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Abstract: This paper investigates the multidimensional spatial effects of risk spillovers among
Chinese financial institutions and the dynamic evolution of financial risk contagion in the tail risk
correlation network over different time periods. We first measure risk spillovers from financial
submarkets to the stock market, identifying five periods using structural breakpoint tests. Then, we
construct a spatial error financial network panel model by combining complex network and spatial
econometric theory to explore the spatial spillover variability. Finally, we calculate the Bonacich
centrality of nodes in the tail risk network and analyze the dynamic evolution of the financial impact
path during the different time periods. The results show that the multidimensional spatial spillovers
of financial risk among financial institutions are obvious and time varying. The spatial spillovers of
financial institutions are positively correlated with the turnover rate and negatively correlated with
the exchange rate, interest rate and return volatility. Financial institutions of the same type in the
tail risk network display intraindustry risk clustering, and the systemically important institutions
identified based on Bonacich centrality differ significantly across time. Moreover, when risk spillovers
increase, external shocks’ destructive power and speed of transmission to the network rise.

Keywords: spatial spillovers; structural mutation test; spatial econometrics; tail risk network;
bonacich centrality; financial impact

1. Introduction

The rapid development of financial innovation and internet finance has intensified the
derealization of the financial industry, and the complexity of financial networks has been
exacerbated by mixed operations and business crossovers. Systemically important financial
institutions’ defining characteristic has gradually changed from their being “too big to fail”
to being “too connected to fail”. At the same time, the deepening of domestic financial
integration brought about by the development of financial technology has enhanced spatial
links among financial institutions and accelerated the transmission of financial risks.

Scholars have conducted a great deal of research on risk spillovers within financial
markets, especially since the global financial crisis in 2008. Scholars are currently focused
on risk transmission at three main levels: risk spillovers across international financial
markets [1–4], risk spillovers from international financial markets to domestic financial
markets [5–7], and risk spillovers across domestic financial submarkets [8–10]. Their
research methodologies mainly rely on vector autoregression (VAR), conditional value
at risk (CoVaR), marginal expected shortfall (MES), and dynamic conditional correlation
generalized autoregressive conditional heteroskedasticity (DCC-GARCH) models and
their extensions to construct risk spillover indicators among financial markets. Given the
effectiveness of the copula function for portraying the tail correlation of financial assets
and the superiority of DCC-GARCH models in fitting time series, copula DCC-GARCH
models are particularly well suited to portraying the complex dependence structure among
financial assets [11,12].
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Regarding the causes of financial risk, scholars have provided different explanations
focused on three main aspects: information asymmetry, financial innovation, and high
leverage. Moral hazard caused by information asymmetry in banks can cause bank runs,
forcing banks to sell their assets in a hurry, leading to a decline in asset prices and even-
tually creating local or global systemic financial risk [13]; this dynamic may have been an
important reason for the outbreak of the subprime mortgage crisis [14,15]. Information
misalignment can further stimulate speculative behavior, leading to indirect transmission
of risk among speculators and eventually spreading to the entire financial system [16,17].
Excessive financial innovation leads to default risk in the loan market, causing liquidity
problems among banks, which leads to increased risk in banking-type financial institu-
tions [18,19]. Given its lagging nature, financial regulation is also unable to keep financial
innovation within reasonable limits, and the rapid expansion of financial market capacity
and soaring investment demand have weakened the robustness of the financial system,
thus exacerbating financial risks [20,21]. High leverage resulting from excessive indebt-
edness in the real sector and credit expansion among financial institutions can increase
financial institutions’ contribution to systemic risk [22–24]. High leverage among financial
institutions around the world can exacerbate banks’ individual business risks, and leverage
growth under the pretext of “financial innovation” accelerates the rapid accumulation of
bubbles in the stock and real estate sectors, ultimately leading to structural weaknesses in
the global financial system, reduced capital liquidity, greater exchange rate volatility, and
stagnation in the development of global financial markets [25,26].

All of these explanations point to the key role of financial institutions in the spread
of systemic financial risk. Those financial institutions that may cause systemic financial
risks are defined by the Financial Stability Board (FSB) as systemically important financial
institutions (SIFIs). Wu et al. [27] use a copula CoVaR approach to identify SIFIs in China.
The distinctive features of such financial institutions are the large scale of their operations
and the high complexity of their business, which can trigger enormous shocks to regional
or even global financial systems if a risk event occurs [28–30].

The bankruptcy of Lehman Brothers revealed the existence of large financial institu-
tions that were “too big to fail”, but the development of financial innovation has gradually
given rise to the phenomena of business and shareholding crossovers among financial
institutions, and “too big to fail” has given way to “too related to fail” [31]. The complexity
of the relationships between various financial markets and interconnectedness of financial
institutions are intertwined, forming structures consistent with those analyzed in complex
network theory. Since the small-world and scale-free network models were proposed,
scholars have gradually applied complex network theory to study financial risk [32–34]
and, by combining risk spillover models with network topological features, effectively
identify institutions of systemic importance in financial markets [35–37].

With the significant increase in spatial links in various global markets, spatial spillovers
among different individual units have become the focus of scholars’ attention [38]. Geo-
graphic location–based spatial econometric models are uniquely advantageous in iden-
tifying spatial spillovers across different financial markets [39,40], but with the in-depth
development of spatial econometrics in the field of financial risk, spatial weights based
on geographic and economic distance can capture spatial spillovers of financial risk more
effectively than location-based spatial weight matrices [41–43]. With the deep development
of domestic and foreign financial markets, the financial industry and the real economy have
become deeply integrated, the degree of financial virtualization has deepened, and new
multidimensional spatial spillovers of financial risks across regions, markets, and indus-
tries have been observed in the global financial market [44,45]. In contrast, conventional
spillover effect methods mainly measure spillover effects based on market information
among financial assets. These methods ignore the influence of spatial factors including
distance and region on financial risk and do not consider the multidimensional spillover
path of financial risk, which lacks the accuracy of identifying spatial spillover of financial
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risk. It is necessary and important to use new methods to measure the spatial spillover of
financial risk, which can capture multidimensional spatial spillover characteristics.

With the duration of COVID-19 epidemic, infectious disease transmission models
have received widespread attention from scholars [46,47], which is also applied to the field
of financial risk research. The SIR model (where “SIR” stands for “susceptible–infectious–
removed”) can effectively portray the evolution of systemic risk in financial networks [48],
classifying nodes in the network into three states: healthy (S), infected (I), and immune (R).
Healthy nodes that come in contact with infected nodes become infected with a certain
probability, while nodes in the infected state transition to the immune state with a certain
probability [49]. In the SIR model, the infection rate of healthy nodes is positively correlated
with the destructive power of systemic financial risk in the network [50], but the destructive
power of infection on the network is not the same for different nodes, and the greater
the number of systemically important nodes infected, the more destructive the network
is [51,52]. While enhancing the immunity rate of nodes can mitigate contagion of systemic
risk [53], it also prolongs the duration of the crisis [54].

In this paper, we first measure the risk spillover from financial submarkets to the
stock market using dynamic conditional correlation coefficients and divide the spillovers
into five periods using structural breakpoint tests. Then, we combine complex network
theory and spatial econometric theory to construct a spatial error financial network panel
model based on the tail risk network of financial institutions to explore the variability in
the spatial spillovers of financial risk from a multidimensional economic space perspective.
Finally, the SIFIs in the network are identified with Bonacich key nodes, and the effect of
the dynamic evolution of financial risk on impact paths is analyzed with the SIR model.

The main contributions of this paper are as follows: (1) Existing studies delineating
the stages of financial market changes are based mainly on subjective judgments of major
events affecting financial markets. We effectively identify abnormal fluctuations in financial
markets using objective data based on the structural breakpoints in the dynamic correla-
tions. (2) Existing studies have used spatial econometric models to explore spatial spillovers
of financial risks, focusing mainly on spillovers among different economies, markets and
regions and mostly limited to a single spatial effect. We take financial institutions as the
object of study, construct a measure of economic distance and gravitational spatial weight
matrix by considering the geographical distance and financial correlation coefficient, and
then analyze the multidimensional spatial spillovers of financial risks across institutions,
regions and industries, thereby enriching the existing literature. (3) Using time-varying
correlation coefficients, this paper uses structural mutation tests to determine the change
stages of financial risk during the sample period. Multidimensional spatial econometric
models and complex network theory are combined to describe the time-varying character-
istics of financial risk spillover effects, which enriches the research methods of financial
risk measures.

The remainder of this paper is organized as follows: Section 2 presents the research
methodology, including the measure of risk spillovers from financial submarkets to the
stock market, the construction of multidimensional economic space and tail risk networks,
and the method of estimating multidimensional spatial econometric regression models.
Section 3 presents the results of the empirical analysis, demonstrating the stage changes
in the level of risk spillovers from financial submarkets to the stock market, analyzing the
variability in the spatial spillovers of financial risk, and discussing the financial risk shock
paths using the SIR model. Section 4 concludes this paper.

2. Methodology
2.1. Measurement of Risk Spillovers in Financial Submarkets

The spillover of financial risks can often be described by the tail correlation of financial
time series [55], and when the financial market has drastic fluctuations, the tail correlation
will also increase significantly. Engle [56] proposed the DCC-GARCH model. Because
it can better describe the volatility spillover effect and information transmission process
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among financial assets, the DCC-GARCH model has been widely used in describing the
dynamic correlation of financial time series. However, the non-normal, spike-back-tailed
and tail-dependent features of financial asset return distribution cannot be described by
DCC-GARCH model. The copula function is a mathematical method that uses the marginal
distribution to determine the joint distribution. It can be used to describe the nonlinear
relationship of random variables, and its most important role is to measure the correlation
and dependence mechanism between random variables. Meanwhile, previous studies
have shown that the t-copula function can effectively describe the interdependence of tail
risk between multiple financial time series. The combination of DCC-GARCH model and
t-copula can better describe the complex correlation of financial assets. Thereby, we use
t-copula-DCC-GARCH model to estimate the dynamic conditional correlation coefficients,
which is used to measure risk spillovers in financial submarkets. The detailed derivation
process of t-copula-DCC-GARCH model is shown in Appendix A.

With the rapid development of China’s financial market, the impact of major financial
events (e.g., financial crisis) on China’s financial markets is becoming increasingly signifi-
cant. However, most of the current research on the duration of major financial events is
based on subjective time points, which largely loses some of the financial market informa-
tion. Structural mutation refers to the structural change in a time-varying series after a
major financial event shock, and this structural change can also lead to changes in inter-
dependence among markets. The Bai & Perron structural mutation test, which classifies
structural breakpoints based on structural changes in time series, can be used precisely to
identify the occurrence and end of major financial events. Therefore, the identification of
structural breakpoints is better than the division based on subjective time points, and can
more effectively distinguish the impact of different major events on financial markets. At
the same time, Bai & Perron [57] point out that structural breakpoints m is generally no
more than 5 in most empirical applications; thus, we set the maximum number of mutation
points as 4, considering China’s economic environment. Then, the number of mutation
points is determined by the minimum Bayesian information criterion. See Appendix B for
a detailed description of the Bai & Perron structural mutation test.

2.2. Multidimensional Economic Space
2.2.1. Economic Distance Measure

When measuring the distance between financial institutions, the traditional physical
distance ignores the multidimension spatial spillover effects. The correlation coefficient
based on the stock market index is used as the alternative variable of economic distance,
and the combination with physical distance has significant advantages in describing the
multidimensional spillover of financial risks [58,59]. Based on this, we introduce the
economic distance measure (EDM) describes the spatial correlation among financial institu-
tions. It is usually defined by combining the spatial distance between each two financial
institutions and their tail correlations in the financial market. Referring to the research of
Li et al. [60], we extend the application of the EDM from the national level to the level of
financial institutions. Therefore, the EDM, i.e., Di,j between financial institutions i and j,
can be expressed as:

Di,j = F
(

Ri,j, di,j
)
=

√
1−

∣∣Ri,j
∣∣di,j , Di,j ∈ [0, 1] (1)

In Equation (1), Ri,j is the static correlation coefficient measured by the t-copula-
GARCH model, representing the tail correlation between financial institutions i and j,
di,j ∈ [0, 1]; i.e., di,j = d′ i,j/Max

(
d′ i,j
)

represents the relative physical distance between
financial institutions i and j. The calculation process of Di,j is shown in Appendix C.

2.2.2. Gravitational Effect Spatial Weights Matrix

Based on the defined EDM, we construct the gravitational effect spatial weights
matrix (denoted as W) by introducing the spatial gravity effect of the regional economy
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and combining the weight index of the geographical region and the weight index of the
economic state. The diagonal elements of W are all 0, and the off-diagonal elements can be
calculated by the following formula:

wi,j = ci,j ·
mimj

exp
(

Di,j
) (2)

where ci,j is the control variable. In the process of establishing different types of spatial
econometric models, ci,j can be set as different economic indicators to reflect different
economic meanings according to different problems in the financial field. Di,j represents the
EDM between financial institutions i and j, and mi represents the proportion of the market
value of the ith financial institution in the total market value of all financial institutions.
Based on the research hypothesis of Arnold et al. [61], the spatial effect among financial
institutions is focused on three aspects, and the control variable ci,j is set equal to 1 to obtain
three spatial weight matrices.

(1) The gravitational spatial weights matrix based on the financial market itself, which
reflects the general spatial correlation between two financial institutions, is represented by
Wgene. wi,j = 0 for diagonal elements, and wi,j = ci,jmimj for off-diagonal elements.

(2) The gravitational spatial weights matrix based on political administrative rela-
tions is denoted as Wp. Set Di,j = 0 when two financial institutions belong to the same
administrative region and Di,j = 1 when two financial institutions do not belong to the
same administrative region. The diagonal elements wi,i = 0, and the off-diagonal elements
wi,j = ci,j ·

mimj

exp
(

DP
i,j

) .

(3) The gravitational spatial weights matrix based on the cross-regional spatial corre-
lation of financial institutions’ geographical positions is denoted as Warea. The diagonal
element wi,i = 0, and the off-diagonal element wi,j = ci,j ·

mimj

exp
(

Darea
i,j

) .

By the newly defined EDM and gravitational spatial weights matrix, we can construct
the multidimensional economic space and then capture the transregional and transmarket
multidimensional spatial effect. Furthermore, we test the existence of multidimensional
spatial spillovers by estimating the spatial econometric regression model.

2.3. Multidimensional Economic Spatial Regression Model

The spatial regression model has been continuously developed and comprehensively
presented by Cohen-Cole et al. [62]. In the multidimensional economic space, the spatial
error model is combined with the stock market to build the financial network panel model
with a spatial error term. Assuming that there are N financial institutions in the financial
network, the spatial error financial network panel model can be expressed as follows:

yi,t = ∑
m = 1

βmxm
i,t + µi + ξt + εi,t (3)

εi,t = λ
1

wi,t

N

∑
j = 1

wijεit+vit (4)

for i = 1,2, . . . , N; t = 1, 2, . . . , T, where yi,t is the daily return rate of stock i at time
t in the financial network, ui is the unit-specific effect of the institution, ξt is the unit-
specific time effect, xm

i,t represents a set of explanatory variables, εi,t is the spatial error
term, λ is the spatial correlation coefficient of the spatial error term, and wij,t represents the
spatial weight between institutions i and j in the stock market. For ease of interpretation,
Equations (A22) and (A23) are written in matrix form:

Yt = βXt + µi + ξt + λWεit + vit (5)
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where Yt is an N × 1 vector composed of the daily log returns of N institutions, Xt is
an N × M matrix composed of M variables that may affect the behavior of institutions,
and W represents the spatial weights matrix, which can be composed of Wgene, Warea and
Wp, representing the spatial weight matrix based on the correlations of the market itself,
the correlations across regions and the correlations across political administrative regions,
respectively. This model is called the spatial error financial network panel model. Its
economic meaning shows that the daily return of stocks is affected by the following spatial
spillover effect: the general stock weighted return of the financial market (λgeneWgene), the
stock weighted return of across regions (λareaWarea) and the stock weighted return rate
across political administrative regions (λpWp).

According to the definition of the EDM and the gravitational effect spatial weights
matrix W, it can be concluded that the EDM is negatively correlated with wi,j and positively
correlated with mimj. From the perspective of Wgene, mi and mj (market capitalization of
financial institutions) reflect the prior market performance of financial institutions. Since
the innate profit-seeking nature, financial institutions always chase financial assets with
good market performance and therefore, the returns of financial institutions with good prior
market performance usually exhibit the same volatility trend. From the perspective of Wp,
the EDM between financial institutions in the same administrative region is smaller than
that between financial institutions in different administrative regions. Financial institutions
in the same administrative region are susceptible to the same regional policies, which
may lead to similar volatility in their daily returns. With regard to Warea, the greater the
correlation Ri,j between two financial institutions, the closer their business crossover and
business transactions are likely to be, and thus, their daily returns will generate the same
volatility. Before estimating model (22), we first use the Akaike and Bayesian information
criteria (AIC and BIC) to determine whether the unit-specific effects are fixed or random.
The test result indicates that the AIC and BIC values of the fixed effects regression are
smaller, so the fixed effects panel model is selected. Anselin [63] finds that the fixed
effect model with a spatial error term has two problems in estimation: first, there is an
endogeneity problem between the spatial error term and the spatial lag term; second, the
spatial dependence among different individuals may affect the estimation accuracy of
the fixed effect µi. Therefore, we use the maximum likelihood (ML) estimation method
proposed by Elhorst [64] to estimate Equation (5), the detailed estimation process is shown
in Appendix D.

2.4. The Tail Risk Network
2.4.1. Rules for the Tail Risk Network

Studies show that the tail correlation among financial institutions rises significantly
with crisis events, which enhances the contagion effect of financial risk [65]. Complex
networks can effectively describe risk transmission among financial institutions in financial
markets [66]. Thereby, we construct the tail risk network with financial institutions as nodes
and the tail correlation between financial institutions as edges. The institutional nodes in
the tail risk network play the role of both the receiver and the transmitter of risk, which
effectively describes the contagious financial risk among financial institutions.

The tail risk association network constructed based on the static correlation coefficient
matrix can be represented by the set g = (V, R), where V = {v1, v2, v3, . . . , vn} is the set of
nodes and element vi denotes the ith financial institution in the network. R = {Ri,j} denotes
the set of edges with weights in the network (where Rii = 0).

Since the network with the tail correlation coefficient matrix as the adjacency matrix is
a fully connected network and the impact of the less correlated parts on systematic risk
can be neglected under external shocks [67], the correlation compression that maintains the
network connectivity, i.e., the maximum spanning tree (MST), is used here to effectively
demonstrate the overall structure of the network.
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The MST can be expressed as gT = (VT, ET), such that VT = V; i.e., the number of
vertices of the MST is the same as that in the original graph, which is the same as the
definition of the minimum spanning tree, and the defined function f (e) is:

f (e) =

{
1, i f e ∈ E

0, i f e /∈ E
(6)

Find n − 1 edges in graph g to form the MST satisfying VT = V. In calculating the MST,
first calculate the graph consisting of 1 minus the weights of all edges, then calculate the
minimum spanning tree according to the Prim algorithm (defining the distance between
financial institutions as 1 − Rij, then calculating the minimum spanning tree), and finally
calculate 1 minus the weights of the minimum spanning tree; thus, the resulting spanning
tree is the MST. The MST reflects the important risk associations among institutions in the
tail risk network.

2.4.2. Bonacich Key Node of the Tail Risk Network

In the tail risk association network, the nodes exhibit direct and indirect spatial effects
among themselves. Therefore, Bonacich centrality is adopted here to measure the centrality
of each node [68]. The Bonacich key node is measured as follows.

The n-dimensional adjacency matrix G of network g denotes the direct connections in
the network, and Gk denotes the indirect connections in the network: gk

ij > 0 measures the

number of paths of length K from i to j in network g, and G0 = I.
Assuming a scalar λ ≥ 0 and a network g, define the matrix:

M(g, λ) = [I − λG]−1 =
+∞

∑
k = 0

λkGk (7)

where the parameter λ is a decay factor; λk decreases proportionally with the increase in the

path length weights. If M (g, λ) is a nonnegative matrix, its coefficients mij(g, a) =
+∞
∑

k = 0
λkg[k]ij

calculate the number of paths in network g starting at node i and ending at node j. The weight
of a path of length K is λk. Let 1 denote the n-dimensional vector.

Consider a network g with an n-dimensional square adjacency matrix G and a scalar λ

with M(g, λ) = [I − λG]−1 that is well defined and nonnegative. The Bonacich centrality
in network g with parameter λ is b(g, λ) = [I − λG]−1·1.

The Bonacich centrality of node i is bi(g, λ) =
n
∑

j = 1
mij(g, λ), which calculates the

total length of all paths starting from node i in network g, i.e., the sum of all loops mii(g, λ)
from node i to node i and the total number of paths from node i to node j(j 6= i), denoted as:

bi(g, λ) = mii(g, λ) + ∑
j 6=i

mij(g, λ) (8)

Additionally, referring to the spatial effect multiplier (ϕ) used by Cohen et al. [62]
to portray the sensitivity of the tail risk network to shocks and the magnitude of shocks,
ϕ = 1/(1 − λ) indicates that shocks spread rapidly in the network with the parameter ϕ as
a multiplier. The larger ϕ is, the more sensitive the system is to shocks, and the greater is
the intensity of shocks.

In summary, the parameter λ is the spatial correlation coefficient among the financial
institutions, capturing the spatial effects and the strength of the interactions between
financial institutions. The magnitude of λ reflects the extent to which the network is subject
to shocks. Therefore, the Bonacich key point measure in a multidimensional economic
space exactly captures both direct and indirect spatial effects between institutions.
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3. Empirical Study and Results
3.1. Data Description

Since China’s public listing financial market is still in its developing stage, most fi-
nancial institutions were listed only within a few years. According to the information
disclosed by the China Securities Regulatory Commission, as of the third quarter of 2021,
there were 126 public listed financial institutions in China, including 41 banks, 34 securities
institutions, 7 insurance companies, and 44 diversified financial institutions. Consider-
ing the requirement of the size and the timeframe of the data set, we select 56 financial
institutions listed before January 2010 as the sample, including 14 banks, 11 securities
companies, 5 insurance companies, and 26 diversified financial institutions, which is a
highly representative sample., as shown in Appendix E Table A1. The time window is
from 4 January 2010, to 18 April 2022, and the whole sample period covers as many market
conditions as possible, such as bull market, bear market, and market recovery periods,
in line with the study objectives. Considering that listed companies may suspend their
trading, for the closing price of a company during suspension periods, we use the closing
price on the last day before the suspension. Table 1 shows the descriptive statistics of
the log returns of listed financial institutions. Here, the continuous log returns of each
listed financial company are calculated using the formula ri,t = log(Pi,t) − log(Pi,t−1), where
Pi,t denotes the closing price of institution i at time t, Pi,t−1 denotes the closing price of
institution i at time t − 1, and all data are obtained from the Wind database.

Table 1. Descriptive statistics of log returns of 56 listed financial companies.

Company ID Mean Std Dev Min Max Skew Kurtosis SE JB ADF Test

1 −0.00027 0.01925 −0.34079 0.0958 −3.01984 50.745 0.00035 325,158 *** −15.2 ***
2 −0.00025 0.01723 −0.19705 0.09544 −1.22628 22.034 0.00032 61,207 *** −14.57 ***
3 0.00030 0.01852 −0.1044 0.09554 0.23946 3.528 0.00034 1580 *** −13.99 ***
4 −0.00016 0.02371 −0.60744 0.09562 −7.14441 166.674 0.00043 3,484,119 *** −15.16 ***
5 −0.00020 0.02401 −0.6198 0.09579 −8.01889 193.890 0.00044 4,712,481 *** −12.78 ***
6 −0.00047 0.01833 −0.21092 0.0958 −2.01532 28.096 0.00034 100,316 *** −13.58 ***
7 −0.00020 0.01559 −0.10954 0.09625 −0.25476 11.978 0.00029 17,902 *** −13.88 ***
8 −0.00004 0.01343 −0.1233 0.09531 −0.30273 11.605 0.00025 16,819 *** −15.12 ***
9 0.00000 0.0154 −0.10577 0.09566 −0.26081 9.377 0.00028 10,986 *** −13.81 ***
10 −0.00010 0.01352 −0.11629 0.09658 −0.11378 14.146 0.00025 24,926 *** −13.74 ***
11 −0.00015 0.01906 −0.10564 0.09613 0.34581 6.509 0.00035 5338 *** −14.15 ***
12 −0.00013 0.02423 −0.54286 0.09563 −4.08067 89.131 0.00044 997,405 *** −13.34 ***
13 0.00027 0.02271 −0.27236 0.09563 −0.857 13.314 0.00042 22,440 *** −13.68 ***
14 −0.00033 0.01872 −0.30037 0.0956 −2.67124 42.730 0.00034 230,896 *** −14.93 ***
15 −0.00061 0.02789 −0.39267 0.09651 −1.84074 27.983 0.00051 99,189 *** −13.68 ***
16 −0.00015 0.02541 −0.42703 0.0957 −1.45014 29.638 0.00047 110,427 *** −15.05 ***
17 −0.00031 0.03093 −0.68444 0.09579 −3.61948 81.313 0.00057 829,734 *** −16.39 ***
18 −0.00049 0.0278 −0.71451 0.0963 −5.62786 147.158 0.00051 2,711,957 *** −14.92 ***
19 −0.00021 0.02359 −0.10553 0.09576 0.16266 4.334 0.00043 2354 *** −13.3 ***
20 −0.00023 0.02497 −0.28319 0.09567 −0.3357 10.196 0.00046 13,003 *** −13.75 ***
21 −0.00023 0.02656 −0.10702 0.09585 0.0826 3.710 0.00049 1719 *** −14.48 ***
22 −0.00053 0.02932 −0.69188 0.0958 −4.35806 104.728 0.00054 1,375,017 *** −14.18 ***
23 −0.00035 0.02754 −0.49118 0.0958 −1.97168 36.176 0.0005 164,888 *** −13.87 ***
24 −0.00038 0.02878 −0.74308 0.09605 −5.69682 149.797 0.00053 2,809,910 *** −14.62 ***
25 −0.00048 0.03376 −0.10604 0.09646 −0.046 1.806 0.00062 408 *** −14.34 ***
26 −0.00005 0.02434 −0.79079 0.09545 −11.4086 373.166 0.00045 17,402,008 *** −14.32 ***
27 −0.00004 0.02199 −0.10544 0.09545 0.07104 2.326 0.0004 677 *** −14.29 ***
28 −0.00006 0.02223 −0.12358 0.09563 0.39041 3.961 0.00041 2031 *** −13.61 ***
29 −0.00029 0.02868 −0.71823 0.09679 −5.15102 133.160 0.00052 2,220,858 *** −14.94 ***
30 −0.0006 0.03112 −0.14812 0.09659 −0.03155 2.031 0.00057 515 *** −14.24 ***
31 0.00012 0.03071 −0.24064 0.09603 0.18239 3.655 0.00056 1682 *** −15.32 ***
32 −0.0006 0.02265 −0.10886 0.0992 −0.38755 5.436 0.00041 3756 *** −15.19 ***
33 −0.00013 0.02964 −0.41689 0.09635 −0.87503 15.464 0.00054 30,163 *** −15.48 ***
34 0.00005 0.03311 −0.10582 0.09623 0.07885 1.976 0.00061 490 *** −14.93 ***
35 −0.00029 0.02976 −0.35953 0.096 −1.88577 21.654 0.00054 60,157 *** −13.94 ***
36 −0.00089 0.03259 −0.54302 0.09671 −1.6518 28.293 0.0006 101,034 *** −15.03 ***
37 0.00018 0.02754 −0.10558 0.09613 0.25149 2.896 0.0005 1077 *** −14.24 ***
38 −0.00004 0.03538 −0.6978 0.09604 −2.41286 51.841 0.00065 337,518 *** −14.99 ***
39 −0.00033 0.03157 −0.65214 0.09572 −3.11113 62.836 0.00058 496,427 *** −14.03 ***
40 −0.00041 0.02972 −0.56389 0.09659 −2.31462 45.068 0.00054 255,569 *** −15.09 ***
41 −0.00032 0.03219 −0.10558 0.09599 −0.04499 2.152 0.00059 579 *** −14.76 ***
42 0.00009 0.03019 −0.10575 0.09635 −0.10173 2.440 0.00055 747 *** −13.71 ***
43 −0.0002 0.0252 −0.25874 0.0958 −0.38966 6.841 0.00046 5906 *** −13.96 ***
44 −0.00021 0.03509 −0.72762 0.09566 −3.10695 62.533 0.00064 491,681 *** −12.95 ***
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Table 1. Cont.

Company ID Mean Std Dev Min Max Skew Kurtosis SE JB ADF Test

45 −0.00023 0.02832 −0.10572 0.09659 −0.00914 3.434 0.00052 1470 *** −14.68 ***
46 −0.00064 0.02934 −0.72177 0.09764 −4.88404 123.482 0.00054 1,910,299 *** −14.24 ***
47 −0.00028 0.02812 −0.10603 0.09675 0.04238 3.078 0.00051 1182 *** −14.67 ***
48 −0.00047 0.03314 −0.70163 0.09685 −6.1338 128.233 0.00061 2,066,026 *** −13.73 ***
49 0.0002 0.03236 −0.38446 0.0959 −0.54472 8.284 0.00059 8695 *** −14.61 ***
50 −0.00038 0.02802 −0.35474 0.0959 −0.80014 11.282 0.00051 16,171 *** −13.91 ***
51 −0.00012 0.02716 −0.10568 0.09563 −0.26153 3.416 0.0005 1488 *** −14.74 ***
52 −0.00012 0.03092 −0.69084 0.09566 −3.75775 84.529 0.00057 896,650 *** −14.06 ***
53 −0.00006 0.03129 −0.60268 0.09612 −2.32364 47.531 0.00057 283,982 *** −14.75 ***
54 −0.00042 0.02932 −0.4416 0.09583 −1.51514 24.655 0.00054 76,834 *** −15.19 ***
55 0.00007 0.04142 −0.75922 0.16436 −4.69051 83.319 0.00076 875,291 *** −13.79 ***
56 −0.00052 0.03658 −0.89126 0.09638 −8.88564 208.805 0.00067 5,467,534 *** −14.95 ***

Note: *** p < 0.01.

According to the descriptive statistics in Table 1, the mean daily return of the 56 financial
institutions is negative, while the rest of the statistical indicators are positive; each financial
institution showed weak business conditions after 2010. In terms of the standard deviation,
banking financial institutions have the lowest volatility, followed by insurance and secu-
rities institutions, and diversified financial institutions have the highest volatility. This is
mainly because most banking financial institutions adopt a more prudent investment strat-
egy, while securities and insurance companies mainly adopt a more aggressive investment
approach and other types of financial institutions are more focused on short-term interests.
The investment behavior of the latter is more rapid and decisive, with a higher sense of
the market, and therefore, their returns are more volatile. Meanwhile, except for a limited
number of financial institutions, all return series exhibit skewed negative distributions,
have kurtosis means over 3, and have maximum values over 300. This indicates that
financial institutions are extraordinarily sensitive to external shocks such as financial risks;
each return series exhibits an abnormal, spiky, thick-tailed distribution. Finally, the results
of Jarque-Bera (JB) statistic and ADF test show that all the return series obey a Gaussian
distribution and are stationary at the 1% significance level.

3.2. Dynamic Correlation Analysis and Breakpoint Detection

The correlation between financial sectors increases significantly when there is vi-
olent turbulence in the financial market [69]. Therefore, using the Shanghai-Shenzhen
300 financial index (denoted as the Fin300) to represent the development of China’s finan-
cial sector market and the Shanghai-Shenzhen 300 index (denoted as HS300) to represent
the development of China’s stock market, we can use the correlation between the two
markets to measure the risk spillover from China’s financial sector market to the overall
economy (The results of Jarque-Bera (JB) statistic and ADF test show that Fin300 and HS300
obey a Gaussian distribution and are stationary at the 1% significance level). Since stock
returns have nonnormal distribution characteristics such as spikes, thick tails, autocor-
relation and asymmetry, GARCH models can effectively portray the return on financial
assets and the simplest GARCH (1,1) model captures the characteristics of the return on
financial assets [70,71]. Before estimating the return on each asset, it is necessary to esti-
mate an autoregressive moving average model (ARMA) of asset returns, which captures
the asymmetry in volatility. According to the AIC criterion, the optimal lag order of the
ARMA model is chosen as (2,2). A vector autoregressive moving average GARCH (ARMA-
GARCH) model is used to fit the two markets with an ARMA (2,2)-GARCH (1,1) model,
and the residuals are set to be t-distributed due to the thick-tailed property of the data. In
addition, since the t-Copula function is free from the assumption of normal distribution, it
can separate the marginal distribution from the joint distribution and capture the nonlin-
ear, asymmetric tail correlation between variables. After obtaining the residual term, we
obtain the dynamic conditional correlation coefficients of Fin300 and HS300 by fitting a
t-copula-DCC-GARCH model.

Figure 1 shows the trend of the dynamic conditional correlation coefficients from
5 January 2010, to 18 April 2022, showing a clear time-varying characteristic. In general, the
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dynamic conditional correlation coefficients of the two markets generally fluctuate between
0.6 and 1 and are susceptible to impacts from extreme events, with larger fluctuations
occurring in 2010–2013, 2015–2017, and 2018–2019. As a result of the European debt crisis
at the end of 2009, China’s foreign exchange market experienced dramatic fluctuations
in 2010, with the RMB appreciating significantly relative to the currencies of European
countries. Moreover, the EU is an important economic and trade partner of China, and thus,
the instability in the eurozone exacerbated the volatility of China’s financial markets. In
June 2013, China’s financial markets experienced a liquidity crisis called the “money short-
age”, followed by a period of record high interbank repo rates and interbank lending rates,
which subsequently led to consistently lower stock markets and significantly increased risk
spillovers in the financial market. Before June 2015, stock market indices climbed one after
another, but then came the crash of thousands of stocks in the Chinese A-share market,
with the Shanghai Composite Index falling more than 32.11% in the 17 trading days after
June 12. From 2017 to 2018, the government strengthened the regulation of the financial
sector, and the Financial Stability and Development Committee under the State Council
(FSDCSC) was established in 2017. At the same time, the introduction of new regulations
on capital management not only broke the rigidity of payment structures but also reduced
the leverage ratio of each sector. During this period, liquidity in China’s financial markets
tightened, and the correlation between the financial sector and equity markets decreased
significantly. However, the ensuing debt defaults and a wave of person-to-person (P2P)
platform failures led to a significant increase in financial risk spillovers. With the break-
down of trade talks between China and the US in 2019, China’s foreign trade suffered a
major setback. Influenced by internal and external factors, the overall performance of the
RMB/USD exchange rate first rose, then fell, and finally rose again, with high volatility,
leading to a rise in risk spillovers in financial markets.
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Figure 1. Trend of the dynamic conditional correlation coefficient.

With the conclusion of the first-stage economic and trade agreement between China
and the United States on 13 December 2019, risk spillovers in the financial market decreased
to a certain extent. However, the ensuing nationwide COVID-19 pandemic, which hit both
the real economy and financial markets, led to high risk spillovers in financial markets
again. After entering the post-epidemic period, risk spillovers in the financial market
decreased significantly. Although they rose in some cases, they were generally smaller
than in the previous period. However, a significant rise could also be observed after
2022, caused mainly by the volatility in international energy markets triggered by the
Russia-Ukraine conflict.
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The method proposed by Bai & Perron [72] for global minimization of the residual
sum of squares is used to test the mean mutation of the dynamic conditional correlation
coefficients. In viewing of the timing of the extreme events mentioned above, the number of
mutation points is set to 4 here. The changes in risk spillovers in China’s financial markets
during the sample period can be divided into five stages, as shown in Table 2.

Table 2. Time series observations in each substage.

Sub-Stage Starting Time Ending Time Typical Extreme Events and Stage Characteristics

Stage 1 4 January 2010 21 October 2013 Post-financial crisis and 2010 European debt crisis
Stage 2 22 October 2013 13 January 2017 2013 money crisis and 2015 stock market crash in China
Stage 3 14 January 2017 10 April 2018 Stabilization period
Stage 4 11 April 2018 23 October 2020 US-China trade conflict and COVID-19 epidemic
Stage 5 24 October 2020 18 April 2022 Post-COVID-19 era

3.3. Multidimensional Spatial Effect Test

Before we estimate the multidimensional spatial regression, it is necessary to test
whether there is a spatial effect on the stock returns of listed financial companies and
to check the validity and adaptability of the newly constructed gravitational spatial
weight matrix.

In spatial econometrics, the main measures of spatial correlation include the global
Moran’s I index, global G coefficient, Geary C coefficient, LMlag, LMerro and join-count
statistic. The classical global Moran’s I index is applicable only to cross-sectional spatial
econometric models and is no longer valid for spatial econometric panel models. Here, the
spatial weight matrix in the classical global Moran’s I index model is blocked: K = IT ⊗W,
where K is the NT × NT blocked diagonal matrix, IT is the T-order identity matrix, W is
the N-order spatial weight matrix, and ⊗ denotes the Kronecker product. The improved
global Moran’s I can be extended to test for spatial effects in panel data, as calculated by
the following equation:

Moran′s I =

N
N
∑

i = 1

N
∑

j = 1
ki,j(xi − x)

(
xj − x

)
N
∑

i = 1

N
∑

j = 1
ki,j(xi − x)2

, Moran′s I ∈ [−1, 1] (9)

where xi is the attribute value of institution i and ki,j is the correlation degree between
spatial units i and j, i.e., the blocked spatial weight matrix. The closer the global Moran’s I
index value is to −1, the stronger is the negative correlation between regions; the more the
value tends to 1, the stronger is the positive correlation; if the value is equal to 0, there is
no correlation.

Geary C is another indicator commonly used in spatial autocorrelation tests that
emphasizes the dispersion between observations. The value of Geary C ranges from 0 to 2.
If the value is greater than 1, it indicates a negative correlation; if the value is equal to 1,
it indicates no correlation; if the value is less than 1, it indicates a positive correlation. In
addition, Anselin et al. [73] propose the Lagrange multiplier (LM) test of spatial correlation
(LMlag and LMerro test) and compare the significance level of the LM spatial lag term
and the LM spatial error term. That is, a nonspatial panel model is used for ordinary least
squares (OLS) regression analysis, and then the estimated results are subjected to the LM
test. The original hypothesis of the LM test is that there is no spatial correlation among
the residuals. Here, we select the global Moran’s I index, Geary C index, LMlag, LMerro,
robust LMlag and robust LMerro to test listed financial institutions’ spatial effect on stock
returns (Because the time dimension of the daily return rate of financial institutions in the
sample period is too large, the software cannot effectively calculate the Kronecker product.
In this paper, the monthly return series of financial institutions from 2005 to 2020 are used
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to calculate the block diagonal matrix K(NT × NT), where N = 56 and T = 148). The test
results are presented here based on the full sample data, as shown in Table 3.

Table 3. Spatial correlation test.

Spatial Effect Test Wgene Warea Wp

Moran’s I 0.237 *** 0.239 *** 0.356 ***
Z(I) 65.717 65.54 161.58

Geary C 0.481 *** 0.478 *** 0.656 ***
LMlag 8970.12 *** 8732.40 *** 19665.95 ***
LMerro 9128.71 *** 8868.87 *** 22966.41 ***

robust LMlag 159.19 *** 157.45 *** 66.38 ***
robust LMerro 318.04 *** 293.92 *** 3366.84 ***

Note: *** p < 0.01.

From the test results in Table 3, we find that (1) there are significant spatial effects
in all three types of spatial weight matrices. The Moran’s I index values are all greater
than 0, and all pass the Z(I) significance test. All Geary C test results are less than 1.
The Moran’s I and Geary C test results based on Wgene, WP and Warea are all statistically
significant at the 1% level. This indicates that there is a significant multidimensional effect
and a positive regional correlation for the stock returns of listed financial institutions.
(2) All three types of spatial weight matrices have significant spatial lag effects and spatial
error effects, and the spatial error model (SEM) is statistically significantly better than the
spatial lag model (SAR), so the spatial error model is chosen. From the test results, the
largest spatial correlation appears for the relationship between regional administrative
organizations. The difference between the spatial correlation based on the general market
and across regions is not significant. This can also be explained by the frequent fluctuations
in China’s financial market since 2010, while the central and local governments have made
important contributions to financial stability.

3.4. Spatial Spillover Effect Analysis with the Multidimensional Economic Spatial
Regression Model

The identification of Bonacich key nodes in the tail risk network requires the calculation
of spatial spillovers of financial risks; i.e., it is necessary to analyze what factors influence
financial institutions’ spatial risk spillovers. The maximum likelihood method proposed
by Elhorst [64] is used to estimate Equation (A22), and the spatial error financial network
panel model is constructed in five subperiods based on the three spatial weight matrices
described previously. Referring to Zhang et al. [74] and Weng et al. [75], here, we use
the stock return of financial institutions as the dependent variable, the turnover rate as
the core explanatory variable, and the exchange rate and interest rate as control variables.
Meanwhile, we introduce two dummy variables (low and high volatility) to analyze the
sensitivity of returns to financial market volatility.

The daily returns of all financial institutions are fitted by an ARMA(p,q)-GARCH
model. For each trading day, the returns of the financial institutions are divided into four
groups according to their estimated standard deviation values from lowest to highest. The
first group within each trading day is called the “low-volatility group”, the fourth group is
called the “high-volatility group”, and the middle two groups are used as reference groups.
The high-volatility dummy variable is set to 1 for the high-volatility group and 0 for the
low-volatility group; the low-volatility dummy variable is set to the opposite values; and
the values of the two middle reference groups remain unchanged. Table 4 defines all the
explanatory variables.

Table 5 gives the estimation results under different spatial weight matrices during
the five subperiods. Considering it along with Figure 1, we find that the time-varying
correlation (dynamic conditional correlation coefficients) between Fin300 and HS300 has a
trend consistent with that of the spatial spillover effect (λ) of risk over the subperiods. With
an increase (or decrease) in the time-varying correlation, the spatial spillovers of financial
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risks also increase (or decrease). Observing the trend of the time-varying correlation
coefficient, we find that the coefficient for stage 4 is the largest and the corresponding
spatial spillover effect the strongest, while the coefficient for stage 3 is the smallest and the
corresponding spatial spillover effect the weakest. Specifically, the time-varying correlation
rises rapidly when extreme events occur and the spatial spillover effect of financial risk also
increases more significantly. Observing the changes in the fourth and fifth periods, we can
see that the time-varying correlation and the spatial spillover effect increase simultaneously
during the outbreak of the COVID-19 epidemic while they decrease simultaneously during
the post-epidemic period. In addition, the time-varying correlation and spatial spillover
effects change significantly before and after the outbreak of the “European debt crisis”.

Table 4. Variables list.

Variable Name Symbol Definition

Log return rate r Daily log return rate of listed financial institutions
Turnover rate turnover Turnover rate of circulating capital stock of financial institutions

Low-volatility dummy variable lvar Takes 0 for the high-volatility group and 1 for the low-volatility group, and the
value for the middle groups remains unchanged

High-volatility dummy variable hvar Takes 1 for the high-volatility group and 0 for the low-volatility group, and the
value for the middle groups remains unchanged

Exchange rate Erate Change rate of daily central parity rate of RMB against USD

Interest rate DR001 Change rate of weighted average interest rate of overnight repo between banks
with interest rate bonds as collateral

From the perspective of the spatial weight matrix, the estimation results show that the
spatial spillovers of risks based on Wp are the strongest (except for the first period) and that
the differences in the spatial spillovers of risks based on Wgene and Warea are not significant.
The Chinese government plays an important role in promoting economic development. In
addition, the economic policies of local governments have a strong influence on economic
development within the same region. Hence, the spatial spillover effect based on Wp is
the strongest. Meanwhile, due to the fact that Wgene and Warea portray the spatial spillover
effect of financial risk in terms of general market correlation and economic distance, which
mainly reflects the spatial spillover effect in terms of market factors, their spatial spillover
effects are not significantly different.
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Table 5. Regression results of the spatial lag model.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Wgene Warea WP Wgene Warea WP WP Warea WP Wgene Warea WP Wgene Warea WP

λ
0.808 ***
(328.29)

0.809 ***
(344.56)

0.806 ***
(177.54)

0.703 ***
(154.99)

0.704 ***
(161.13)

0.796 ***
(154.95)

0.383 ***
(25.27)

0.405 ***
(28.37)

0.661 ***
(47.86)

0.829 ***
(282.38)

0.833 ***
(296.05)

0.833 ***
(174.59)

0.680 ***
(92.10)

0.691 ***
(98.11)

0.756 ***
(83.34)

turnover 0.0023 ***
(35.43)

0.0022 ***
(35.44)

0.0024 **
(37.28)

0.0019 ***
(29.15)

0.0019 ***
(29.12)

0.0019 ***
(29.95)

0.0012 ***
(11.37)

0.0012 **
(11.43)

0.0012 **
(12.51)

0.0017 ***
(29.66)

−0.0017 ***
(29.59)

0.0015 ***
(27.56)

0.0016 ***
(15.63)

0.0017 ***
(15.59)

0.0016 ***
(15.36)

lvar 0
(−0.25)

0.00007
(−0.26)

0.00015
(0.57)

−0.00045
(1.23)

−0.00043
(1.20)

−0.00045
(1.29)

0.00036
(0.74)

0.0004
(0.75)

0.00026
(0.55)

−0.00063 **
(−1.78)

−0.00061 **
(−1.72)

−0.00034
(−0.98)

−0.00032
(0.67)

−0.00033
(0.68)

0.00021
(0.45)

hvar −0.0025 ***
(−9.23)

−0.0025 ***
(−9.24)

−0.0026 ***
(−10.30)

−0.0020 ***
(−5.37)

−0.0020 ***
(−5.37)

−0.0020 ***
(−5.60)

−0.0016 ***
(−3.35)

−0.0017 ***
(−3.35)

−0.0018 ***
(−3.81)

−0.0022 ***
(−6.68)

−0.0022 ***
(−6.61)

−0.0022 ***
(−7.14)

−0.0027 ***
(−6.54)

−0.0028 ***
(−6.54)

−0.0027 ***
(−6.64)

Erate −0.406
(−0.67)

−0.394
(−0.65)

−1.817 ***
(−3.21)

−0.254
(0.98)

2.604
(1.00)

−0.099
(−0.28)

−0.089
(−0.65)

0.090
(−0.63)

−0.030
(−0.13)

−0.802 **
(−2.52)

−0.815 **
(−2.51)

−0.43 *
(−1.46)

−0.346 *
(1.69)

−0.361 **
(1.70)

−0.231
(−0.89)

DR001 −0.0104 **
(−2.38)

−0.0104 ***
(−2.36)

−0.0047
(−1.14)

−0.0379 ***
(−3.36)

−0.038 ***
(−3.36)

−0.022 *
(−1.45)

−0.009 **
(−1.74)

−0.009 ***
(−1.71)

−0.007
(−0.79)

0.015 ***
(3.59)

0.019 ***
(3.62)

0.0015
(−0.33)

0.0003
(0.11)

0.0003
(0.13)

−0.0039
(−1.11)

ϕ 5.208333 5.235602 5.154639 3.367003 3.378378 4.901961 1.620746 1.680672 2.949853 5.847953 5.988024 5.988024 3.125 3.236246 4.098361
Institution

effect Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Observations 51,240 51,240 51,240 44,408 44,408 44,408 16,744 16,744 16,744 34,552 34,552 34,552 20,160 20,160 20,160

Note: (1) Spatial effect multiplier ϕ = 1/(1 − λ); (2) * p < 0.1; ** p < 0.05; *** p < 0.01.
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In terms of the spatial spillover effects in each period, the trend first shows a decrease,
then an increase, and finally a decrease again. Specifically, the spatial spillovers of financial
risks are strongest in stage 4 (which includes the US–China trade conflict and the COVID-19
epidemic shock), followed by stage 1 (which covers the financial crisis and the European
debt crisis), followed by stage 2 (which includes the money shortage and stock market
crash in China) and stage 5 (which includes the post-epidemic period). Finally, stage 3 (the
calm period) has the smallest risk spillovers. According to the time-varying characteristics
of spatial spillover effects, the differences in spatial spillover effects at different stages are
mainly influenced by government behavior and extreme events. The COVID-19 epidemic
has had a dramatic impact on financial markets, which led to a large set of government
interventions, and hence, the spatial spillover effect is strongest in the fourth period.
The “European debt crisis”, as a global event, had a significant impact on China on its
import/export business. Therefore, the spatial spillover effect in the third period is also
stronger. During the period of “money shortage” in 2013 and the “stock market crash”
in 2015, the government restricted the excessive boom of the financial market through
policy measures, resulting in a rapid fall of the Chinese stock market within a short period
of time. However, the impact was mainly on small and medium-sized financial institutions
and the impact on large state-owned financial institutions was limited, which makes the
spatial spillover effect of risk relatively small. In the post-epidemic era, although there
were no extreme events in the domestic and international financial markets, the resurgence
of the epidemic also had a large impact on the market. Hence, the spatial spillover effect
did not decline significantly. Finally, in the third period, the government acted in line with
market expectations and extreme events did not occur, which caused the spatial spillover
effect declined significantly.

Regarding the estimated regression coefficients of the main explanatory variables, the
turnover rate (turnover) is significantly and positively correlated with the log return rate (r),
indicating that the higher the demand for stocks is, the higher the return rate. The dummy
variable lvar is not significantly correlated with the log return rate (r), whereas hvar shows
a significant negative correlation, indicating that in China’s financial market, stockholders
and stock traders are not sensitive to stocks with low volatility but are more sensitive to
stocks with high volatility. Therefore, when stock volatility is high, stockholders and stock
traders have less desire to buy them because of the higher risk, and thus, their returns are
smaller. This also indicates that most shareholders and stock traders in the stock market
are rational investors and will actively avoid high-risk investments [76].

In terms of the estimated coefficients of the control variables, Erate has a significant
negative correlation with the log return rate (r) starting from stage 4, due to the trade
conflict between the US and China, which exacerbated the volatility of the RMB against
the USD. The cross-country capital flows accompanying the US sanctions against Chinese
firms further exacerbated the volatility of the Chinese stock market. The change rate of
the interest rate (DR001) exhibits a significant negative correlation with the log return
rate (r) for stages 1 to 4, while it does not correlate significantly with the stock returns of
financial institutions in stage 5. This suggests that the prolonged extension of the COVID-19
epidemic has led to a significant amplification of the original poorly regulated Chinese
interest rate mechanism and shows that financial institutions are more sensitive to economic
uncertainty than in previous stages.

In addition, a positive correlation between the spatial effect multiplier ϕ and the
spatial spillover effect λ is observed in the estimation results. The spatial effect multi-
plier ϕ increases rapidly in the presence of extreme external event shocks, including in
stages 1, 2 and 4, while it shows a rapid decrease for the stable period of stage 3.

3.5. Tail Risk Network and BONACICH CEntrality

We construct a tail risk correlation network based on complex network theory, with the
financial institutions as network nodes and the tail correlation of each financial institution’s
return as the connected edge. To identify the SIFIs in view of the spatial spillovers of
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financial risk, we introduce the spatial spillover effect λ to calculate the Bonacich centrality
of the network nodes. The maximum spanning tree–based tail risk network is given in
Figure 2, where Figure 2a–e show the MST network from stages 1 to 5 in order and the size
of the nodes reflects the Bonacich centrality score. In addition, the estimation results based
on different spatial weight matrices show that the spatial econometric model based on the
spatial weight matrix Warea fits best. Therefore, the spatial spillover effect (λ) based on
Warea is incorporated into the Bonacich key node measurement and the dynamic evolution
process of the SIR model.

In general, the risk spillover is larger for banking-type financial institutions in the
first period, and from the second period onward, the risk spillover is larger for diversified
financial institutions. The risk spillover effect of securities-based financial institutions and
insurance-based financial institutions is smaller. From the maximum spanning tree network
of the five subperiods, the risk spillovers among financial institutions of the same type
are more obvious, which indicates obvious intraindustry risk aggregation characteristics
among the four types of financial institutions (banking, securities, insurance, and diversified
financial institutions) in China.

Entropy 2022, 24, x FOR PEER REVIEW  17  of  29 

interest rate mechanism and shows that financial institutions are more sensitive to eco‐

nomic uncertainty than in previous stages. 

In addition, a positive correlation between the spatial effect multiplier φ and the spa‐

tial spillover effect λ is observed in the estimation results. The spatial effect multiplier φ 

increases rapidly in the presence of extreme external event shocks, including in stages 1, 

2 and 4, while it shows a rapid decrease for the stable period of stage 3. 

3.5. Tail Risk Network and BONACICH CEntrality 

We construct a tail risk correlation network based on complex network theory, with 

the financial institutions as network nodes and the tail correlation of each financial insti‐

tution’s return as the connected edge. To identify the SIFIs in view of the spatial spillovers 

of financial risk, we introduce the spatial spillover effect λ to calculate the Bonacich cen‐

trality of the network nodes. The maximum spanning tree–based tail risk network is given 

in Figure 2, where Figure 2a–e show the MST network from stages 1 to 5 in order and the  

(a) MST network in stage 1 (b) MST network in stage 2

(c) MST network in stage 3 (d) MST network in stage 4

Figure 2. Cont.



Entropy 2022, 24, 1549 17 of 27Entropy 2022, 24, x FOR PEER REVIEW  18  of  29 

(e) MST network in stage 5

Figure 2. Dynamic evolution of the MST network during the five subperiods. 

In general, the risk spillover  is  larger for banking‐type financial  institutions  in the 

first period, and from the second period onward, the risk spillover is larger for diversified 

financial institutions. The risk spillover effect of securities‐based financial institutions and 

insurance‐based financial institutions is smaller. From the maximum spanning tree net‐

work of the five subperiods, the risk spillovers among financial institutions of the same 

type are more obvious, which indicates obvious intraindustry risk aggregation character‐

istics among the four types of financial  institutions (banking, securities,  insurance, and 

diversified financial institutions) in China. 

The  network  centrality  feature  is  a  key  characteristic  of  tail  risk  networks,  and 

Bonacich centrality introduces spatial spillovers of financial risk into the centrality meas‐

ure, the magnitude of which indicates the degree of risk spillover caused by a node in the 

network, reflecting the degree of importance of the node in the tail risk correlation net‐

work. The top 10 listed financial institutions in terms of Bonacich centrality for the five 

subperiods are given in Table 6. 

According to the measurement results in Table 6, Bonacich centrality can effectively 

identify systemically important institutional nodes under different financial risk shocks. 

When international financial risk shocks (e.g., the European debt crisis) occur, large state‐

owned  financial  institutions  (e.g.,  Industrial  and Commercial Bank  of China, Bank  of 

Communications) can effectively withstand external shocks, so their Bonacich centrality 

in  the network  is higher. When  the domestic  financial market fluctuates drastically  (as 

during the money shortage and stock market crash in China), because small and medium‐

sized financial institutions are more engaged in risky investments. their scale is smaller, 

and their business types undiversified, their ability to resist risks is weaker, and the degree 

of  risk  spillover  is stronger. Therefore,  their Bonacich centrality  is higher.  In addition, 

Bonacich centrality can identify financial institutions experiencing business crises. In the 

third, fourth and fifth periods, “ST.DLT” and “ST.DPF” with the letters ST are financial 

institutions facing delisting, with relatively poor operating conditions and high Bonacich 

centrality. 

Figure 2. Dynamic evolution of the MST network during the five subperiods.

The network centrality feature is a key characteristic of tail risk networks, and Bonacich
centrality introduces spatial spillovers of financial risk into the centrality measure, the
magnitude of which indicates the degree of risk spillover caused by a node in the network,
reflecting the degree of importance of the node in the tail risk correlation network. The top
10 listed financial institutions in terms of Bonacich centrality for the five subperiods are
given in Table 6.

Table 6. Bonacich key nodes.

Rank Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

1 BJT (6.625) DFH (1.240) DXC (1.504) DAX (1.065) ST.DLT (2.564)
2 BMS (6.463) DHD (0.872) ST.DLT (1.115) ST.DLB (0.901) ST.DLB (2.352)
3 BGS (6.270) DHH (0.812) DSG (1.093) ST.SAX (0.813) DPF (1.823)
4 BJS (6.145) BPF (0.643) ST.DLB (1.077) DJW (0.730) IXS (1.752)
5 BBJ (5.682) DAX (0.620) ST.DPF (1.002) ST.DLT (0.582) DOW (1.664)
6 BPF (5.672) BGS (0.597) DOW (0.983) DHD (0.468) DHD (1.642)
7 BHX (5.400) DPB (0.515) DJW (0.953) DAJ (0.349) IHB (1.629)
8 DYX (5.154) BIB (0.499) DKW (0.825) ST.DPF (0.310) DKW (1.151)
9 BIB (5.071) BBJ (0.475) DMI (0.810) ST.DWR (0.247) BMC (1.146)

10 DLV (4.855) DMI (0.430) BCH (0.755) DFH (0.215) DLV (1.089)
Note: Symbols beginning with the letters ST indicate that the listed institution faces the possibility of delisting.

According to the measurement results in Table 6, Bonacich centrality can effectively
identify systemically important institutional nodes under different financial risk shocks.
When international financial risk shocks (e.g., the European debt crisis) occur, large state-
owned financial institutions (e.g., Industrial and Commercial Bank of China, Bank of
Communications) can effectively withstand external shocks, so their Bonacich centrality in
the network is higher. When the domestic financial market fluctuates drastically (as during
the money shortage and stock market crash in China), because small and medium-sized
financial institutions are more engaged in risky investments. their scale is smaller, and their
business types undiversified, their ability to resist risks is weaker, and the degree of risk
spillover is stronger. Therefore, their Bonacich centrality is higher. In addition, Bonacich
centrality can identify financial institutions experiencing business crises. In the third, fourth
and fifth periods, “ST.DLT” and “ST.DPF” with the letters ST are financial institutions facing
delisting, with relatively poor operating conditions and high Bonacich centrality.
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In addition, in terms of temporal evolution, the nodes of SIFIs in China’s financial
market change over time. With the diversification of China’s financial market, commercial
banks, insurance institutions and securities institutions play a dominant role in the financial
market. However, based on the contagion perspective of financial risk, the risk spillovers
from diversified financial institutions are significantly higher than those from traditional
financial institutions in the face of shocks from external events. When there are changes
in the domestic financial market environment, such as the 2015 stock market crash in the
second period, the China-US trade conflict and the COVID-19 epidemic in the fourth period,
the spatial spillovers of financial risks from diversified financial institutions (such as DXC
and DAX) are stronger than those from traditional financial institutions.

3.6. The Dynamic Evolution of the SIR Model

The SIR model is derived from the infectious disease model in the medical field and
is now widely used in research related to risk contagion in financial markets. We classify
listed financial institutions into susceptible financial institutions (S), infected financial
institutions (I), and permanently immune financial institutions (R). S indicates that the
specified type of financial institution is vulnerable to financial shocks but is not currently
exposed to them. I indicates that the specified type of financial institution has been exposed
to financial shocks and has the ability to transmit risk, and R indicates that the specified type
of financial institution will not be exposed to financial shocks or has withdrawn from the
financial network. Moreover, assume that the probability of transforming type S financial
institutions into type I financial institutions is α and that the probability of transforming
into type R financial institutions is β.

S(t), I(t) and R(t) denote the number of financial institutions in the three scenarios S,
I and R, respectively. According to the study sample, S(t) + I(t) + R(t) = 56. We analyze
the dynamic evolution of the impact path under different spatial effect parameters based
on the five subperiods. In this process, the transition probability α is equal to the spatial
correlation coefficient λarea, and the transition coefficient β = 0.01. Assume that only one
financial institution node in the financial network is hit at the beginning of the period, i.e.,
I(0) = 1, S(0) = 56. The dynamic evolution of the impact path of systemic financial risk is
shown in Figure 3, and the spatial correlation coefficients from Figure 3–e are 0.809, 0.704,
0.405, 0.833, and 0.691, respectively.

Figure 3 shows that there is significant variability in the impact of different spatial
correlation coefficients on the network. The larger the spatial correlation coefficient is, the
stronger the impact on the network, which is shown in Figure 3 as the larger slope of the
I(t) curve. When the spatial correlation coefficient in the third period is 0.405, t = 25 is the
time of collapse of the network, and when the spatial correlation coefficient in the second
period is 0.833, t = 9 is the time of collapse of the network. In addition, we find that the
maximum number of infected nodes of the network varies under different spatial effects.
The maximum number of infected nodes is 53 in the first period when the spatial correlation
coefficient is 0.809 and 50 in the third period when the spatial correlation coefficient is
0.405. This further indicates that as the spatial spillover effect of financial risk increases, its
spillover speed and destructive power also increase significantly.

Bonacich key nodes have time-varying characteristics, and we need to strengthen risk
management and risk control for the industries where key nodes are clustered in different
periods, which can reduce the spatial spillover effects of financial risks. Specifically, when
international financial crises occur, China’s large state-owned commercial banks and others
bear most of the risk. In the event of severe turbulence in the domestic financial market,
small and medium-sized diversified financial institutions become the main risk spillover
institutions. Therefore, by identifying the types of financial risks and then targeting the
main risk spillover industries, the spatial spillover of risks can be reduced. This can reduce
the probability of risk contagion in the SIR model and decrease the slope of the I(t) curve.
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4. Conclusions

This paper discusses spatial spillovers of financial risk and their dynamic evolution
from the perspective of financial institutions. Using daily return data from the Chinese
financial market and 56 financial institutions from 4 January 2010, to 18 April 2020, we
first measure the dynamic conditional correlation coefficients of the China 300 Financial
Index and the CSI 300 Index based on the t-copula-DCC-GARCH model to measure the
risk spillovers from the financial sector to the stock market. To analyze the time-varying
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characteristics of the financial risk spillovers, we divide the dynamic conditional correlation
coefficients into five periods based on the Bai & Perron structural breakpoint test. Then,
combining complex network theory and spatial econometric theory, we construct a spatial
error financial network panel model based on the tail risk network of financial institutions
to further explore the variability in the multidimensional spatial spillovers of financial risks.
Finally, SIFIs in the network are identified using Bonacich key nodes, and the dynamic
evolution of financial risk shock paths is analyzed. The findings of the study are as follows.

First, the correlation between the financial sector submarket and the stock market
has obvious time-varying characteristics, with dynamic conditional correlation coefficients
ranging between 0.6 and 1, indicating that the financial sector submarket has strong risk
spillovers with the stock market. Based on the Bai & Perron structural breakpoint test,
financial risk spillovers and their changes can be divided into five periods, revealing
obvious phase characteristics and a vulnerability to extreme events.

Second, there are significant multidimensional spatial spillovers of financial risk
among financial institutions. The test results of the spatial spillover effects show that the
strongest spatial spillovers are based on Wp while the spatial spillovers based on Wgene and
Warea are not significantly different. The estimation results of the established spatial error
financial network panel model show that the model based on Warea has the best estimation
results. Specifically, regarding the explanatory variables, financial institutions’ returns are
significantly and positively correlated with the turnover rate, the high-volatility dummy
variable has a significant negative effect on returns, and the low-volatility dummy variable
has a nonsignificant effect on returns in all subperiods. In addition, there is a significant
change across phases in the effect of the interest rate and exchange rate on returns. Prior
to the fourth period, returns are significantly negatively correlated with interest rates, but
after it, they are not correlated, while after the fourth period but not before it, returns are
significantly negatively correlated with the exchange rate.

Third, an MST network is constructed based on the tail risk network, and the study
finds that there is significant intraindustry risk clustering in Chinese financial institutions
such as banking, insurance, securities, and diversified financial institutions. Bringing the
Warea-based spatial spillover effects into the Bonacich centrality measure, we find that there
are significant differences in the systemically important nodes of the network within the
five subperiods. In the first period, large state-owned commercial banks mainly act as the
key nodes of the network. Starting from the second period, the systemic importance of large
state-owned commercial banks decreases, while that of diversified financial institutions
rises continuously. Moreover, as the spatial spillovers of financial risks increase, the
destructive power and speed of shocks caused by financial risks also rise.

In summary, policymakers should focus on the following three areas when conduct-
ing financial risk prevention. First, they should differentiate between international and
domestic financial risks. In the face of international financial risks, policymakers need to
focus on the risk level of large financial institutions, and when domestic financial markets
are volatile, small and medium-sized diversified financial institutions need to be guided to
strengthen their risk management. Second, the multidimensional spatial spillovers of finan-
cial risks must be considered. Based on the cross-market, cross-industry and cross-regional
contagion characteristics of financial risks, comprehensive risk prevention measures should
be formulated, focusing on preventing cross-regional risk spillovers. Finally, the inter-
est rate and exchange rate transmission mechanism should be unblocked to ensure that
monetary and fiscal policies can be effectively transmitted to the financial market.
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Appendix A. t-Copula-DCC-GARCH Model

Following Sklar’s theorem, we let the random vector (X1, X2, . . . , Xp) have a joint dis-
tribution function; then, there must be a copula that is consistent with the following equation:

F(x1, x2, · · ·, xp) = C(F1(x1), F2(x2), · · ·, Fp(xp)) (A1)

where F(.) is the joint distribution function and C(.) is the copula function. The DCC-
GARCH model can be expressed as follows:

ri,t = µi + φirt−1 + εi,t + ϕiεi,t−1, i = 1, 2 · ··, k, t = 1, 2, · · ·, T (A2)

εi,t =
√

hi,tei,t, ei,t ∼ t(vi) (A3)

hi,t = wi + aiε
2
i,t−1 + bihi,t−1 (A4)

qij,t = (1− α− β)qij,t + αei,t−1ej,t−1 + βqij,t−1 (A5)

Qt = (qij,t), Q∗t = diag(qij,t) (A6)

Rt = (Q∗t )
−1Qt(Q∗t )

−1 (A7)

where vi is the degree of freedom for distribution t and ai and bi are the coefficients of the
squared sum of the residuals of the previous period and the conditional heteroscedasticity,
respectively, satisfying ai, bi > 0 and ai + bi < 1. Meanwhile, α and β are the coefficients of
the DCC model, satisfying α, β > 0, and α + β < 1. q̄ij,t is the unconditional variance matrix
of standardized residuals ei,t and ej,t, Rt is the dynamic conditional correlation coefficient,
and Qt is the symmetric positive definite matrix.

Standardized residual vectors (e1,t, e2„t, . . . ,ek.t) can be obtained from the DCC-
GARCH model. Set the joint distribution function for ((e1,t, e2„t, . . . ,ek.t)) as F; the joint
density function of it is f, the marginal distribution function is F1, F2, . . . , Fk, and the
marginal density function is f1,f2, . . . ,fk. According to Sklar’s theorem, the following can
be obtained:

F(e1,t, e2,t, · · ·, ek,t) = C(F1(e1,t), F2(e2,t), · · ·, F3(e3,t)) (A8)

Make ui,t = Fi(ei,t); then:

F(e1,t, e2,t · ··, ek,t) = C(u1,t, u2,t, · · ·, uk,t) (A9)

Let c be the density function of copula function C, and compute the partial derivatives
of both sides of Equation (A9), which can be obtained:

f (e1,t, e2,t, · · ·, ek,t) = c(u1,t, u2,t, · · ·uk,t)×
k

∏
i = 1

fi(ei,t) (A10)

Thus, the joint distribution function of standardized residual vectors can be expressed as:

F(e1,t, e2,t, · · ·, ek,t) = Ct
R,v(u1,t, u2,t, · · ·, uk,t) (A11)
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where R and v represent the correlation coefficient and degree of freedom for the t-copula
function, respectively. By combining the t-copula function with the DCC-GARCH model,
we can construct the t-copula-DCC-GARCH model. Equation (A11) will become:

F(e1,t, e2,t, · · ·, ek,t) = Ct
Rt,v(u1,t, u2,t, · · ·, uk,t) (A12)

Here, Rt is the dynamic conditional correlation matrix established by the DCC-GARCH
model. Therefore, the logarithmic likelihood function of the t-copula-DCC-GARCH
model is:

LLt−Copula(θ) = −T log
Γ(

v + k
2

)

Γ(
k
2
)
− k log

Γ(
v + 1

2
)

Γ(
k
2
)
− v + k

2

T
∑

t = 1
log(1 +

ũtR−1
t ũt

v
)

−
T
∑

t = 1
log|Rt|+

T
∑

t = 1

k
∑

i = 1
log(1 +

ũi,t

v
)

(A13)

Among them, ũi,t = F−1
i (ui,t) and θ = (v,α,β) are parameters of the t-copula-DCC-GARCH.

The t-copula-DCC-GARCH model can be estimated in two steps. In the first step,
the SGARCH(1,1) model is used to estimate the volatility of a single stock return series
and derive the maximum likelihood estimator of the marginal distribution parameters of
the series, and then, we can obtain the standardized residual vectors (e1,t,e2,t . . . ,ek,t). In
the second step, using the marginal distribution parameters estimated in the first step, we
transform the standardized residuals into a U [0,1] distribution through probability integral
transformation, which is put into the likelihood function of t-copula-DCC-GARCH model
to estimate the dynamic conditional correlation coefficients.

Appendix B. The Bai & Perron Structural Mutation Test

The Bai & Perron structural mutation test method is based on the idea of dynamic
programming, which can accurately determine the optimal number and location of break-
points through the sequential test method by globally minimizing the sum of residuals’
squares (Bai & Perron, 2003). The method is divided into two main steps. The first step is to
test whether there are structural mutation points in the time series, and the null hypothesis
is that there is no structural mutation. If the null hypothesis is rejected, the second step
is carried out. In the second step, the test for m structural mutation points and m + 1
structural breakpoints is written as SupF (m + 1|m), which means that the detection of
the (m + 1)th mutation point is based on the mth detected mutation point. If the minimum
sum of residuals’ squares in all subsection regions of the model is sufficiently smaller than
that in the model with m + 1 mutation points, the assumption of m + 1 mutation points is
accepted. The above process is repeated until no structural mutation can be detected.

yt is assumed to be the dynamic correlation coefficient, and it is assumed that yt has m
mutation points, which means that there are m + 1 regions. The linear regression equation
is defined as follows:

yt = cj + ut, t = Tj−1 + 1, Tj−1 + 2, · · ·Tj (A14)

Among them, j = 1, 2, . . . , m + 1, cj is the mean value of the dynamic correlation
coefficients, and the mutation points (T1, T2, . . . , Tm) are unknown.

For convenience, let T0 = 1 and Tm+1 = T, where T is the observed value of the
dynamic correlation coefficient. To seek out the mutation point (T̂1, T̂2, · · ·, T̂m), we have
Equation (A15) as follows:

(T̂1, T̂2, · · ·, T̂m) = arg
T1,T2,···,Tm

minRSST(T1, T2, · · ·, Tm) (A15)
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Appendix C. The Economic Distance Measure

The economic distance measure(EDM), i.e., Di,j between financial institutions i and j,
can be expressed as:

Di,j = F
(

Ri,j, di,j
)
=

√
1−

∣∣Ri,j
∣∣di,j , Di,j ∈ [0, 1] (A16)

In Equation (A16), Ri,j represents the tail correlation between financial institutions
i and j, di,j ∈ [0, 1]; i.e., di,j = d′ i,j/Max

(
d′ i,j
)

represents the relative physical distance
between financial institutions i and j; d′ i,j denotes the surface physical distance between
the two financial institutions and can be expressed as follows:

d′ i,j = radius× cos−1[cos
(
longi − longj

)
· cos lati · cos latj + sin lati · sin latj

]
(A17)

where radius represents the radius of the earth and long and lat, respectively, indicate the
longitude and latitude of space units i and j. The longitude and latitude of registered
addresses of financial institutions are selected as the coordinate endpoints, and the physical
distance between the two financial institutions is calculated with R software.

Tail correlation characteristics in financial time series reflect that stock returns are
nonlinear, biased and lower-tail dependent. Moreover, the t-copula function can depict tail
correlation in the financial market. The static t-copula function can be expressed as follows:

C( f1, f2, . . . , fN ; ρ, v) = tρ,v

(
t−1
v ( f1), t−1

v ( f2), . . . , t−1
v ( fN)

)
(A18)

c( f1, f2, . . . , fN ; ρ, v) = |ρ|−
1
2

Γ
(

v + N
2

)[
Γ
(v

2

)]N−1

[
Γ
(

v + 1
2

)]N

(
1 +

1
v

ζ ′ρ−1ζ

)−v + N
2

∏N
i = 1

(
1 +

ζ2
i

v

)−v + 1
2

(A19)

Here, the correlation coefficient matrix ρ and degree of freedom v are parameters of
the t-copula function, tρ,v(.) represents the cumulative density function of the standard

multivariate t-distribution, Γ(z) =
∫ ∞

0
tz−1

et dt, and t−1
v (·) represents the inverse function of

a univariate t-distribution with degrees of freedom v, ζ ′ =
(
t−1
v ( f1), t−1

v ( f2), . . . , t−1
v ( fN)

)
.

Then, Ri,j, the tail correlation index between two financial institutions, can be expressed
as follows:

Ri,j = c
(

fi(xi), f j(xj)
)
=

∂2tv
(
t−1
v ( fi(xi)), t−1

v
(

f j(xj)
))

∂xi∂xj
(A20)

Based on this definition and derivation process, the EDM has the following measure-
ment properties:

(1) When Ri,j ∈ [−1, 1], the EDM, i.e., Di,j, is determined by the tail correlation
coefficient Ri,j and the relative physical distance di,j. When Ri,j is larger and di,j is smaller,
Di,j is smaller.

(2) When financial institution i is completely unrelated to financial institution j, that is,
Ri,j = 0, and di,j = 1, the EDM, i.e., Di,j, reaches the maximum value 1.

(3) When financial institution i is completely positively correlated with financial
institution j, Ri,j = 1,and di,j = 0, then the EDM, i.e., Di,j, achieves the minimum value 0.

Appendix D. The Spatial Error Financial Network Panel Model

The spatial error financial network panel model can be expressed as:

Yt = βXt + µi + ξt + λWεit + vit (A21)
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For the spatial error panel model with fixed effects, assuming that the spatial-specific
effects are fixed, the logarithmic likelihood function of Equation (A21) can be written as:

LogL = −NT
2

log
(
2πσ2)+ T log|IN − λW|−

1
2σ2

N
∑

i = 1

T
∑

t = 1

{
y∗it − λ

[
N
∑

j = 1
wijyjt

]∗
−
(

x∗it − λ

[
N
∑

j = 1
wijxjt

]∗)
β

}2 (A22)

Given λ, the maximum likelihood estimators of the coefficient vector β and the vari-
ance parameter σ2 can be solved according to their first-order maximization conditions:

β =
(
[X∗ − λ(IT ⊗W)X∗]T [X∗ − λ(IT ⊗W)X∗]

)−1

×[X∗ − λ(IT ⊗W)X∗]T [Y∗ − λ(IT ⊗W)Y∗]
(A23)

σ2 =
e(λ)Te(λ)

NT
(A24)

In Equation (A24), e(λ) = Y∗ − λ(IT ⊗W)Y∗ − [X∗ − λ(IT ⊗W)X∗]β. Then, the
maximum likelihood function of λ can be obtained by the following formula:

LogL = −NT
2

log
[
e(λ)Te(λ)

]
+ T log|IN − λW| (A25)

In addition, the fixed effect of the spatial error model can be estimated by Equation (A26):

µi =
1
T

T

∑
t = 1

(yit − xitβ), i = 1, . . . , N (A26)

Appendix E

Table A1. List of 56 listed financial companies.

ID Company Symbol ID Company Symbol

1 Hua Xia Bank Co., Ltd. BHX 29 Hubei Biocause Pharmaceutical Co., Ltd. IHB
2 China Minsheng Banking Corp., Ltd. BMS 30 Xishui Strong Year Co., Ltd. Inner Mongolia IXS
3 China Merchants Bank Co., Ltd. BMC 31 Kunwu Jiuding Investment Holdings Co., Ltd. DKW
4 Bank of Nanjing BNJ 32 Luting (HongKong) Co., Ltd. DLB
5 Industrial Bank Co., Ltd. BIB 33 Sdic Capital Co., Ltd. DCD
6 Bank of Beijing Co., Ltd. BBJ 34 Xiangcai Co., Ltd. DXC
7 Bank of Communications BJT 35 Zhejiang Orient Financial Holdings Group Co., Ltd. DFH
8 Industrial and Commercial Bank of China BGS 36 Sichuan Western Resources Holding Co., Ltd. DWR
9 China Construction Bank BJS 37 Polaris Bay Group Co., Ltd. DPB
10 Bank of China BCH 38 Anhui Xinli Finance Co., Ltd. DAX
11 China Citic Bank Co., Ltd. BZX 39 Minmetals Capital Company Limited DMI
12 Ping An Bank Co., Ltd. BPA 40 State Grid Yingda Co., Ltd. DSG
13 Bank of Ningbo BNB 41 Panda Financial Holding Corp., Ltd. DPF
14 Shanghai Pudong Development Bank Co., Ltd. BPF 42 Shanghai China Fortune Co., Ltd. DSC
15 The Pacific Securities Co., Ltd. SCP 43 Shanghai Aj Group Co., Ltd. DAJ
16 Citic Securities Company Limited SZX 44 Luxin Venture Capital Group Co., Ltd. DLV
17 Sinolink Securities Co., Ltd. SGJ 45 Harbin Hatou Investment Co., Ltd. DHH
18 Southwest Securities Co., Ltd. SXN 46 Oceanwide Holdings Co., Ltd. DOW
19 Haitong Securities Co., Ltd. SHT 47 Minsheng Holdings Co., Ltd. DMS
20 China Merchants Securities SZS 48 Shaanxi International Trust Co., Ltd. DST
21 Everbright Securities Co., Ltd. SGD 49 Hainan Haide Capital Management Co., Ltd. DHD
22 Northeast Securities Co., Ltd. SDB 50 Cnpc Capital Company Limited DCY
23 Guoyuan Securities Company Limited SGY 51 Jingwei Textile Machinery Company Limited DJW
24 Changjiang Securities Company Limited SCJ 52 Guangdong Golden Dragon Development Inc. DGD
25 Anxin Trust Co., Ltd. SAX 53 Spic Dongfang Energy Corporation DSD
26 Ping An Insurance IPA 54 Guangzhou Yuexiu Financial Holdings Group Co., Ltd. DYX
27 China Pacific Insurance (Group) Co., Ltd. ITB 55 Hithink Flush Information Network Co., Ltd. DTH
28 China Life Insurance (Group) Company IRC 56 Shanghai Greencourt Investment Group Co., Ltd. DLT

Note: In the symbol column, symbols beginning with the letter “B” refer to banking institutions, symbols
beginning with the letter “S” refer to securities institutions, symbols beginning with the letter “I” refer to
insurance institutions, and symbols beginning with the letter “D” refer to diversified financial institutions.
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