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Abstract: In this work we have studied the Shannon information entropy for two hyperbolic single-
well potentials in the fractional Schrödinger equation (the fractional derivative number (0 < n ≤ 2)
by calculating position and momentum entropy. We find that the wave function will move towards
the origin as the fractional derivative number n decreases and the position entropy density becomes
more severely localized in more fractional system, i.e., for smaller values of n, but the momentum
probability density becomes more delocalized. And then we study the Beckner Bialynicki-Birula–
Mycieslki (BBM) inequality and notice that the Shannon entropies still satisfy this inequality for
different depth u even though this inequality decreases (or increases) gradually as the depth u of the
hyperbolic potential U1 (or U2) increases. Finally, we also carry out the Fisher entropy and observe
that the Fisher entropy increases as the depth u of the potential wells increases, while the fractional
derivative number n decreases.

Keywords: hyperbolic potential well; fractional Schrödinger equation; Shannon entropy; Fisher entropy

PACS: 03. 67. -w; 03. 67.-a

1. Introduction

Quantum information entropy has been studied widely since Shannon proposed
the classical concept in 1948 [1–31]. This is because the Shannon entropy as a measure
of uncertainty is a generalization to the traditional Heisenberg relation. It should be
recognized that all the contributions to this topic are concerned with the traditional
Schrödinger equation, i.e., the fractional derivative number n is taken as an integer 2. That
is to say, this research has been widely applied in many fields such as Harper model [27],
complex quasi-periodic potential models [28] and the nanoelectronic dispositives [32].
Since the pioneering work on the fractional Schrödinger equation by the Laskin and
others [30,33–35], however, this topic has attracted attention to many authors [36–45].
This is because the fractional Schrödinger equation can exhibit some quantum effects
on quantum quantities due to the fractional derivative number n. For instance, the
typical applications of fractional calculus in quantum mechanics include the energy band
structures [36], the position-dependent mass fractional Schrödinger equation [37], the
fractional harmonic oscillator [38], the nuclear dynamics of molecular ion H2

+ [39], the
propagation dynamics of light beams [40], the spatial soliton propagation [41], the Rabi
oscillations [42], the self focusing and wave collapse [43] and others.

As mentioned above, the Shannon information entropy has been studied for many
quantum soluble potentials. Based on their analytical wave functions, it is not difficult to
calculate the wave function in the momentum space by studying the traditional Fourier
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transformation. Among these soluble potentials, the hyperbolic potentials have played
an important role in semiconductor physics, e.g., the development of related research
on graphene [14,46–49]. Nevertheless, a number of quantum systems cannot be solved
analytically except for numerical study. Stimulated by our previous work [30,45], we are
going to study the quantum information entropy for hyperbolic potentials U1,2 in the
time-independent fractional Schrödinger equation. The hyperbolic potential wells, which
belong to single-well potentials with a minimum value u, are defined as [29,50]

Uq(x; u) =

{ − h̄2

2M
u

cosh4(x)
, q = 1,

h̄2

2M

(
−u + u sinh4(x)

cosh4(x)

)
, q = 2.

(1)

Up to now, due to the computational complexity of quantum information of the
fractional Schrödinger equation including the calculation of the wave function and the
Fourier transform, almost all authors have paid attention to the quantum information
of the traditional Schrödinger equation, i.e., the derivative number n = 2 except for our
previous study [45], in which n ∈ (1, 2] was taken. In that work [45], we have carried
out the quantum information entropies of multiple quantum well systems in fractional
Schrödinger equations. Recently, we have studied the Shannon entropy of the traditional
(n = 2) Schrödinger equation [29] with these two potentials (1) as shown in Figure 1, but
we do not show how the fractional derivative n affects the wave function and the relevant
physical quantities such as the position and momentum probability density as well as the
Shannon entropy. Moreover, in the present study we will display their behaviours through
taking the noninteger n ∈ (0, 2], which is different from our previous study n ∈ (1, 2] taken
in Ref. [45]. Certainly, we will see that the calculation results would become not ideal when
n is taken too small. On the other hand, in order to compare with the global characteristic
of Shannon entropy, it is necessary to study the locality of Fisher entropy.
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Figure 1. Plot of single quantum wells U1,2 (multiplied by a unit 2M/h̄2) as a function of variable x
with a depth of potential well u = 30.

This work is organized as follows. In Section 2 we present the formalism to solve
a fractional Schrödinger equation system in numerical way for hyperbolic potentials
(U1,2). In Section 3 we present the obtained results including the wave functions of
hyperbolic potential wells, the position and momentum entropy densities and the position
Sx and momentum Sp Shannon entropies by varying the depth u of the potential wells.
Furthermore, we show the characteristics of the 11th excited state case except for the
ground, first, second and sixth states. In particular, we show how the fractional derivative
number n affects their physical features. Finally, to compare with the Shannon entropy, we
also study the Fisher entropy. In Section 4 we summarize our conclusions.
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2. Formalism

Let us start with the one dimensional fractional Schrödinger equation(
− h̄2

2M
∂n

∂|x|n + Uq(x; u)

)
ϕ(x) = Eϕ(x), (2)

where the fractional derivative with a noninteger number n is defined as follows:

∂n ϕ(x)
∂|x|n =

1
2 cos( nπ

2 )Γ(2− n)
d2

dx2

∫ ∞

−∞
|x− ξ|1−n ϕ(ξ)dξ. (3)

The E and ϕ(x) represent the eigenvalues and the eigenfunctions, respectively.
To solve this Equation (2), we have to use a numerical method to calculate the fractional

derivative. Let us define

gk =
(−1)kΓ(n + 1)

Γ
( n

2 − k + 1
)
Γ
( n

2 + k + 1
) , (4)

where k = 0, 1, 2, . . . n > 0, then one has

g0 ≥ 0, g−k = gk ≤ 0, |k| ≥ 1. (5)

Now, the fractional centered difference is defined by

∆n
h f (x) =

∞

∑
k=−∞

gk f (x− kh). (6)

In this way, we have

− 1
hn ∆n

h f (x) =
∂n

∂ | x |n f (x) +O
(

h2
)

. (7)

When h tends to 0, then ∂n

∂|x|n f (x) becomes the fractional derivative for 0 < n ≤ 2. Now, we
can rewrite Equation (2) as,

N

∑
j=0

Aij ϕj = Eϕj. (8)

This matrix eigenvalue problem can be diagonalized by the available routine libraries [51].
After solving this equation, the eigenfunction can be obtained by this way. As shown

in Figure 2, we notice that the wave function will move towards the origin as the fractional
derivative number n decreases and the crest of the wave functions rises up gradually. This
makes the wave function localized near the origin.

Once the wave function is obtained, then the Shannon information entropy densities
ρs(x) and ρp(p) can be calculated as,

ρs(x) = |ϕ(x)|2 ln
(
|ϕ(x)|2

)
,

ρs(p) = |ϕ(p)|2 ln
(
|ϕ(p)|2

)
,

(9)

where the wave function in the momentum space ϕ(p) can be calculated by the Fourier
transformation

ϕ(p) =
1√
2π

∫
ϕ(x)e−ipxdx. (10)

For the present study, however, we have to use the fast Fourier method to obtain the
integrals numerically.
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Figure 2. The normalized wave functions as a function of position x for single-well potentials U1 (see
Panel (a)) and U3 (Panel (b)), respectively. The solid blue line, red dotted line and green dashed line
denote the ground state, the 1st and 2nd excited states, respectively. The noninteger n is taken as
n = 2, 1.3, 0.8, 0.3, respectively.

Based on them (9), the Shannon information entropies for position Sx and momentum
Sp can be calculated respectively by

Sx = −
∫ ∞
−∞ ρs(x)dx,

Sp = −
∫ ∞
−∞ ρs(p)dp.

(11)

For the sum of the position and momentum entropy Sx and Sp, Beckner, Bialynicki-
Birula and Mycieslky found an important uncertainly relation [52,53]

Sx + Sp ≥ D(1 + ln π) (12)

where D stands for the spatial dimension (D = 1 here). This inequality implies that if the
momentum entropy Sp increases then the position entropy Sx will decrease and vice versa.

Before ending this section, let us consider the Fisher information. Its importance was
noticed by Sears et al. [54], who found that the kinetic energy could be considered as a
measure of the information distribution. To know its wide applications, the reader can
refer to our recent study [55] for more information. It should be pointed out that the local
character of Fisher entropy is a main difference compared with Shannon information. The
Fisher entropy is defined as an expectation value of the logarithmic gradient of density or
as the gradient functional of density, i.e., its explicit definition is given by [56]

IF =
∫ b

a

[ρ′(x)]2

ρ(x)
dx = 4

∫ b

a
[ψ′(x)]2dx (13)

where the probability density is defined as ρ(x) = |ϕ(x)|2.
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3. Results and Discussions

We are now in the position to present the results of this work. Motivated by our
recent study about Shannon entropy in multiple well quantum well system in fractional
Schrödinger equations [45], we present the normalized wave function, the position and
momentum entropy densities ρx and ρp as well as the Shannon entropy. For simplicity,
we show the results for the ground, the first, second, sixth excited states and much higher
excited 11-th state. As shown in Figures 3 and 4, we show the variation of the position
and momentum entropy density as functions of the variables x and p, respectively. The
ground, the first, second and sixth excited states are denoted by solid blue line, red dotted
line, green dashed line and black dash-dotted line, respectively. Likewise, the values of
noninteger n are taken as 2, 1.3, 0.8, 0.3, respectively. It is found that the position entropy
density ρ(x) becomes more localized but the momentum entropy density ρ(p) is more
delocalized as the noninteger n decreases. For example, the crest of the wave function for
the ground state decreases gradually but those for the excited states increase gradually
with the decreasing n. However, for the case of momentum entropy density as shown in
Figure 4, the crest of the wave function for the ground state decreases gradually as the
n decreases.

In addition, we study the position and momentum entropy densities for higher excited
states, say 11-th excited state, as shown in Figures 5 and 6. It is found that the crest of
position entropy density gradually becomes larger as the noninteger n decreases, but it
is contrary to the momentum entropy density except that the position and momentum
entropy density becomes more localized and delocalized, respectively.

d)

sr

(a)

d)

sr

(b)

Figure 3. Plots of the position entropy density as a function of the position x for potential wells
U1 (Panel (a)) and U2 (Panel (b)). For each panel, Panels (a–d) are plotted for different values of
noninteger n, say n = 2, 1.3, 0.8, 0.3, respectively. The ground state, the first, second and sixth excited
states are denoted by solid blue line, red dotted line, green dashed line and black dash-dotted
line, respectively.
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Figure 4. Same as above Figure 3 but for the momentum p case for the potentials U1,2.

d)

s

(a)

s

(b)

Figure 5. Plots of position entropy density for normalized 11-th excited state for potential wells U1

(see Panel (a)) and U2 (see Panel (b)). For each Panel, Panels (a–d) are plotted for different values of n.
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s
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Figure 6. Same as Figure 5 but for the momentum entropy density.

Now, we explore the Beckner Bialynicki-Birula–Mycieslki inequality. This inequality
is still satisfied for both potential U1,2. This can be verified by Figures 7–10. Figures 7 and 9
show the position and momentum entropy Sx and Sp as a function of the depth u for the
potential wells U1,2. For simplicity, we consider the ground state for two potentials. We
notice that the position entropy Sx decreases with increasing depth u of the potential well
but decreasing noninteger n, but the momentum entropy Sp is contrary to that of Sx case.
In Figure 8 we observe the sum Sx + Sp for U1 decreases with the depth u of the potential
well, while that of case U2 increases with depth u. This implies that the sum Sx + Sp for U1
will become more stable than that of case U2 when the depth u increases. Certainly, their
sum always remains above the minimum value of the value 2.144. On the other hand, we
notice from Figures 8 and 10 that the difference of the sums for various n is very small and
the sum is always around 3.15.

Finally, let us show the plots of the Fisher entropy as a function of the depth u of the
potentials. As shown in Figure 11, we observe that the Fisher entropy increases with the
increasing u but with the decreasing n for both potentials U1,2. The Fisher entropy IF for
U1 is greater than that of the U2. This can be explained well by the shape of the potentials
since the potential U1 is narrower than U2.
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Figure 7. U1 position and momentum entropy Sx and Sp for different n. We consider the ground
state here.
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Figure 8. Sum of position and momentum entropy Sx + Sp for different values of n and u in the case
U1. The ground state is considered.
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Figure 9. Position and momentum entropy Sx and Sp for various n in the case U2.
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Figure 10. Sum of position and momentum entropy Sx + Sp for various n and u for U2.
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Figure 11. Plots of the Fisher entropy as a function of the depth u for the potentials U1 and U2.

4. Concluding Remarks

In this work we have carried out a class of hyperbolic potentials within the frame of
time-independent fractional Schrödinger equation and verified that the BBM inequality
is still satisfied for the different fractional derivative number n. We have shown how this
number n affects the wave function, the entropy density, Shannon entropy in the position
and momentum space. We have noticed that the position and momentum entropy density
becomes more localized and delocalized, respectively as the noninteger n decreases. On
the other hand, we have noted that the Sx decreases as the depth u of the potential wells
increases and the noninteger n decreases, but it is contrary to the momentum Sp case.
Finally, we have shown that the sum of entropy Sx + Sp for U1 will become more stable
than that of case U2 when the depth u increases. This is determined by the shape of the
potential wells as shown in Figure 1. This is because potential well for U1 becomes narrower
than that of U2. The motion of particles in potential well U1 is more restricted than that in
potential well U2. Finally, we have also carried out the Fisher entropy and observed that the
Fisher entropy increases as the depth u of the potential wells increases and the n decreases.
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