole-network data, and
sampling data. When the empirical data are whole-network data, the network size n will
affect the deviation of its degree distribution tail from the power law tail. Indeed, the power
law tail is obtained as n→ +∞ , meaning that the smaller the network size n, the larger
the deviation. As Figure 3 shows, for n = 100 and 500, the tails of the degree distributions
deviate greatly from the power law. However, with the increase in n, the tails of the degree
distributions show an asymptotic behavior; that is, the range of k subjected to the power law
feature gradually becomes wider with the growth of n. From Figure 3, we can see that as n
grows from 2000 to 10,000, the range of k that follows the power law property also increases
from 10 ≤ k ≤ 100 to 10 ≤ k ≤ 200. Compared with the high degree cutoffs [21–28], this
asymptotic behavior provides a dynamic lens for observing the power law characteristics
of real-world networks.
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When the empirical data are obtained by sampling, in addition to the impact of
network size n, the node disappearance probability q will also affect the effective interval
for detecting power law characteristics. Commonly, in these empirical studies, frequency
fk is used as a proxy for P(k), and for any sampling data there is a sampling error ∆,
satisfying | fk − P(k)| ≤ ∆, i.e., 0 ≤ fk ≤ ∆ + P(k). As lim

k→+∞
P(k) = 0, for a fixed q,

there exists a specific degree kq, and for any k > kq, P(k) ≤ 0.1∆. Thus, for k > kq, we
have 0 ≤ fk ≤ ∆ + P(k) ≈ ∆, implying that fk cannot be employed as a proxy for P(k).
Therefore, the effective interval to observe the power law feature is

[
m, kq

]
. Moreover, with

the increase in q, kq gradually decreases, and the effective interval
[
m, kq

]
will be narrower,

making the discernment of the power law feature more difficult.
Figure 4 shows the changes in kq with q under different sampling errors. Taking

sampling error ∆ = 10−7 [1,9,14,27] as an example, for q = 0, we have kq = 1587, meaning
that the effective interval for detecting the power law feature is [4, 1587]. Furthermore,
when q ≥ 0.4, we have kq ≤ 182, which contradicts the results of Figure 1, where the
power law tails are observed only for k > 200. Thus we suggest that for q ≥ 0.4, the power
law feature is imperceptible, i.e., almost impossible to perceive in an empirical study. It
should be noted that for q = 0.4, we have α = −7, showing that α is between −7 and −3
for the observed networks. This theoretical result is consistent with empirical findings
of α ∈ [−8,−2] in [14–21], which also shows the reliability and validity of our proposed
model. Combining the influences of both n and q, we suggest that a practical way to detect
the power law property of a real-world network is to observe the asymptotic behavior of
the degree distribution within its effective interval

[
m, kq

]
.
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4. Conclusions

We conclude that the power law feature is proven to be universal in theory but
difficult to observe in reality. Complex networks in the real world exhibit diverse evolving
mechanisms [45–50]. Although random addition and deletion of nodes and preferential
attachment were used to establish our birth-and-death network model, it is necessary to
investigate other evolving rules and examine their limit properties [48–50]. Such further
studies may help enrich our understanding of the power law mechanism, as well as
revealing more nuanced features.
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Appendix A

According to the stochastic process rules (SPR) method [44], we used (n, k) to de-
scribe the state of node v, where n is the number of nodes in the network that contains
v, and k is the degree of node v. Let NK(t) be the state of node v at time t. The stochas-
tic process {NK(t), t ≥ 0} is an inhomogeneous Markov chain, and the state space is
E = {(n, k), n ≥ 1, 0 ≤ k ≤ n− 1}. Let P be the one-step transition probability matrix of
{NK(t), t ≥ 0} at time t:

P =
(

p(n1,k1),(n2,k2)

)
(A1)

Using SPR, the one-step transition probability matrix P produces two cases:

1. Add a node and link it to the old nodes by preferential attachment;

(i) The one-step transition probability that (n, k) turns to (n + 1, m) or (n + 1, n)
is given as follows:

p(n,k),(n+1,m) = P{NK(t + 1) = (n + 1, m)|NK(t) = (n, k)} = p
n + 1

, n ≥ m + 1, 0 ≤ k < n (A2)

p(n,k),(n+1,n) = P{NK(t + 1) = (n + 1, n)|NK(t) = (n, k)} = p
n + 1

, n ≤ m, 0 ≤ k < n (A3)

(ii) The one-step transition probability that (n, k) turns to (n + 1, k + 1) is given
as follows:

p(n,k),(n+1,k+1) = P{NK(t + 1) = (n + 1, k + 1)|NK(t) = (n, k)}

=
mkp∑

r
P{NK(t)=(n,r)}

(n+1)∑
i

iP{NK(t)=(n,i)} , n ≥ m + 1, 0 ≤ k < n (A4)

p(n,k),(n+1,k+1) = P{NK(t + 1) = (n + 1, k + 1)|NK(t) = (n, k)} = n
n + 1

p, n ≤ m, 0 ≤ k < n (A5)

(iii) The one-step transition probability that (n, k) turns to (n + 1, k) is given as follows:

p(n,k),(n+1,k) = P{NK(t + 1) = (n + 1, k)|NK(t) = (n, k)}

= np
n+1

[
1−

mk∑
r

P{NK(t)=(n,r)}

n∑
i

iP{NK(t)=(n,i)}

]
, n ≥ m + 1, 0 ≤ k < n

(A6)
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2. Delete a node randomly;

(iv) The one-step transition probability that (n, k) turns to (n− 1, k− 1) is given
as follows:

p(n,k),(n−1,k−1) = P{NK(t + 1) = (n− 1, k− 1)|NK(t) = (n, k)} = k
n− 1

q, 1 ≤ k < n (A7)

p(1,0),(1,0) = P{NK(t + 1) = (1, 0)|NK(t) = (1, 0)} = q (A8)

(v) The one-step transition probability that (n, k) turns to (n− 1, k) is given as follows:

p(n,k),(n−1,k) = P{NK(t + 1) = (n− 1, k)|NK(t) = (n, k)} = n− 1− k
n− 1

q, n− 1 ≥ k ≥ 0, n ≥ 2 (A9)

Let P̃(t) =
(

p(n,k)(t)
)

be the probability vectors of NK(t), respectively; that is:

p(n,k)(t) = P{NK(t) = (n, k)} (A10)

and the initial probability vector P̃(0) =
(

p(n,k)(0)
)

satisfies

p(m+1,m)(0) = P{NK(0) = (m + 1, m)} = 1 (A11)

We have:
P̃(t + 1) = P̃(t)P (A12)

Let K(t) be the average degree distribution at time t. Then, we have:

P{K(t) = k} =
+∞

∑
i=k+1

P{NK(t) = (i, k)} =
+∞

∑
i=k+1

P̃(i,k)(t) (A13)

Thus, the steady-state degree distribution K is given as follows:

P(k) = lim
t→+∞

P{K(t) = k} = lim
t→+∞

+∞

∑
i=k+1

P{NK(t) = (i, k)} (A14)

Noting that in the case of 0 ≤ q < 1
2 ,

lim
n→+∞

lim
t→+∞∑

i
P{NK(t) = (n, i)} = 1 (A15)

and

lim
n→+∞∑

i
iP{NK(t) = (n, i)} = lim

t→+∞∑
i

iP{NK(t) = (n, i)} = 2mp = 2m(1− q) (A16)

we can obtain the equations of the steady-state degree distribution K as follows:
pP(0) = qP(1)(
p + m

2 + mq
)

P(m) = (m + 1)qP(m + 1) + m−1
2 P(m− 1) + p(

p + k
2 + kq

)
P(k) = (k + 1)qP(k + 1) + k−1

2 P(k− 1) 1 ≤ k, k 6= m
(A17)

When q = 0, the equations of the steady-state degree distribution K are as follows:{
(m + 2)P(m) = 2
(r + 2)P(r) = (r− 1)P(r− 1) r ≥ m + 1

(A18)

Equation (A18) also represents the equations of the BA model.
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