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Abstract: Adding nanoparticles or surfactants to pure working fluid is a common and effective
method to improve the heat transfer performance of pool boiling. The objective of this research is
to determine whether additives have the same efficient impact on heat transfer enhancement of the
non-azeotropic mixture. In this paper, Ethylene Glycol/Deionized Water (EG/DW) was selected as
the representing non-azeotropic mixture, and a comparative experiment was carried out between it
and the pure working fluid. In addition, the effects of different concentrations of additives on the pool
boiling heat transfer performance under different heat fluxes were experimentally studied, including
TiO2 nanoparticles with different particle diameters, different kinds of surfactants, and mixtures of
nanofluids and surfactants. The experimental results showed that the nanoparticles deteriorated
the heat transfer of the EG/DW solution, while the surfactant enhanced the heat transfer of the
solution when the concentration closed to a critical mass fraction (CMC). However, the improvement
effect was unsteady with the increase in the heat flux density. The experimental results suggest that
the mass transfer resistance of the non-azeotropic mixture is the most important factor in affecting
heat transfer enhancement. Solutions with 20 nm TiO2 obtained a steady optimum heat transfer
improvement by adding surfactants.

Keywords: non-azeotropic mixture; nanofluid; surfactant; critical mass fraction; mass transfer resistance

1. Introduction

As a heat transfer process with a phase change, pool boiling has been widely used in
many industrial fields [1]. With the development of the industry, the effective method of
passive enhanced boiling heat transfer to achieve a higher heat transfer coefficient with a
small area has gradually become a research hot spot [2]. In addition to changing the heat
exchange equipment to enhance the heat transfer, the traditional working fluids can not
meet the heat transfer demands today [3]. Therefore, more efficient late-model working
fluids need to be explored.

Choi [4] brought up the idea of nanofluids for the first time. After that, boiling heat
transfer characteristics and applications of various nanofluids have been studied in lots
of research. Many systems consider nanofluids as preferred working mediums for their
merits. Rahimi et al. [5] brought the novel idea of applying nanofluid into redox flow
batteries, which led the way to the development of high-efficient and low-cost batteries.
Colangelo et al. [6] suggested that using nanofluids as the heat transfer fluid of electronic
devices could not only optimize the dimensions of the electronic devices but also obtain
higher energy efficiency at the same time. The majority of the literature thought a small
number of nanoparticles can greatly improve the boiling heat transfer characteristics of
the solution.

At the same time, a certain number of researchers thought some features of nanofluids
after boiling had a significant effect on the boiling characteristics. The size and concentration
of the nanofluid will influence the increase, decrease, or in some cases, no effect on pool
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boiling heat transfer. Hu et al. [7] experimentally investigated the boiling heat transfer
characteristics of the mixture of different diameters and concentrations of SiO2 nanoparticles
with a 60% ethylene glycol (EG) aqueous solution. The results of all the experiments
showed that nanofluids have a higher heat transfer coefficient (HTC) than the EG aqueous
solution, even though the HTC deteriorated for nanoparticle volume fractions above
0.75%. Moreover, the HTC increased with the decrease of the nanoparticle diameter. Peng
et al. [8] prepared three different average diameters of Cu nanoparticles to be mixed with
an R113/oil mixture as a test fluid. The HTC of the experiments presented an ascend result
not only with the decrease of the nanoparticle diameter but also with the increase of the
nanoparticle concentration.

However, contrary results were reported by Trisaksri et al. [9], who studied the nu-
cleate pool boiling heat transfer characteristics of TiO2/HCFC 141b nanofluid at different
concentrations. The HTC deteriorated with the increase of the nanoparticle concentration,
and the degree of deterioration augmented with the increase of the heat flux. Naphon
et al. [10] experimentally studied the HTC of the nanoparticle TiO2, suspended in ethyl alco-
hol mixed with refrigerant R141b as the base fluid. It was found that the HTC was inversely
proportional to the concentration of the nanoparticles, especially at high heat fluxes.

Azimi et al. [11] considered that nanoparticles’ deposition would cause different effects
due to corresponding thermal conductivities. The effective thermal conductivity of the
nanofluid was enhanced with the increasing volume concentration so that the effects of
the deposition layer could be neutralized. According to the investigation of bubble growth
behavior in nanofluids with different concentrations by Morad et al. [12], the bubble
behavior had a significant impact on the thermal efficiency of the solution, while the surface
tension and viscosity of the nanofluid solution played a crucial role in the bubble radius and
thermal diffusivity. Abu-Nab et al. [13] also emphasized the importance of the influence of
surface tension on the dynamics of nanofluid bubbles. In order to stabilize the enhanced
heat transfer ability and reduce the surface tension of nanofluids, many researchers choose
to add a small ratio of different surfactants into the nanofluids.

Etedali et al. [14] experimentally studied the performance of the heat transfer of a
SiO2/DW nanofluid with added surfactants (Ps20, CTAB, and SLS) on a copper surface, and
observed better stabilization of nanofluids. It was found that nanofluids with surfactants
have a higher HTC because the lower surface tension enhances the bubble separation speed.
Jung et al. [15] investigated the effects of adding nitric acid into TiO2/water nanofluids on
CHF in pool boiling. The experimental results showed that the additive induced a more
even dispersion of nanoparticles in the nanofluids.

Tang et al. [16] measured the boiling heat transfer characteristics of 0.001 vol.%,
0.01 vol.%, and 0.1 vol.% δ-Al2O3/R141b nanofluids with and without surfactant SDS.
They found that nanofluid with SDS had increasing boiling HTC and decreasing boiling
deterioration caused by the deposition of a high-volume concentration nanofluid. The
pool boiling heat transfer of a silica DI water nanofluid with three various surfactants
(SDS, CTAB, and PS20) was reported by Tian et al. [17]. According to the results of the
experiments, nanofluids with an anionic surfactant (SDS) had the maximum increased HTC
and boiling surface roughness.

Peng et al. [18] observed that surfactant additives enhanced the nucleate pool boiling
heat transfer of nanofluids but deteriorate the nucleate pool boiling heat transfer at high
concentrations and of each type of surfactant presenting the maximum value at an optimal
concentration. Khooshechin et al. [19] used SDS as a surfactant additive to overcome the
instability of nanoparticles by increasing the boiling temperature and time. However, they
found that boiling the HTC only enhanced by surfactants in low heat fluxes and surfactant
particles may cause deposition on the heater surface.

From a practical point of view, good stability of the nanofluid is essential to have
effective thermal-flow systems. As described above, although surfactant additives can
enhance the stability and the pool boiling heat transfer performance of nanofluids in some
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conditions, controversial results still could not be avoided, especially when the basic fluid
of the nanofluid was a mixture.

There have been numerous studies to investigate heat transfer enhancement in a pure
working medium, including adding nanoparticles and a surfactant into the pure basic
fluid. However, the application of a pure working fluid has limitations, especially pure
refrigerants which normally have a high Global Warming Potential (GWP), which will cause
great harm to environmental protection. Recently, researchers have shown an increased
interest in binary mixtures. Li et al. [20] considered that, through a reasonable adjustment
in the composition, binary mixtures would combine merits such as safety, environmental
protection, and high-efficiency performances.

The experimental results of Shah et al. [21] showed that the heat transfer coefficient of
the mixed working medium decreased. In fact, the temperature slip caused by the boiling
of different components and the mass transfer resistance between the components [22]
influenced the potential application of the mixed working fluids.

Therefore, an important issue in the application of a binary mixture in pool boiling is
that the deterioration of the HTC caused by boiling urgently needs to be improved. The
purpose of the present research is to figure out the best way to enhance the pool boiling
performance of a non-azeotropic binary mixture through the carrying out of comprehensive
experimental investigations about the influence of the EG concentration, surfactant type,
and nanoparticle size.

2. Experimental Setup
2.1. Experimental Apparatus and Procedure

The experimental apparatus consists of four main parts, including a power control
system, solution boiling system, data acquisition system, and heating copper rod apparatus.
The schematic diagram of the boiling heat transfer apparatus is shown in Figure 1.
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Figure 1. A scheme of the experimental procedure.

The power control system includes an AC power supply, AC automatic voltage regula-
tor, AC voltage regulator, and intelligent power meter. The input heat load controlled by the
voltage regulator passes through the regulator, and the input value is clearly displayed on
the power meter and then loaded on the copper column heating device. After heating, the
data acquisition system collects the relevant experimental data, including the temperature
sensor that displays the real-time temperature through the digital display controller, the
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high-speed industrial camera that records the dynamic changes of the bubbles during
boiling, and the computer that collects and records the experimental data.

The working fluid boiling system is mainly composed of a square container made of
high borosilicate glass, with an external dimension of 10 × 10 × 10 cm3. The glass reflection
cover above the container is connected to a condensation pipe, a preheating heating rod,
and a temperature sensor. Among them, the preheating heating rod is a special-made high-
temperature and corrosion-resistant heating rod, and the condensing pipe is connected to
an external circulating water pump for cooling. Observation ports are reserved on both
sides of the container, and the rest are wrapped by high-temperature insulation materials.
A 2 × 2 cm2 square hole under the container is reserved for the heated surface on the top of
the heating column processed from red copper. Seven cylindrical holes for placing heating
rods are reserved under the copper column, and the specific dimensions are shown in
Figure 2. In order to ensure the accuracy of the experiment, the copper column heating
device is also wrapped with thermal insulation materials, and Teflon plates are installed at
the connection with the boiling vessel to increase the tightness and thermal insulation.
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Figure 2. Schematic diagram of the copper heating column.

First of all, before the installation of the equipment, the heating surface was polished
with ultra-fine sandpaper #2000 and polished with a polishing machine. We used high-
temperature heat transfer oil and a high-temperature mercury thermometer to correct the
temperature of the temperature sensor. Secondly, the heated copper surface was scrubbed
with a copper detergent before each experiment, and the entire solution cavity was cleaned
with deionized water. Then, we injected the working fluid and marked the height of the
liquid level surface to ensure the repeatability of the experiment.

At the beginning of the experiment, we used the preheating heating rod to preheat the
working medium in the container to the saturation temperature to discharge the insoluble
gas in the working medium. At the same time, the heating rod works at low power at
first. When the value of the temperature sensor changes less than 1 ◦C within 5 min, we
gradually increased the heating load.

2.2. Experimental Data Reduction and Uncertainty Analysis

Since the heating and heat conduction sections are insulated with insulating materials,
the heat flux, q, could be calculated as a stabilized one-dimensional heat conduction by the
Fourier law:

q = λ[(T3 − T1)/(x3 − x1) + (T2 − T1)/(x2 − x1) + (T3 − T2)/(x3 − x2)]/3 (1)

where λ is the thermal conductivity of the heating rod, Ti (i = 1, 2, 3) is the temperature
of the measuring point, and xi is the distance between the measuring point and the top
heated surface.
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Then, the boiling heat transfer coefficient, h, could be obtained from the following
formula:

h = q/(Tave − Tsat) (2)

where Tsat is the saturation temperature of the solution, which is measured by a thermo-
couple placed 2 cm above the heating surface, and Tave is the average temperature of three
measuring points calculated from Equation (3):

Tave =
2

∑
i=1

[Tiδ− xi(Ti+1 − Ti)]/2δ (3)

where δ is the distance between the two measuring points.
The uncertainty in this study was mainly caused by thermocouples with an accuracy

of 0.1 K. This negligible change in the data acquisition system used was considered as
no uncertainty. The uncertainty of the nucleate pool boiling heat transfer coefficient was
estimated by Kline and McClintock [23]. The maximum uncertainties of the heat flux,
heating surface temperature, and heat transfer coefficient in this research are within 8.6%.

In order to verify the reliability of the experimental system, the widely studied deion-
ized water was selected to carry out the pool boiling experiment, and the experimental
results were compared with the Rohsenow curve used in other research, and the errors
were within ±10%. It can be seen from Figure 3 that the experimental results are very close
to the experimental results of Norouzipour [24].
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3. Characteristics, Selection, and Preparation of Working Fluids
3.1. Non-Azeotropic Mixtures

Through a lot of research by scholars, it is known that surface tension, shear viscos-
ity, and thermal conductivity are the main factors affecting the boiling characteristics of
working fluids. For non-azeotropic mixtures, different components have their respective
saturation boiling temperatures, which will cause a temperature slip and induce additional
mass transfer resistance. This is also the reason why the boiling heat transfer performance
of the non-azeotropic mixed solution is generally lower than that of pure working fluids. It
can be seen from Figure 4 that the surface tension of EG/DW mixed solutions decreases
with the increase of the volume fraction of the ethylene glycol. To well known, the reduc-
tion of the surface tension was supposed to reduce the bubble diameter generated during
boiling, so as to strengthen the boiling heat transfer performance.
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However, the boiling experiment results in Figure 5 show that the heat transfer per-
formance decreases with the increase of the ethylene glycol ratio. Therefore, enhancing
the boiling heat transfer performance of non-azeotropic mixed solutions cannot be simply
obtained by reducing the surface tension.
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Figure 5. Concentration effect of the EG/DW solution on the boiling curve, plotted as the heat flux
against the wall super heat temperature.

Meanwhile, with the increase of the ethylene glycol concentration, the saturation
temperature of the solution will also change, which will delay the initial boiling tempera-
ture point.

Figure 6 shows the bubble growth behavior during boiling. The diameter of the bubble
decreased with the concentration increase since the surface tension decreased. At the same
time, the bubble departure frequency also decent caused by the growing mass transfer
resistance between components.
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Therefore, in this paper, a 30% EG/DW solution was selected as the base fluid to study
pool boiling-enhanced heat transfer since it can effectively reflect the enhanced effect of
subsequent experiments on the boiling performance of the EG/DW solution, while not
affecting the control experiment due to the excessive mass transfer resistance.

3.2. Properties of the Surfactant

In order to study the influence of different kinds of surfactants on the boiling perfor-
mance of the base fluid, three different kinds of typical surfactants that are widely used
were selected for the experiments: the cationic surfactant, CTAB, anionic surfactant, SDS,
and a non-ionic surfactant, Triton X-114. Among them, CTAB and SDS are dry white
powders and Triton X-114 is a viscous liquid, and the purity was more than 99.9%. We
used an electronic scale with an accuracy of 0.0001 g to weigh the surfactants of different
concentrations and added them to the base solution. Then, an electromagnetic mixer was
used to stir for 6 h to make the solution mix evenly and stably.

Based on the literature of other scholars [25,26], the optimal concentration ranges
of a surfactant aqueous solution can be found, and three surfactant concentrations were
determined as follows: CTAB (200~600 ppm), SDS (1500~2500 ppm), and Triton X-114
(200~400 ppm).

3.3. Preparation of Nanofluids

In this paper, the average size of the TiO2 nanoparticles was 20 nm and 50 nm. After
an ultrasonic bath, a two-step method was adopted by dispersing different weight con-
centrations of TiO2 into the base fluid with an electromagnetic mixer, stirring for 6 h. The
preparation of the nanofluids with two particle diameters at different volume fractions was
0.001%, 0.01%, and 0.1%.

In addition, since nanoparticles are unstable and easy to agglomerate, the experiments
with a mixture solution of the nano-based fluid (the 0.001% EG/DW nanofluids) and a
surfactant were carried out to explore the enhancement of the non-azeotropic mixtures.
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4. Results and Discussions

Thirty-three groups of experiments were carried out under atmospheric pressure.
Besides the base solution (EG/DW = 30:70), we also added TiO2 nanoparticles with particle
diameters of 20 nm and 50 nm in different concentrations, three representative surfac-
tants in different concentrations, and 0.001% nanofluids in different particle sizes with
various surfactants.

4.1. Effect of Nanoparticles on Nucleate Pool Boiling Heat Transfer

Figure 7 presents the pool boiling heat transfer coefficients versus the heat flux for
the base fluids with 20 nm and 50 nm TiO2 nanoparticles in different concentrations. It
can be seen from the figure that the initial boiling point of all the EG/DW solutions added
with the nanoparticles is delayed, and the boiling heat transfer performance decreases in
various degrees. Besides, the degree of decline increases with the increase of the super-
heat temperature.
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In addition, it can be found that when the particle diameter is 20 nm, the effect of
increasing the concentration of the nanoparticles on the boiling heat transfer performance
of the solution increases with the increase of the particle concentration. However, when
the particle diameter is 50 nm, the effect of the particle concentration on the heat transfer
performance of the solution does not have a certain regularity, but when the superheat is
high, the heat transfer performance of the 0.1% nanofluid is the worst.

The main reason for the enhanced heat transfer of nanofluids is that nanoparticles can
be adsorbed on the gas–liquid interface to increase the stability of bubble formation. At
the same time, the number of bubble nucleation points is also increased in the deposition
layer on the heating surface caused by the nanoparticles [27]. Therefore, the possible reason
for the heat transfer degradation is that the large mass transfer resistance of the EG/DW
solution during boiling makes the nanoparticles tend to agglomerate rather than adsorb to
the gas–liquid interface. Therefore, the addition of the nanoparticles hinders the formation
of the bubbles during boiling, resulting in the backwardness of the initial boiling point.
In addition, the resulting increase in dynamic viscosity also inhibits the deposition of the
nanoparticles on the heating surface, especially when the particle diameter is smaller, and
the deposition is lesser. This also explains why the overall heat transfer deterioration effect
of 20 nm nanofluids is stronger than that of 50 nm nanofluids.
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4.2. Effect of Surfactant on Nucleate Pool Boiling Heat Transfer

The change in the pool boiling heat transfer enhancement with a concentration for
the three surfactants is graphed in Figure 8. In general, EG/DW with the addition of
the surfactants enhances the heat transfer performance of the solution, despite the kind
of surfactant.
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It can be found that the heat transfer effect of the three surfactants is most improved
when the concentration nears the CMC. At a low heat flux, the solution with 400 ppm CTAB
and 2000 ppm SDS has the best boiling heat transfer performance, and the heat transfer ef-
fect is far better than that with TritonX-114. At the same time, all the concentrations of CTAB
and SDS show an early onset boiling point compared with the base fluid. As to TritonX-114,
it only shows the early onset boiling point when it nears the CMC concentration. However,
as the heat flux climbs, the heat transfer enhancement of TritonX-114 gradually becomes
the best. When the heat flux exceeds 100 kW/m2, the heat transfer performance of the
solutions with CTAB and SDS in low concentrations gradually deteriorates. Significantly,
when the heat flux exceeds 270 kW/m2, all the concentrations of the solutions with CTAB
will no longer improve the heat transfer performance.

It is well known that the addition of surfactants will reduce the surface tension of the
solution, reduce the bubble diameter, and increase the generation frequency of the bubbles,
and hence enhance the boiling heat transfer. Especially when the concentration is close to
the CMC, the performance of the heat transfer has an optimal enhancement.

In addition, the surfactants also have a good adsorbing capacity at the gas–liquid
interface [28], which has a significant impact on the boiling heat transfer of the non-
azeotropic mixtures. At a low heat flux density, the surface tension is the main factor
affecting the heat transfer, so the CTAB and SDS solutions in nearly CMC concentrations
have an obvious effect on heat transfer enhancement. With the continuous increase of the
heat flux density, the bubble density and frequency also rise, and the effect between the
bubble and liquid becomes more obvious, which grows the mass transfer resistance between
the components [29]. At this time, the interfacial adsorption of the surfactant becomes the
main factor affecting the heat transfer performance. Therefore, the boiling heat transfer
enhancement effect of the non-ionic surfactant TritonX-114 solution is gradually enhanced.
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4.3. Effect of Adding Surfactant into Nanofluids on Nucleate Pool Boiling Heat Transfer

The heat transfer curves of the 0.001% 20 nm and 50 nm TiO2 nanofluids with added
CTAB in different concentrations are illustrated in Figure 9. It can be seen that the two
solutions with different nanoparticle diameters show completely different heat transfer
effects. For the 20 nm nanofluids, the addition of 200 ppm CTAB significantly improved
the onset boiling point and boiling heat transfer capacity of the solution. With the increase
of the CTAB concentration, the heat transfer enhancement decreases gradually. Even so,
the heat transfer capacity of the solution is improved compared with the base liquid. For
the 50 nm nanofluids, the boiling heat transfer capacity increases with the increase of the
CTAB concentration. However, even if the heat transfer capacity of the mixed solution is
improved, the addition of CTAB does not offset the heat transfer deterioration caused by
the addition of the nanoparticles, and the heat transfer capacity of the 50 nm nanofluids are
all lower than that of the EG/DW solution.
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Figure 10 depicts the boiling heat transfer curve of the nanofluids with SDS added.
The nanofluids with two particle diameters also show two different heat transfer enhance-
ment performances. For the 20 nm nanofluids, adding SDS can effectively improve the
heat transfer capacity of the solution. Among them, the solution that added SDS with a
concentration close to the CMC obtained the optimum boiling heat transfer enhancement.
However, for the 50 nm nanofluids, the heat transfer performance of the solution can
achieve a slight enhancement only when there is a low concentration of SDS added. In
addition, the continuous increase of the concentration of SDS will only make the boiling
heat transfer constantly decline.
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The heat transfer curve of the nanofluid added with TritonX-114 is shown in Figure 11.
Compared with the first two kinds of surfactants, TritonX-114 has a significantly different
effect on the boiling heat transfer of the solution. No matter what the diameter of the
nanoparticles is, the addition of TritonX-114 has no enhancement on the boiling heat
transfer performance of the nanofluids, and the heat transfer deterioration enlarges with
the increase of the concentration.
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heat flux against the wall super heat temperature.

From the above solution boiling curves, it can be found that the nanofluid with CTAB
or SDS can not only achieve better boiling heat transfer performance but also tend to
be more stable than the base liquid with the surfactants. The possible reason is that the
adsorption of the surfactants is employed to inhibit the agglomeration of the nanoparticles
instead to disturb the gas–liquid interface. Hence, the formation and separation of the
bubbles tend to be more stable. The reduction rate of the surface tension has become
the main factor affecting the heat transfer performance. However, since the surfactants
also affect the contact angle of the nanoparticles and the deposition of the particles on
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the heated surface, the reduction of the surface tension is not the only reason that affects
the improvement of the pool boiling heat transfer performance. This is also why the
nanofluid added with CTAB does not have the highest heat transfer performance when
the concentration is close to the CMC. Therefore, no matter what the concentration of
TritonX-114 is, although it can improve the heat transfer deterioration of the nanofluids
to a certain extent, the heat transfer performance of the non-azeotropic mixed base fluids
cannot be improved because of the slow reduction rate of the surface tension.

In addition, no matter what kind of surfactant is added, the nucleate boiling heat
transfer performance of the 20 nm nanofluids is much better than that of the 50 nm
nanofluids. The reason of changing effects on the heat transfer enhancement largely results
from the fact that more bubble nucleation points on the heated surface formed due to
the smaller nanoparticle size. What is more, the addition of the surfactants amplifies this
effect, which induces the heat transfer performance to increase with the decrease of the
diameter of the nanoparticles. The change in the surface roughness of the heating surface
after boiling in the various solutions can be seen in Figure 12.
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5. Conclusions

In this study, EG/DW was selected as the representative of a non-azeotropic mixture
as the basic working fluid, and its pool boiling experiment was carried out. The study
offers some important insights into the pool heat transfer performance enhancement of a
non-azeotropic mixture, which has a significant potential application in small electronic
devices. However, additional studies to understand more completely the key tenets of
a mixture with additives are required, including the influence of the changing physical
properties of fluids in various concentrations.

The experimental results have confirmed the heat transfer degradation phenomena of
the non-azeotropic mixture compared with the pure refrigerant during pool boiling. At the
same time, the pool boiling characteristics of the mixed solution with nanoparticles and
surfactants were experimentally studied, and the major conclusions after the observation
and analysis of the experimental results are listed below.
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1. The increase of the ethylene glycol volume fraction in the EG/DW mixture can
reduce the surface tension of the solution. However, the increase of the mass transfer
resistance between the components and between the gas and liquid interface during
boiling will still cause the heat transfer degradation of the solution;

2. Instead of the pure working fluid with nanoparticles having an excellent effect on the
pool boiling heat transfer performance, adding nanoparticles to the EG/DW solution
deteriorated the heat transfer performance. The factor that contributes to this situation
is that nanoparticles tend to cluster when boiling since the mass transfer resistance
of non-azeotropic mixtures has a negative impact on the Brownian motion of the
nanoparticles. Although increasing the diameter of the nanoparticles can reduce
the deterioration to some degree, continuously increasing the concentration of the
nanoparticles will cause more serious degradation of the heat transfer.

3. Adding the surfactant enhanced the pool boiling heat transfer performance of the
EG/DW non-azeotropic mixture. However, the heat transfer performance of the
solution with the surfactant was not only related to the type and concentration of the
surfactant but was also related to the heat flux. The heat transfer performance of the
solution with 400 ppm CTAB and 2000 ppm SDS added to it had the most obvious
enhancement at a low heat flux, while the optimal heat transfer enhancement belonged
to the solution with 300 ppm TritonX-114 when the heat flux density exceeded 200
kW/m2. It is not simple to give the reason for this complicated phenomenon. Of
course, the surface tension reduction is not the sole reason for affecting the heat
transfer enhancement. The change in the heat transfer enhancement at a high heat
flux largely resulted from the adsorption capacity of the surfactants’ effect on the
interfacial mass transfer resistance and bubble dynamics.

4. Compared with adding surfactant solely in the EG/DW solution, adding surfactants
in the mixed solution with 20 nm TiO2 nanoparticles obtained a greater boiling heat
transfer improvement. However, this improvement effect was limited to the addition
of the cationic surfactant CTAB and anionic surfactant SDS. The main explanation
accounting for the phenomenon is that the surfactant promoted the Brownian motion
of the low-concentration nanoparticles of a small particle diameter since the mass
transfer resistance of the mixed solution was suppressed. Therefore, the main factor
affecting the heat transfer performance goes back to the reduction rate of the surface
tension. At the same time, the deposition layer of the small-sized nanoparticles on the
heated surface increased the nucleation points of the bubbles and further enhanced
the heat transfer performance.
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Nomenclature

q heat flux, kW/m2

h heat transfer coefficient, kW/m2·K
Tave average temperature, K
Tsat saturation temperature, K

Greek symbols
λ thermal conductivity, W/m·K
δ distance, m
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